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ABSTRACT 

 
The Multi-angle Imaging SpectroRadiometer (MISR) 

instrument has been collecting global Earth data from 
NASA’s Terra satellite since February 2000. With its nine 
along-track view angles, four visible/near-infrared spectral 
bands, intrinsic spatial resolution of 275 m, and stable 
radiometric and geometric calibration, no instrument that 
combines MISR’s attributes has previously flown in space. 
The more than 10-year (and counting) MISR data record 
provides unprecedented opportunities for characterizing 
long-term trends in aerosol, cloud, and surface properties, 
and includes 3-D textural information conventionally 
thought to be accessible only to active sensors.  
 
Index Terms— Remote sensing, aerosols, clouds, surfaces 
 

1. INTRODUCTION 
 

MISR was launched into polar Earth orbit aboard 
NASA’s Terra satellite on December 18, 1999. The 
instrument contains 9 pushbroom cameras pointed at nadir 
and along-track view angles of 70.5º, 60º, 46.1º, 26.1º 
forward and backward of nadir, with spectral bands at 446, 
558, 672, and 866 nm. Surface and atmospheric targets 
within the observed swath (~400 km) are viewed at all 9 
angles over a span of 7 minutes with an intrinsic spatial 
resolution of 275 m. No instrument that combines MISR’s 
attributes—multiangle imaging at moderately high spatial 
resolution with near-simultaneous temporal sampling; stable 
and accurate on-board calibration suitable for climate-
quality science; and global coverage—had flown in space 
prior to Terra launch, nor is there is a similar capability 
currently available on any other satellite platform. Examples 

of MISR applications to terrestrial climate and 
environmental studies are presented. 
 

2. SCIENTIFIC APPLICATIONS 
 

Clouds and climate: Cloud-top heights (CTH) are 
retrieved from MISR data using a stereo pattern-matching 
approach insensitive to atmospheric temperature profile, 
emissivity, and radiometric calibration drifts, thereby 
providing climate diagnostics independent of errors that 
adversely affect infrared techniques, e.g., in areas subject to 
temperature inversions [10], [12]. Instantaneous MISR CTH 
are quantized to multiples of 560 m, but averaging reduces 
the random component of uncertainties to precisions 
characteristic of the sampling error, estimated to be ±8 m for 
annual global means, providing a uniquely sensitive climate 
metric for detecting trends in cloud heights [4]. MISR stereo 
observations exhibit a tri-modal vertical distribution in the 
tropics, and show exceptionally high quality and sensitivity 
for detection and height determination of low-level clouds 
[25]. This is important because such clouds are major 
contributors to tropical cloud feedback uncertainties in 
climate simulations 0.  

Height-resolved tropospheric winds: Using multi-
camera stereo, MISR has for the first time enabled a pole-to-
pole, height-resolved atmospheric wind measurement system 
[14], [26]. The global data product, which provides cloud-
tracked atmospheric wind vectors at 70.4 x 70.4 km2 
horizontal and 500 m vertical resolution, is valuable for 
retrospective evaluation and improvement of weather and 
climate models. Validation against rawinsondes and radar 
wind profilers indicate uncertainties smaller than obtained 
from geostationary platforms and superior height 
assignments [3], [13], [19]. Spatially and temporally 



matched zonally-averaged wind profiles vs. height show 
excellent agreement between MISR and numerical analysis 
models, with systematic differences showing up at mid-
levels in the tropics [11]. Recent algorithm enhancements 
are being used to generate a high-resolution wind product 
over tropical hurricanes, with horizontal wind resolution in 
the cross-track direction of 1.1 km for use in cyclone inner-
core dynamics and intensification process studies.   

Aerosol sources, injection, and transport: MISR 
stereo imagery makes possible global measurement of the 
heights and advection speeds of smoke plumes, volcanic 
plumes, and dust clouds. Using fire detections from the 
Moderate Resolution Imaging Spectroradiometer (MODIS), 
a multi-year climatology of smoke injection heights from 
MISR [20] is providing new insights into how smoke 
injection depends on environmental variables [15], [23]. The 
public archive (http://www-misr2.jpl.nasa.gov/EPA-
Plumes/) contains data for >7000 smoke plumes in North 
America, Siberia, and Africa. For about one-fifth of 
wildfires, smoke is injected into the free troposphere, where 
particles can remain for long periods and be transported 
great distances. The data also show that smoke tends to 
become trapped at levels of relative atmospheric stability, 
providing a useful parameterization for chemical transport 
models. The plume database has recently been augmented 
with height retrievals for the Eyfjallajökull eruption in 
Iceland. MISR also provides accurate aerosol optical depths 
(AOD) over land, including bright desert and urban source 
regions. Koven and Fung [17] identified landscape 
characteristics common to dust-producing regions in the 
Sahara Desert, and the resulting models of dust spatial 
distributions agree well with MISR observations, 
representing an improvement over existing 
parameterizations. To aid estimates of transported dust mass 
flux, Kalashnikova and Kahn [16] showed how MISR 
aerosol products characterize the evolution of Saharan dust 
plumes as they cross the Atlantic Ocean.  

Particulate air pollution: Di Girolamo et al. [6] 
analyzed four years of MISR data and discovered a 
concentrated wintertime particulate pollution pool over the 
state of Bihar, India, caused by a unique confluence of 
human activity, regional topography, and meteorology, 
posing a significant health risk to some 100 million people. 
More recently, Dey and Di Girolamo [5] used nine years 
(2000-2008) of MISR retrievals of particle properties over 
the Indo-Gangetic Basin to attribute high AODs to 
anthropogenic emission sources, aided by subsiding air in 
the post-monsoon and winter seasons and transport of dust 
in the pre-monsoon and monsoon seasons. Using MISR 
discrimination of particle sphericity, Liu et al. [18] 
improved the relationship between AOD and surface PM2.5 
(fine particulate matter, a regulated air pollutant) in both the 
eastern and western US, with the largest improvement 
occurring in the west. This breakthrough is particularly 
significant in light of earlier studies that showed poor 

correlations with total column AOD and PM2.5 in the 
western US, and constitutes an important step toward a 
satellite-based monitoring system.  

Surface structure: Bidirectional reflectance 
measurements of vegetation are governed in large measure 
by canopy structure [24], and a remarkable consequence is 
sensitivity of MISR data to canopy heights and aboveground 
biomass [2]. MISR observations of forward and backward 
scattered surface radiation, calibrated using airborne lidar, 
have been used to map roughness of the Greenland ice sheet 
(related to ice sheet melting and flow) with an accuracy of a 
few cm [21]. This work capitalizes on the unanticipated 
sensitivity of MISR to ice roughness, which was discovered 
in imagery over James Bay, Canada, acquired on the first 
orbit of data after opening of the instrument’s cover [7]. 
Enhanced specular reflection over wet surfaces was used to 
detect extensive dewatering—a primary cause of building 
collapse after the January 2001 Gujarat (India) earthquake—
far from the epicenter and in remote areas inaccessible to 
ground teams [22].  

 
3. CONCLUDING REMARKS 

 
Complementing the novel design of the MISR 

instrument, innovative data processing algorithms have been 
developed to mine the information content of angular 
reflectance anisotropies and to perform multi-camera 
stereophotogrammetry and time-lapse imagery, opening new 
avenues for inferring 3-D structure and dynamics of the 
atmosphere and surface [8]. The 10-year (and counting) 
MISR data record provides unprecedented opportunities for 
characterizing long-term trends and variability, as well as 3-
D information about cloud, aerosol, and surface targets 
conventionally thought to be accessible only to active 
sensors. Technology development is underway to extend 
future multiangle measurements to broader spectral range 
(ultraviolet to thermal infrared), wider spatial swaths 
(enabling more rapid global coverage), and accurate 
polarimetric imaging [9]. Data processing approaches that 
take advantage of continually increasing computer speeds 
are also being explored to facilitate algorithm advances that 
were not operationally practical at the beginning of the Terra 
mission. 

Part of this research is performed at the Jet Propulsion 
Laboratory, California Institute of Technology, under 
contract with the National Aeronautics and Space 
Administration. 
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