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ABSTRACT   

The 25-m aperture Cornell Caltech Atacama Telescope (CCAT) will have a primary mirror that is divided into 162 
individual segments, each of which is equipped with 3 positioning actuators. This paper presents a mathematical 
description of the telescope, its actuators and sensors, and uses it to derive control laws for figure maintenance. A 
Kalman Filter-based Optical State Estimator is used to continuously estimate the aberrations of the telescope; these are 
used in a state-feedback controller to maintain image quality. This approach provides the means to correct for the optical 
effects of errors that occur in un-actuated degrees of freedom, such as lateral translations of the segments. The control 
laws are exercised in Monte Carlo and covariance analysis, to bound the closed-loop performance of the telescope and to 
conduct control design trades.  
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1. INTRODUCTION  
The 25-m aperture Cornell Caltech Atacama Telescope (CCAT) will be sited at an altitude of 5600 m in the Atacama 
Desert. It will have a primary mirror assembled from 162 “keystone” segments, each of which is equipped with 3 rigid-
body actuators. These will be used to move the segments, so as to counter deformations from temperature changes and 
the varying gravity effects that come with pointing changes. The baseline control approach is to determine the best 
positioning of the segments using submillimeter-wave shearing interferometry, and then to maintain optical performance 
during operations using feed-forward, look-up table controls. This approach may not be adequate for operation at the 
shorter submillimeter wavelengths, however. 

This paper presents an alternative: a Wavefront Compensation controller that uses innovative optical sensors to measure 
segment-to-segment displacements and determine actuator commands that maintain good optical quality. The controller 
uses a Kalman filter to estimate the full optical state of the telescope, including 6 degrees of freedom (DOF) of change 
for each segment, and to predict the Wavefront Error (WFE) that results from these changes. Actuator controls are 
computed to minimize this WFE at each time step, using only the 3 DOF provided by the actuators. This approach is 
able to partly compensate the WFE due to motions in the uncontrolled DOFs, resulting in better performance than 
approaches that simply seek to null the sensor signals. 

The estimator and controller are based on a detailed mathematical model of the telescope, currently based on structural 
and optical computer models, but which will ultimately be determined by direct calibration. These models are 
summarized in Section 3, following a summary of nomenclature in Section 2. The estimator and controller are derived in 
Sections 4-6, and example results are presented in Section 7. 

2. NOMENCLATURE 
xR, rigid-body state of each optic or optical assembly, [xR] = (6*nopt,1) 
xD, segment deformation state, [xD] = (ndef*nseg, 1) 
uR, segment rigid body control command, [uR] = (6*nseg, 1) 
uSM, SM rigid body control command, [uSM] = (5, 1) 
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uc, pointing control command, [uc] = (2, 1) 
δT, temperature change, [δT] = (nT*nseg, 1) 
x, process noise, [dT] = (x, 1) 
l, optical edge sensor measurements, [l] = (2*nl,1) 
δl, optical edge measurement noise, [δl] = (2*nl,1) 
w, wavefront, [w] = (nray,1) 
wAtm, wavefront error due to atmosphere 
δw, wavefront measurement noise, [δw] = (nray,1) 
OPD, Optical Path Difference matrix 
c, ray centroid, [c] = (2,1) 
δc, pointing measurement noise, [δc] = (2,1) 
K, estimator gain 
cwu, control weighting coefficient 
i, time index 
Capitalized variable signifies the covariance of that variable 
Bar over a variable signifies a predicted value (prior to incorporation of current measurement data) 
Hat over a variable signifies current estimate 
Squiggle over a variable signifies current estimate error 

 
Figure 1. CCAT overview. 

3. CCAT MODEL 
A detailed integrated optics/structures/thermal computer model of CCAT is being built, to aid in design studies of the 
CCAT telescope.[1] The optics part of the CCAT integrated model has been built using the JPL MACOS code.[4] This 
model includes each optic, i.e., 162 primary mirror (PM) segments, the secondary mirror (SM), back-end optics and 
detector, as a separate body capable of displacement in 3 rotational and 3 translational DOFs. Perturbations from their 
ideal designed positions and orientations are captured in the “rigid-body optical state,” xRi, a vector of dimension 948x1, 
evaluated at the ith time interval. The state is defined in coordinates local to each optic, centered at the pole of the optic, 
and oriented along the local radial, tangential and normal directions.  





 
 

 
 

 wi =
∂w
∂x

xi + wAtm + w0  (3) 

 ci =
∂c
∂x

xi + cAtm + c0  (4) 

That is, the WF w is equal to the nominal WF w0 plus the optical effects of the perturbations x, plus the effects of 
atmospheric turbulence wAtm (small in the submillimeter); similarly for the pointing c. Here MACOS is used to generate 
the optical sensitivities ∂w/∂x  and ∂c / ∂x , following the theory of [5]. This provides linear optical models that predict 
the WFE and pointing error using matrix operations rather than a full ray-trace; such models are highly accurate for the 
small state excursions typical of a controlled telescope. The optical sensitivities are also important in the derivations of 
the controller – see below. 

The RMS Wavefront Error (WFE) is computed as the RMS of wi. 

Changes in the state x also impact the outputs of the measurements that are used for control. In this paper we consider 3 
types of measurement. The first is a direct measurement of the WFE, which can be obtained by WF sensing, or using the 
shearing interferometry technique discussed in [7]. The WF measurement equation takes the form (assuming fully 
unwrapped phase): 

 wmi = wi + δwi =
∂w
∂x

xi + wAtm + w0 + δw  (5) 

The second type of measurement is made using optical edge sensors. The CCAT edge sensors have 2 parts: a collimated 
light source located on one segment; and a CCD camera located on the adjacent segment – see Figure 3. Translational or 
rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured 
by the CCD in 2 axes: in the “z” or local surface normal direction; and “y,” parallel to the mirror surface, as described in 
[6]. Optical edge sensors are placed as shown in Figure 3, with approximately 2 sensors per segment-to-segment edge, 
and a total of 624 sensors, each sensing in 2 axes for a total of 1248 measurements. Design parameters governing edge 
sensor performance include the mounting position below the surface and the radial position of each sensor.  

The edge sensor measurement equation takes the form: 

 
li =

∂l
∂x

xi + l0 + δli
 (6) 

Here the ∂l / ∂x  sensitivities capture the kinematics of the sensors. The l0 vector represents the static offset of the edge 
sensors, which can be calibrated. Optical edge sensor measurements will be made at a frequency of 0.1 to 1 Hz. 

The third type of measurement is the telescope pointing measurement, made using an off-axis guide star and a separate 
pointing camera. For this analysis, we assume that the pointing camera provides a measurement to be directly compared 
to an image at the center of the CCAT field. Unlike the optical edge sensor measurement, which is local to the PM and 
insensitive to global motions of the optics, c captures effects of all the optics as they affect pointing. The pointing 
measurement equation is: 

 ci =
∂c
∂x

xi + cAtm + c0 + δci  (7) 

 Pointing measurements will be conducted at a lower rate than optical edge sensor measurements, at 0.001 to 0.01 Hz. 



 
 

 
 

 
Figure 3. Optical edge sensor sensor geometry. 

   

4. SIMULATION AND COVARIANCE ANALYSIS 
The performance of the 25-m CCAT can be bounded from the model equations outlined above, using simulation 
techniques and covariance analysis. Covariance analysis forms the basis of the CCAT Optical State Estimator discussed 
in the next Section.  

In simulation, telescope performance is computed for a for a particular case, by initializing the state x = x0 with random 
values consistent with the expected alignment and figure quality of the telescope, and then integrating the state forward 
in time using the transition equation (Eq. 2). At each time step, new state noise values ξ are added, and values for w, l 
and c are computed. New controls (with sensing and actuation errors) can be fed back into the state via actuations u. The 
simulation is run until a steady-state performance is reached. The error in the final performance is a function of the 
particular errors and noise values that drive it.  

Monte Carlo analysis runs many simulations, each with the noise and errors generated using the same statistics, but with 
different particular realizations of these statistics, and then takes statistics on the results of all of the simulations, to 
understand the likely performance of a telescope with those particular component error statistics. By changing the 
component statistics, running more simulations and assessing those results, general conclusions can be drawn on 
performance as a function of the component error and noise performance statistics. Monte Carlo simulation and related 
simulation-based techniques are powerful tools, especially where statistics are not gaussian or the plant is nonlinear. 

In covariance analysis, rather than conducting many simulations and then taking statistics on the results, the error 
statistics (in the form of covariance matrices) are propagated directly. Covariance analysis of a linear system provides 
the same result as Monte Carlo analysis, but with a single evaluation. Covariance analysis assumes that the errors in x 
and u, the process noise ξ, and the measurement errors ν, are gaussian random variables, which is a good assumption for 
the small errors typical of telescopes. The errors are treated as zero-mean, by incorporating systematic effects into the 
underlying models. The process defined by these assumptions is a Markov process [8]. 

For a linear gaussian random vector x, the following general transformation holds [8]. If a vector y = H x, then y is also a 
linear gaussian random vector, with covariance Y, where 

 Y = HXHT  (8) 

In general we will denote the covariance of a random vector as the capital letter of that variable. Thus cov(x) = X, cov(w) 
= W, cov(ν) = Ν. Also, cov(δu) = U, cov(ξ) = Ξ, etc. Applying the rule of Eq. 8 to Eq. 5, we get the state covariance 
transition equation: 

 Xi +1 = Xi +
∂x
∂uR

URi

∂x
∂uR











T

+
∂x
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T

i

+ Ξi  (9) 

This is a discrete Lyapunov equation [8]. The covariance of the ith wavefront is: 



 
 

 
 

 Wi =
∂w
∂x

xi

∂w
∂x







T

+ WAtm   (10) 

The corresponding RMS WF error is 

 WFEi = trace((Wi ) / nray )  (11) 

Here nray is the number of WF samples. Similar algebra is applied to develop expressions for the full closed-loop control 
WFE in the next Section. 

Initial state errors x0 will typically be generated from a systematic error (δT, say) which produces a systematic, correlated 
but deterministic global shape change, and a random term that captures uncorrelated effects such as mounting errors. The 
initial covariance X0 is therefore uncorrelated, diagonal, with the diagonal elements equal to the variance of the 
corresponding state as determined from component-level specifications. If σi is the standard deviation or “1-sigma” error 
expected for the initial xi state vector element, then the corresponding entry in X0 is: 

 X0 (i, i) = 1 / σ i
2  (12) 

The state covariance matrix Xi+1 is diagonal only at the initial condition: a single iteration of the control derived below 
cause the states to become correlated. The optical edge sensor measurement errors have a calibrateable static offset l0 
and uncorrelated measurement noise δl, with standard deviation σL, so that the covariance L is: 

 L0 = (1 / σ L
2 )I  (13) 

Here σL is the (scalar) standard deviation of the error expected for optical edge sensor measurements, and I is the identity 
matrix of dimension nray by nray. Similar expressions govern the other measurement covariances.  

5. OPTICAL STATE ESTIMATOR 
The optical edge sensor measurements l (and c and w when available), can be used to estimate the optical state x of the 
telescope at any particular time; and that estimate can be used to compute new controls uR and uSM. This is the function 
of the Optical State Estimator (OSE): to take in all of the available data, and to process it to determine the underlying 
optical state x of the telescope. The data that is continuously available includes the measurements l and their covariance 
L; pointing measurements c with covariance C; actuations uR and uSM and their error covariances UR and USM; and the 
covariance of the process noise, Ξ.  

The OSE combines this data with a prediction of the state based on the previous state estimate to carry over information 
from earlier measurements. The formally optimal way to do this is by Kalman Filter techniques: weighted least-squares, 
where the estimate weights the measurements and the prior knowledge using the covariance matrices associated with 
each term to find the most likely state estimate. [8]  

The Kalman Filter (KF) is a Maximum-Likelihood linear system estimator in recursive form, which allows it to produce 
estimates that are optimal at the time each new measurement is taken, while preserving the value of all previous 
measurements. The KF is a predictor-corrector estimator, where at each measurement we make a prediction of the 
measurement, based on the information we had at the last measurement, and compare that to the actual current 
measurement. The difference of the predicted and actual measurements, termed the innovation, is multiplied by a gain 
matrix and fed back to update the estimate. The gains are weighted by the covariances of the measurement and prior-
estimate errors, so as to achieve an optimal blending of prior and current information. 

The prediction is made by taking the estimate computed at the preceding time step and simply projecting it forward in 
time using Eq. 2. We know the value of the control we commanded, so that goes into the prediction as well. The 
predicted measurement is then calculated by projecting the predicted state to the WF space using Eq. 3. Denoting the 
predicted state at time i with an over-bar as , and the estimated state with a hat, as , the predicted state is: 

 xRi+1 = x̂Ri +
∂xR

∂uR

uRi   (14) 



 
 

 
 

The predicted measurement is thus: 

 

 

l i =
∂l
∂x

x i
  (15) 

The new state estimate is simply the prediction plus the innovation weighted by a gain matrix Ki: 

 
x̂Ri = xRi + Kli li − li( )  (16) 

The gain balances the contribution of the innovation to the current estimate as the ratio of the error in the predicted state, 
as captured in the predicted-state covariance Pi, to the error in the measurement projected back to the state space via the 
transpose of the measurement matrix. We treat the actuator commands as known signals with a measurement error equal 
to the actuation noise projected to the WF space. The error in the measurement is the covariance matrix Ri, which 
includes the WF measurement error and the actuation error . The gain is: 

 
Kli = Pli

∂l
∂xR







T

Rli
−1

  (17) 

Note that the gain matrix Kli changes with every time step, which can impose a large computational burden on the OSE.  
In practice, however, K will quickly approach a nearly static steady state, so that it is possible to precompute a set of Ki 
matrices for the various different control conditions, and use them while those conditions obtain. The factors that cause 
Ki to vary include variations in the noise covariances L and C. 

The measurement error covariance, which captures the uncertainty in both the actuation and the measurement, is: 

 Rli =
∂l

∂xR

∂xR

∂uR

Ui
∂l

∂xR

∂xR

∂uR





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T

+ Li   (18) 

The error in the estimate is captured by its covariance Pi, which combines the measurement and predicted-state error 
covariances Ri and Mi in the state space, as: 

 



Pli =
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∂xR
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T

Rli
∂l

∂xR

+ Mi
−1











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−1

= cov( %xRi )   (19) 

The covariance of the predicted state is computed based on the covariances of the error in the previous estimate, 
projected forward to the current time: 

 Mi+1 = Pi +
∂x
∂uR

Ui
∂x
∂uR







T

+ Ξi   (20) 

For gaussian normal random processes, the KF estimator of Eq. 16 produces optimal estimates, in the sense that they 
make the best possible use of the available information, producing estimates with minimal error. In fact, the KF defines 
the Cramer-Rao bound for such processes [8]. In practical problems the KF assumptions are not always precisely met. 
The statistics of the processes may not be normal or stationary, the plant may not be truly linear. Many extensions to the 
KF have been developed to deal with specific situations of this type. However, for small deviations from the 
assumptions underlying the KF, the KF provides an excellent, though not precisely optimal, tool. 

Equations 14-20 define the KF updates provided by the LADD sensors, which occur at every cycle of the OSE. Other 
measurements, namely the pointing measurements c and the WF measurements w are incorporated in the same way, but 
at different times: the pointing measurements will be made every 10-1,000 cycles of the OSE; the WF measurements 
perhaps once a week. When such measurements are available, they are used to update the state x in exactly the same 
way. For example, when a pointing measurement is available, the updated state estimate is: 



 
 

 
 

  x̂Ri = xRi + Kci ci − ci( ) (21) 

The gain and updated state estimate error covariance are: 

 
Kci = Pci

∂c
∂xR







T

Cci
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 (22) 
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= cov( %xRi )
 (23) 

Similar results obtain for WF updates through measurements of w. 

To illustrate the effect of the gain matrix K in balancing prior estimates versus current measurements, it is useful to 
consider 2 extreme cases. The first case occurs when the error in the prior estimate is very small, and very much smaller 
than the measurement noise, so that Pi  0. Then Ki  0, and the estimate is simply the prediction: 

 x̂i → xi  (21) 

The other extreme case occurs when the combined measurement noise is very much less than the error in the prior 
estimate. The gain (Eq. 14) can be rewritten using the inversion lemma as: 

 Kli = Pli
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Now when Ri  0, 

 Ki →
∂l
∂x
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 (23) 

which is the familiar pseudo-inverse solution of the measurement equation.  

The best performance for any real case, where prior knowledge error and measurement noise are in more nearly the 
same, is obtained when the covariances X0, Ξ, L, and C are accurately specified, as they determine the balance between 
measurement and prior knowledge for the OSE. If the measurement noise covariance reflects an assumed small 
measurement error, but the actual measurement error is large, for instance, The Ki matrix will couple too much of the 
measurement error into the state estimate, and performance of the OSE will be degraded.  

6. WAVEFRONT CONTROLLER 
The best way to control the WFE is to directly measure w and use those measurements to compute new control values. 
The cost function for this form of control is: 

 

 

min
uR

J = wT w + cwuuR
T uR

 (24)
 

There are 2 terms here, balanced by a scalar coefficient cwu. The first term is the square of the WF; the second is the 
square of the control effort between the ith and the i-1th iteration. The coefficient can be tuned to balance the control 
effort against the WFE, a useful knob to turn in modulating the control response. The control law that satisfies this cost 
function is: 



 
 

 
 

 uRi = − cwu I +
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 (25)

 

Continuous direct measurement of w is not provided under the current CCAT baseline. Instead, the state estimate 
produced by the OSE can be used to estimate w: 

 ŵi =
∂w
∂x

x̂i   (26) 

The resulting “Wavefront Compensation” control law is: 

 ui = −G)xi

 (27) 

Here the gain matrix G is: 

 G = cwu I +
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 (28) 

Using the OSE as part of the CCAT control has a great advantage – control decisions can be made based not just on the 
DOFs that are directly actuated, but in the context of all of the errors. This allows the controller to use actuation in the 
controlled DOFs to mitigate the optical effects of errors that are incurred in non-actuated DOFs. An example case is the 
lateral translation of a segment. Such a motion occurs when the base structure expands, and the consequence is a small 
but significant WFE, as the segment moves off of the ideal surface. This error occurs in a direction orthogonal to the 
3DOFs along which the actuators act – yet by moving the segment in piston and tilt, the optical effects of this 
displacement can be partly corrected.  

7. EXAMPLE 
A simulation example is illustrated in Figures 4-6. This simulation run began with an initial segment state error 
randomly generated, with 50 um/50 urad standard deviation per axis, including the uncontrolled axes such as segment 
lateral translation, as shown in Figure 4. In the first cycle of the simulation the initial WFE was 67 nm. Using simulated 
LADD sensor measurements, the initial WFE was estimated by the OSE, with an estimation error of 5.6 um. The initial 
control was effective, dropping the WFE to 9 um; with addition of pointing control, WFE dropped to 2 um.  

 
Figure 4. First time step, showing WFE before and after control, both without and with pointing control. 

The performance over a series of 200 steps is summarized in Figure 5, which shows the WFE immediately before and 
after each control. The LADD sensors are utilized at each step; they are augmented by pointing measurements at every 
10th time step as well. As shown, the pointing control is effective in limiting total WFE, as the LADD sensors alone are 
completely insensitive to global pointing modes. LADD sensor errors were 1 um 1 sigma per measurement axis; the 1 
sigma process noise was 10 um and 10 urad.  



 
 

 
 

The WFE for the 200th time step is shown in Figure 6: the starting WFE; the estimated starting WFE; and the WFE 
following LADD control and LADD plus pointing control. 

The LADD control process is limited by several factors, including the geometry of the segments, the placement of the 
sensors, the sensor noise, and the various telescope disturbances. The work underway at Caltech and JPL will continue to 
explore performance of this sensor design and configuration. 

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with 
the National Aeronautics and Space Administration. 

 
Figure 5. WF maintenance control example, using Wavefront Compensation controller. Plot on the left shows 

WF history without pointing correction; plot on the right includes pointing updates every 10th time step. 

 
Figure 6. 200th time step, showing WFE before and after control, both without and with pointing control.. 
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