
Frame Synchronization Without Attached Sync Markers
Jon Hamkins

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109-8099

Jon.Hamkins@jpl.nasa.gov

Abstract—We describe a method to synchronize codeword
frames without making use of attached synchronization mark-
ers (ASMs). Instead, the synchronizer identifies the code
structure present in the received symbols, by operating the de-
coder for a handful of iterations at each possible symbol offset
and forming an appropriate metric. This method is computa-
tionally more complex and doesn’t perform as well as frame
synchronizers that utilize an ASM; nevertheless, the new syn-
chronizer acquires frame synchronization in about two sec-
onds when using a 600 kbps software decoder, and would take
about 15 milliseconds on prototype hardware. It also elimi-
nates the need for the ASMs, which is an attractive feature
for short uplink codes whose coding gain would be dimin-
ished by the overheard of ASM bits. The lack of ASMs also
would simplify clock distribution for the AR4JA low-density
parity-check (LDPC) codes and adds a small amount to the
coding gain as well (up to 0.2 dB).

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 PRELIMINARIES . 1
3 AN ASM-LESS FRAME SYNCHRONIZER FOR

LDPC CODES . 3
4 PERFORMANCE . 4

APPENDIX: MAXIMUM LIKELIHOOD SYN-
CHRONIZER . 6
ACKNOWLEDGMENTS . 7
REFERENCES . 7
BIOGRAPHY . 7

1. INTRODUCTION

The emerging Consultative Committee for Space Data Sys-
tems (CCSDS) recommendation for low-density parity-check
(LDPC) codes [2] specifies a 64-bit attached sync marker
(ASM) that is to immediately precede each LDPC code-
word. The codeword (frame) boundary can be identified by
searching for the ASM.3 In an argmax-type synchronizer, a
metric is computed for each candidate offset, and the offset
with the highest metric is declared the winner. This type of
synchronizer has been successfully used for the (2048,1024)
LDPC code in tests at the Electronic Systems Test Laboratory

1 978-1-4244-7351-9/11/$26.00 c©2011 IEEE. 2 IEEEAC paper # 1703,
Version 2, Updated December 29, 20103 Kenneth Andrews, “Frame syn-
chronizers without (very many) equations,” JPL Interoffice Memorandum,
November 2007.

(ESTL) at the Johnson Space Center, for example.4,5

A brute force way to synchronize frames is to buffer two
frame-lengths of symbols—a length sufficient to guarantee
capture of at least one complete frame—and attempt decod-
ing at each possible offset until an offset is found for which
decoding is successful. This decode-at-all-offsets approach
was used in the Mars Laser Communications Demonstration6

(MLCD) for example, and works well if the decoder is many
times faster than the data rate of the link. For CCSDS LDPC
codes, the decoder would need to operate four to five orders
of magnitude faster than the data rate in order for it to be able
to acquire the correct frame offset without dropping or buffer-
ing additional codewords during the synchronization process.
This is because, first, there are n = 1280 to 32768 candidate
offsets to consider for the CCSDS LDPC codes, depending
on the output length of the code; and second, the decoder can
be an order of magnitude slower when attempting to decode
candidate offsets as it is in its usual decoding operation — a
result of the decoder using the maximum (e.g., 200), not av-
erage (e.g., 20), number of iterations at each incorrect offset.

In this paper, we present a variation of the brute force ap-
proach in which decoding is halted prematurely. At the cor-
rect offset, the messages passed in the decoding algorithm be-
gin to converge in a fundamentally different way than they do
when the offset is incorrect. This difference can be exploited
by forming an appropriate metric that discriminates between
the correct offset and the incorrect offsets.

2. PRELIMINARIES

Data flow

This paper assumes a data flow as shown in Figure 1. Infor-
mation bits are sent to the encoder of an LDPC or turbo code,
or any any code which is iteratively decoded with a message-
passing algorithm that uses the concept of check nodes or
log-likelihood ratios (LLRs) of the transmitted symbols. To
remove the potential issue of false frame-synchronization of
quasi-cyclic shifts of codewords,7 we assume the use of the
CCSDS randomizer [1, section 6], which in any case is good

4 Kenneth Andrews, “FPGA core: Frame synchronizer, two-marker
list-based algorithm,” JPL Interoffice Memorandum, July 2007. 5 Chatwin
Landsdowne, “LM Orion baseband processor ‘brassboard II’ test – out-
brief results summary,” October 2009.6 William Farr, “MLCD Ground Net-
work Preliminary Design Review – 1.025 Mbps end-to-end link demonstra-
tion,” May 2005.7 Kenneth Andrews, “Results of the LDPC decoder tests at
ESTL,” JPL Interoffice Memorandum, March 2007.

1

�������
�	�

������

��	���� �������
���	�

������

��	��
�����

����

Figure 1. Data flow.

practice when the transition density in the information bits
is unknown. The codeword symbols are transmitted contigu-
ously, without gaps. For our purposes, we assume an ASM
is not transmitted, although the algorithm would still work if
it were – it does not utilize the ASM. At the receiving end,
LLRs of the received symbols are formed.

A 2n-vector of these LLRs is stored, where n is the output
length of the (n, k) code. Thus, a codeword starts somewhere
within the first n positions, and the vector contains the com-
plete set of LLRs of a codeword. The goal is to identify which
of the first n positions corresponds to the first symbol. After
frame synchronization, the LLRs are derandomized by flip-
ping their sign bits as necessary,8 and decoding can begin.

LLR distributions

As messages are passed on the Tanner graph of the code dur-
ing decoding, the reliabilities of the transmitted symbols will
evolve. If the frame is properly synchronized, the reliabilities
usually improve as decoding continues, and if a correct code-
word emerges, many of the reliabilities will become quite
high. If the frame is incorrectly synchronized, the passage of
the mis-synchronized LLRs through the derandomizer causes
the Tanner graph to be initialized with a set of reliabilities that
typically don’t relate in any way to the code structure and the
nodes don’t typically converge to high reliabilities.

This behavior is shown in Figure 2 for the (2048,1024)
AR4JA LDPC code. In Figure 2(a), the LLR distributions are
shown when the decoder9 uses correctly synchronized frames
and stops after 0, 2, 5, 10, and 200 iterations. As is seen in
the figure, the first two iterations provide no noticeable dif-
ference in the LLR distribution, but by the fifth iteration, the
LLR distribution is evolving to higher reliabilities. In each
case, Eb/N0 = 2 dB, which is the approximate threshold at
which the code can be operated effectively. About 14.4 itera-
tions are needed to decode, on average, at that signal-to-noise
ratio (SNR). Figure 2(b) shows the LLR distributions when
the frame is mis-synchronized by one symbol. The reliabili-
ties increase slightly as the decoder struggles to make sense
of its meaningless input, but by about the tenth iteration the
reliabilities have stagnated. The LLR reliabilities after five
iterations are noticeably worse than the corresponding LLR
reliabilities in the synchronized case.

8 Kenneth Andrews, “LDPC codes in a protocol stack,” JPL Interoffice
Memorandum, March 2007.9 The software decoder utilized here quantizes
the LLRs to integer values ranging from -127 to 127. The quantizer is de-
signed so that in its granular region, the quantized LLR is roughly eight times
the LLR.

0 iterations

200 iterations

2 iterations

5 iterations

10 iterations

Synchronized

Quantized LLR

P
ro

b
ab

il
it

y

-127 -100 -50 0 50 100 127
10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a) Using correctly synchronized input.

0 iterations
2 iterations
5 iterations

10 iterations
200 iterations

Not Synchronized

Quantized LLR
-127 -50 0 50 100 127

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
ro

b
ab

il
it

y

-100

(b) Using incorrectly synchronized input.

Figure 2. LLR distribution, with (2048,1024) AR4JA code
at Eb/N0 = 2 dB.

Number of satisfied check nodes

The number of satisfied check nodes will also evolve during
decoding. If the frame is properly synchronized, the number
of satisfied check nodes usually increases as decoding con-
tinues, until all are satisfied and a valid codeword is declared.
Decoding fails if the maximum number of allowed iterations
is reached before all check nodes are satisfied. If the frame
is incorrectly synchronized, the Tanner graph is initialized
with a set of variable node LLRs that typically don’t relate
in any way to the code structure and the count of satisfied
check nodes will generally start lower and will fail to reach a
large number with continued iterations.

This behavior is shown in Figure 3 for the (2048,1024)
AR4JA LDPC code. In Figure 3(a), the distributions of the
number of failed check nodes are shown when the decoder

2

5 iterations

2 iterations

10 iterations

200 iterations

Number of failed check nodes
0 100 200 300 400 500 600 700

10
−4

10
−3

10
−2

10
−1

10
0

P
ro

b
ab

il
it

y

(a) Using correctly synchronized input.

2 iterations

5 iterations

10 iterations

200 iterations

Number of failed check nodes
0 100 200 300 400 500 600 700

10
−4

10
−3

10
−2

10
−1

10
0

P
ro

b
ab

il
it

y

(b) Using incorrectly synchronized input.

Figure 3. Distribution of number of failed check nodes, with
(2048,1024) AR4JA code at Eb/N0 = 2 dB.

uses correctly synchronized frames and stops after 2, 5, 10,
and 200 iterations. As is seen in the figure, an increasing
number of iterations results in fewer failed check nodes, and
in this simulation, all of the codewords were correctly de-
coded by the 200th iteration. In each case, the (2048,1024)
LDPC code was simulated at Eb/N0 = 2 dB.

Figure 3(b) shows the distribution of the failed check node
count when the frame is mis-synchronized by one symbol.
Initial iterations reduce the number of failed check nodes, un-
til about the fifth iteration. Further iterations actually increase
the number of failed check nodes, and the decoder becomes
hopelessly lost.

3. AN ASM-LESS FRAME SYNCHRONIZER
FOR LDPC CODES

Defining a metric

The decoder may distinguish between the synchronized and
un-synchronized conditions by forming metrics based on the
variable node LLRs or check node satisfactions produced by
a partial decoding. This is conceptually similar to the metric-

growth-rate method of acquiring node synchronization for
convolutional codes [3], except that there are many more can-
didate offsets to consider. A Maximum Likelihood (ML) ap-
proach in arriving at a statistic is derived in the Appendix;
here, we discuss ad hoc approaches. When variable node
LLRs are used to discriminate between synchronized and un-
synchronized offsets, one ad hoc metric is

M =
n∑

i=1

f(λi) (1)

where λi is the ith LLR and f(·) is a function to be defined.
We may reasonably require f(·) to be an even, monotonically
increasing function of its argument, so that it is unbiased with
respect to the number of 1s in a codeword and so that it re-
wards higher reliabilities. Some possibilities for f(·) are:

1. f(x) = |x|a, for some real positive a
2. f(x) = e|x|

3. f(x) = log(1 + |x|)
4. f(x) = I{|x|≥η}, where I is the indicator function and η
is a threshold

When check nodes are used to form an ad hoc metric, one
choice is the number of satisfied check nodes:

M =
n−k∑
i=1

I{check node i satisfied} (2)

One could also form metrics using both the variable and
check nodes. One could also incorporate the evolving nature
of the metrics, e.g., by measuring whether the number of sat-
isfied check nodes is increasing or whether the variable node
reliabilities are increasing from one iteration to the next.

Description of Frame Synchronizer algorithm

We can now summarize the steps to synchronize the frames
of an (n, k) code:

1. Collect soft symbols (LLRs) y0, y1, . . . , y2n−1 from the
channel
2. For each j, j = 0, 1, . . . , n− 1,
(a) Derandomize yj , yj+1, . . . , yj+n−1

(b) Run the decoder for I iterations using the derandomized
yj , yj+1, . . . , yj+n−1 as input
(c) Form metric M(j) as given in (1) or (2).

3. Declare j∗ = argmax
j

M(j) to be the index of the first

symbol of the codeword
4. Run the decoder for its maximum number of iterations
(e.g., 200) using yj∗ , yj∗+1, . . . , yj∗+n−1 as input.
(a) If decoding fails, this may be the result of frame syn-

chronization error. Repeat the frame synchronizer process at
step 1, using a new window of 2n channel symbols (including
n new symbols), i.e., yn, yn+1, . . . , y3n−1.
(b) If decoding succeeds, the frame synchronization has

been acquired correctly. END.

3

I{|x|≥25}

I{satisfied check}

|x|

“Highest 4 metrics”
“Highest metric”

method
method

Eb/N0 (dB)
0 0.5 1 1.5 2 2.5 3

10
−4

10
−3

10
−2

10
−1

10
0

F
ra

m
e

S
y
n
c

E
rr

o
r

R
at

e

Figure 4. Frame synchronization error rate for various met-
rics.

If the frame synchronizer is fast enough relative to the in-
coming symbol rate, it may be run after reception of every
codeword, essentially providing continuous synchronization
functionality. Otherwise, it may be run once to acquire frame
synchronization, and then remain dormant as long as correct
decoding ensues. If a previously-designated number of con-
secutive codewords fail to decode, then the synchronization
process may be restarted. In this re-acquisition phase, prefer-
ence could be given to the several adjacent symbol positions,
to minimize the re-acquisition time.

4. PERFORMANCE

Frame Synchronization Error Rate vs. choice of metric.

We simulated the frame synchronizer for the (2048,1024)
AR4JA LDPC code operating at Eb/N0 = 2 dB, using vari-
able nodes metrics f(x) = |x|,

√
|x|, x2, x4, log(1 + |x|),

I{|x|≥25}, I{|x|≥50}, I{|x|≥75}, I{|x|≥100}, and I{|x|=127},
and check nodes metric I{satisfied check}. We found that the
synchronizer performance is not sensitive to choice of met-
ric function. This is illustrated, for 10 iterations and a subset
of the metrics, in Figure 4. Also shown in the figure is the per-
formance of a simple extension of the synchronizer, in which
instead of declaring the offset corresponding to the highest
metric to be the correct one, the offsets corresponding to the
highest four metrics are each decoded using full iterations and
the one successfully decoded is declared the correct one. This
extension does not significantly improve performance, which
indicates that when the synchronizer fails, the correct offset
often does not have a competitively high metric. The insen-
sitivity to choice of metric suggests choosing a simple one,
such as |x| or I{satisfied check}. In the results in the remainder of
the paper, we use |x| as the metric.

Frame Synchronization Error Rate vs. number of iterations.

The frame synchronization error rate for the (2048,1024)
AR4JA code at Eb/N0 = 2 dB is shown in Figure 5. We de-
sire that the frame synchronizer operate at an SNR below that
at which the decoder can successfully decode bits, so that the

synchronizer is not the performance limiter in the end-to-end
system. Unfortunately, this requires setting the number of it-
erations to a fairly high number in the frame synchronization
algorithm. As seen in Figure 5(a), 50 iterations are necessary
in the frame sync algorithm in order to achieve frame sync
error rate performance comparable to the codeword error rate
(CWER) of the 200-iteration decoder — this, in spite of the
excellent separation we see in Figure 2 in the variable node
distributions in as few as 10 iterations. The problem, appar-
ently, is that when thousands of offset metrics are competing,
a single outlier that exceeds the correct offset metric is rela-
tively common.

This problem may be overcome by processing more than one
codeword, i.e., by exercising step 4a of the algorithm one or
more times. A 10 iteration synchronizer achieving frame syn-
chronization error rate 10−3 based on processing one code-
word, for example, would achieve

(
10−3

)2 = 10−6 by pro-
cessing two codewords, assuming the noise is independent
from one codeword to the next. Figure 5(b) shows the frame
sync error rate when two codewords are used. At very low
data rates, there may be time to perform many iterations, but
at higher rates, rather than perform 50 or more decoding it-
erations for the synchronizer, one could use fewer iterations,
e.g., as many as can be used to check all n offsets before the
next codeword arrives.

Acquisition Time

In determining the mean time to acquire frame synchroniza-
tion, we assume that the first n symbols have already arrived
at the receiver — this is a necessary condition for virtually
any synchronizer to function — and we measure the average
time, Tacq, it takes for the proposed synchronizer to settle
on the correct symbol offset. This includes the time to make
computations, as well as the time needed to receive and pro-
cess additional symbols beyond the first n, if necessary.

Suppose the synchronizer for an (n, k) code uses I itera-
tions to check each offset, and each iteration takes T1 s. If
I ≥ Imax, where Imax is the maximum number of iterations
used by the decoder in its normal decoding mode, then the
synchronizer will find the correct offset after checking at most
n offsets – one of them will succeed in finding the codeword
(neglecting the small probability of a decoder failure at the
proper offset). The decoder completes I iterations in time
IT1, and if this time is shorter than a symbol duration Tsym,
the synchronizer must wait for the next symbol to arrive be-
fore checking the next offset. Thus, the acquisition time when
I ≥ Imax is

Tacq = max {nIT1, nTsym} .

Now suppose I < Imax. Let pI denote the resulting frame
synchronization error rate when based on one codeword, i.e.,
when the synchronizer computes n metrics. Each sync er-
ror takes nIT1 s (or nTsym, whichever is longer) to compute
the synchronization metrics, followed by ImaxT1 s to attempt

4

20

10

5 iterations

CWER of code

200

50

Eb/N0 (dB)
32.521.510.50

10
−4

10
−3

10
−2

10
−1

10
0

F
ra

m
e

S
y
n

c
E

rr
o

r
R

at
e

(a) Based on one codeword.

10

CWER of code

5 iterations

200

50 20

Eb/N0 (dB)
32.521.510.50

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

F
ra

m
e

S
y
n
c

E
rr

o
r

R
at

e

(b) Based on two codewords.

Figure 5. Frame synchronization error rate as a function of
number of iterations performed.

decoding and declare failure after Imax iterations. This is re-
peated, until (on the jth try) synchronization succeeds. Thus,
the mean acquisition time is given by

Tacq =

∞∑
j=1

Probability sync
takes j codewords︷ ︸︸ ︷
[1− pI] p

j−1
I ·

Acquisition time
with j codewords︷ ︸︸ ︷

(jn max(IT1, Tsym) + (j − 1)ImaxT1)

=
n max(IT1, Tsym) + pIImaxT1

1− pI
. (3)

The numerator and denominator are both nondecreasing in I ,
and we may choose I to minimize the acquisition time. If
IT1 < Tsym, the synchronizer operates faster than symbols
arrive from the channel, and one can increase I without in-
creasing Tacq.

We now consider a quantitative example. The (2048,1024)
AR4JA LDPC code operating at Eb/N0 = 2 dB can be de-
coded at Rdec = 597 kbps and Idec = 14.4 average iterations
using C software running on a standard desktop. Thus, the

5
10
20

50

200 iterations

200 iterations

50

20

10
5

Using 600 kbps software decoder

100 Mbps
decoder

Using

Data Rate (b/s)
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
0.01

0.1

1

10

100

A
cq

u
is

it
io

n
T

im
e

(s
)

Figure 6. Average acquisition time for AR4JA (2048,1024)
code, at Eb/N0 = 1.5 dB.

time to perform one iteration is given by

T1 =
k

IdecRdec
=

1024
14.4 · 597000

= 0.12 ms.

Using the pI values from Figure 5(a), a maximum of Imax =
200 iterations, and a symbol duration of Tsym = 2/R s,
where R is the data rate of the link in bits per s, we may plug
into (3). The result is shown in Figure 6. For data rates above
a few kbps, the average acquisition time is about 2 seconds
when using a 5-iteration synchronizer. At lower data rates,
the synchronizer is limited by the time it takes to receive ad-
ditional symbols from the channel. The figure also shows
the acquisition time when a 100 Mbps decoder is available.
Acquisition times range from 0.013 s for the 5-iteration syn-
chronizer to 0.29 s for the 200-iteration synchronizer. These
data show that acquisition time is minimized by using only
a few decoder iterations, substantially fewer than the number
needed to produce decoded bits.

Uplink Codes

The standard CCSDS code used for many years on uplink
channels has output length 63, sometimes padded to 64. Its
low coding gain makes it a ripe target for replacement by
a modern LDPC code. If such an LDPC code also has a
very short length, then an ASM of 32 or 64 bits could ef-
fectively double the length of the transmission, wiping out
a large fraction of the coding gain. This could make selec-
tion of LDPC codes unattractive for the uplink application,
despite their large coding gain. The elimination of the ASM,
then, may enable the consideration of a larger set of candi-
date codes, leading to increased coding gains on the uplink
channel. The increased coding gain would enable NASA to
command spacecraft to further reaches of the solar system, or
beyond, or to command closer spacecraft using smaller an-
tennas than would otherwise be possible.

Data Volume on the Downlink

To first order, the method of frame synchronization does not
affect the total data volume that a link can support on its

5

downlink channel, but there is a small increase, negligible
in most cases, in throughput because of the elimination of the
ASMs. This throughput gain is less than 0.01 dB for each
of the CCSDS codes, with the exception of the k = 1024
AR4JA LDPC codes, where the gain ranges from 0.134 to
0.212 dB.10 This means that a 1 Mbps link could be improved
to 1.05 Mbps, which over the course of an eight hour pass
would improve the data volume by 1.36 Gb.

This increase in data volume may be reduced or reversed if
frames are lost during acquisition or re-acquisition of frame
synchronization. The effect would be more likely at higher
data rates, and if link conditions were such that symbol slip-
ping in the receiver were prevalent.

Clock Distribution

Eliminating the ASMs simplifies the relationship between the
input and output symbol rates to the encoder for an AR4JA
code. The (2048,1024) AR4JA code with the 64-bit marker,
for example, takes as input 1024 bits for each 2048+64=2112
symbols at its output. This is an input-output ratio of 16:33.
Without the ASM, the input-output ratio is 1:2, which may
simplify clock distribution in the baseband processing of the
spacecraft. Similarly, exact 2:3 and 4:5 relationships emerge
for the 2/3 and 4/5 AR4JA codes.

APPENDIX: MAXIMUM LIKELIHOOD
SYNCHRONIZER

The main part of the paper shows several ad hoc metrics that
can be used in the development of an ASM-less frame syn-
chronizer. In this appendix, we show that the ad hoc check
node metric in (2) follows closely from a derivation of the
Maximum Likelihood (ML) statistic for frame synchroniza-
tion.

Preliminaries

LLR of a check node—To discuss the probability that a check
node is satisfied, it is helpful to form a log likelihood ratio
(LLR) statistic for it. To start, we’ll consider a single check
node with degree d. Suppose, for i = 1, . . . , d, we have

yi = xi + ni,

where xi ∈ {−1,+1} and ni is a zero-mean Gaussian ran-
dom with variance σ2. We assume ni is independent of xj

for all i and j, and independent of nj for i 6= j. Define the
vectors x , (x1, . . . xd) and y , (y1, . . . yd). Then the con-
ditional probability density function of y given x is

f(y|x) =
d∏

i=1

1√
2πσ2

exp
[
−(yi − xi)2

2σ2

]
.

Since x takes values in {−1,+1}, we may write 1−2x when
we wish to refer to values in {0, 1}. Let h(x) , (1− 2x1)⊕

10 Jon Hamkins, “CCSDS attached synchronization marker overhead,” JPL
Interoffice Memorandum, 332.2008.12.001, December 2008.

(1−2x2)⊕· · ·⊕ (1−2xd), i.e., the parity, or modulo 2 sum,
of (1− 2x). If x corresponds to the variable nodes connected
to a check node, then the check node constraint is satisfied
and h(x) = 0. In the absence of synchronization, however,
the components of x are independent and equiprobable, and
h(x) may be either 0 or 1. We may form a log likelihood ratio
(LLR) of h, given by

Λ , log
[

Pr(h(x) = 0|y)
Pr(h(x) = 1|y)

]
. (4)

From this, we may express the probability that h(x) = 0,
given y, by manipulating (4) to obtain Pr(h(x) = 0|y) =
1/(1 + eΛ). We may rewrite Λ as

Λ = log
[
f(y|h(x) = 0)
f(y|h(x) = 1)

]
= log

[∑
x:h(x)=0 f(y|x)∑
x:h(x)=1 f(y|x)

]

= log

∑
x:h(x)=0 exp

[
〈y,x〉

σ2

]
∑

x:h(x)=1 exp
[
〈y,x〉

σ2

]
 (5)

where 〈y,x〉 =
∑d

i=1 yixi. When d = 2, for example, the
LLR in (5) becomes

Λ = log

[
cosh

(
y1+y2

σ2

)
cosh

(
y1−y2

σ2

)]
(6)

Approximation to the LLR—When d > 2, there are 2d−1 ex-
ponential terms in the numerator of (5), and 2d−1 exponential
terms in the denominator. A common approximation to LLR
expressions under Gaussian statistics is to replace the sum of
exponentials by its largest term. This corresponds to using
the nearest neighbor to y having even parity in the numer-
ator, and the nearest neighbor to y having odd parity in the
denominator:

x(0) , argmin
x∈{−1,+1}d:h(x)=0

‖y − x‖

x(1) , argmin
x∈{−1,+1}d:h(x)=1

‖y − x‖.

Thus, we may approximate (5) by

Λ ≈ log

exp
[
〈y,x(0)〉

σ2

]
exp

[
〈y,x(1)〉

σ2

]
 (7)

It is plain to see that x(0) and x(1) differ in exactly one po-
sition, namely,

m , argmin
m′:1≤m′≤d

|ym′ |,

6

and using xm(0) = −xm(1), we may rewrite (7) as

Λ ≈ log

exp
[

ymxm(0)
σ2

]
exp

[
ymxm(1)

σ2

]
 (8)

=
2ymxm(0)

σ2
(9)

= λmxm(0) (10)

where λm , 2ym/σ2 is an individual channel symbol LLR
used in the usual decoding operation.

That is, the LLR of a check node has magnitude dominated by
the LLR of the least reliable channel symbol connected to it,
and sign governed by whether the hard decisions of the chan-
nel symbols connecting to the check node satisfy the check
node.

The Maximum Likelihood Synchronizer

We now turn to the question, given a contiguous stream of
symbols from a binary, linear (n, k) code, which symbol most
likely begins a new codeword?

Without an attached sync marker (ASM), the only clue to the
correct synchronization offset lies in the structure the code
imposes. Any linear code has an associated parity-check ma-
trix, each row of which defines a subset of code symbols that
have even parity. Using the analysis above, we may express
the maximum likelihood synchronization position as the one
that maximizes the LLR in (10), summed over all such (pre-
sumed independent) check nodes. The metric at a given posi-
tion is given by

M =
∑

check nodes i

Λi (11)

where Λi is the LLR of the ith check node, given in (10).
This metric is similar to the number-of-satisfied-check-nodes
metric, except that it is a soft measure, not a hard one, because
of the presence of λm in (10).

ACKNOWLEDGMENTS

I thank my JPL colleagues Kevin Quirk for first bringing
to my attention the brute force synchronization method for
MLCD in 2003, Ken Andrews for several conversations about
LDPC frame synchronization going back to October 2006,
and Sam Dolinar for many helpful recent comments regard-
ing the distributions in Figures 2 and 3.

The research described in this publication was carried out at
the Jet Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronautics and
Space Administration.

REFERENCES

[1] TM synchronization and channel coding. CCSDS
131.0-B-1. Blue Book, Issue 1. September 2003,

http://public.ccsds.org/publications/archive/131x0b1.pdf.

[2] Low density parity check codes for use in
near-Earth and deep space. CCSDS 131.1-O-
2. Orange Book, Issue 2. September 2007,
http://public.ccsds.org/publications/archive/131x1o2e2.pdf.

[3] J. I. Statman, B. Siev, and J. Rabkin. Node
and frame synchronization in the big Viterbi de-
coder. TMO Progress Report, 42(103):154–160, Novem-
ber 1990, http://ipnpr.jpl.nasa.gov/progress report/42-
103/103P.PDF.

BIOGRAPHY[

Jon Hamkins (S’94, M’96, SM’03)
received the B.S. degree in electrical
engineering from the California Insti-
tute of Technology (Caltech), Pasadena,
in 1990 and the M.S. and Ph.D. de-
grees in electrical and computer engi-
neering from the University of Illinois
at Urbana-Champaign in 1993 and 1996,

respectively. Since then, he has been with the Jet Propulsion
Laboratory, Caltech, where he is now supervisor of the Infor-
mation Processing Group. His research interests include er-
ror control theory, information theory, autonomous receivers,
ranging, and optical communications.

7

