Adaptive Fault Tolerance for Many-Core Based
Space-Borne Computing

Mark James
Jet Propulsion Laboratory,
California Institute of
Technology
_ Pasadena, CA
mjames@)jpl.nasa.gov

Keywords

many-core systems, dependability, fault tolerance, space mis-
sions, autonomy

ABSTRACT

This paper describes an approach to providing software fault
tolerance for future deep-space robotic NASA missions, which
will require a high degree of autonomy supported by an en-
hanced on-board computational capability. Such systems have
become possible as a result of the emerging many-core tech-
nology, which is expected to offer 1024-core chips by 2015.
We discuss the challenges and opportunities of this new tech-
nology, focusing on introspection-based adaptive fault toler-
ance that takes into account the specific requirements of ap-
plications, guided by a fault model. Introspection supports
runtime monitoring of the program execution with the goal
of identifying, locating, and analyzing errors. Fault toler-
ance assertions for the introspection system can be provided
by the user, domain-specific knowledge, or via the results
of static or dynamic program analysis. This work is part
of an on-going project at the Jet Propulsion Laboratory in
Pasadena, California.

1. INTRODUCTION

On-board computing systems for space missions are sub-
ject to stringent dependability requirements, with enforce-
ment strategies focusing on strict and widely formalized de-
sign, development, verification, validation, and testing pro-
cedures. Nevertheless, history has shown that despite these
precautions errors occur, sometimes resulting in the catas-
trophical loss of an entire mission. There are theoretical as
well as practical reasons for this situation:

1. No matter how much effort is spent for verification and
test well-known undecidability and NP-completeness
results show that many relevant problems are either
undecidable or computationally intractable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prof't or commercial advantage and that copies
bear this notice and the full citation on the frst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specif ¢
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Paul Springer
Jet Propulsion Laboratory,
California Institute of
Technology
Pasadena, CA

pls@jpl.nasa.gov

Hans Zima
Jet Propulsion Laboratory,
California Institute of
Technology, Pasadena, CA

zima@)jpl.nasa.gov

2. As a result, large systems typically do contain design
faults.

3. Even a perfectly designed system may be subject to
external faults, such as radiation effects and operator
errors.

As a consequence, it is essential to provide methods that
avoid system failure and maintain the functionality of a sys-
tem, possibly with degraded performance, even in the case
of faults. This is called fault tolerance.

Fault tolerant systems were built long before the advent
of the digital computer, based on the use of replication, di-
versified design, and federation of equipment. In an article
on Babbage’s difference engine published in 1834 Dionysius
Lardner wrote [14]: “The most certain and effectual check
upon errors which arise in the process of computation is
to cause the same computations to be made by separate
and independent computers; and this check is rendered still
more decisive if they make their computation by different
methods.” An example for an early fault-tolerant computer
is NASA’s Self-Testing-and-Repairing (STAR) system de-
veloped for a 10-year mission to the outer planets in the
1960s. Today, highly sophisticated fault-tolerant computing
systems control the new generation of fly-by-wire aircraft,
such as the Airbus and Boeing airliners. Perhaps the most
widespread use of fault-tolerant computing has been in the
area of commercial transactions systems, such as automatic
teller machines and airline reservation systems.

Most space missions of the past were largely controlled
from Earth, so that a significant number of failures could
be handled by putting the spacecraft in a “safe” mode, with
Earth-bound controllers attempting to return it to opera-
tional mode. This approach will no longer work for future
deep-space missions, which will require enhanced autonomy
and a powerful on-board computational capability. Such
missions are becoming possible as a result of recent ad-
vances in microprocessor technology, which are leading to
low-power many-core chips that today already have on the
order of 100 cores, with 2015 technology expected to offer
1024-core systems. These developments have many conse-
quences for fault tolerance, some of them challenging and
others providing new opportunities. In this paper we fo-
cus on an approach for software-implemented application-
adaptive fault tolerance. The paper is structured as follows:
In Section 2, we establish a conceptual basis, providing more
precise definitions for the notions of dependability and fault
tolerance. Section 3 gives an overview of future missions

and their requirement, and outlines an on-board architecture
that complements a radiation-hardened spacecraft control
and communication component with a COTS-based high-
performance processing system. After introducing intro-
spection in Section 4, we discuss introspection-based adap-
tive fault tolerance in Section 5. The paper ends with an
overview of related work and concluding remarks in Sec-
tions 6 and 7.

2. FAULT TOLERANCE IN THE CONTEXT
OF DEPENDABILITY

Dependability has been defined by the IFIP 10.4 Work-
ing Group on Dependable Computing and Fault Tolerance
as the “trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it delivers’.
Dependability is characterized by its attributes, the threats
to it, and the means by which it can be achieved [2, 3].

The attributes of dependability specify a set of proper-
ties that can be used to assess how a system satisfies its
overall requirements. Key attributes are reliability, avail-
ability, mean-time-to-failure, and safety. A threat is any
fact or event that negatively affects the dependability of a
system. Threats can be classified as faults, errors, or fail-
ures. Their relationship can be illustrated by the fault-error-
failure chain shown in Figure 1.

A fault is a defect in a system. Faults can be dormant—
e.g., incorrect program code that is not executed—and have
no effect. When activated during system operation, a fault
leads to an error, which is an illegal system state. Errors
may be propagated through a system, generating other er-
rors. For example, a faulty assignment to a variable may
result in an error characterized by an illegal value for that
variable; the use of the variable for the control of a for-loop
can lead to ill-defined iterations and other errors, such as
illegal accesses to data sets and buffer overflows. A failure
occurs if an error reaches the service interface of a system,
resulting in system behavior that is inconsistent with its
specification.

The execution of a system can be modeled by a sequence
of states, with state transitions being caused as the result
of atomic actions. In a first approximation, the set of all
system states can be partitioned into correct states and
error states. By separating those error states that allow a
recovery from those that represent system failure the set of
all error states is further partitioned into tolerated error
states and failure states (Figure 2). The transitions be-
tween these state categories can be described by classifying
unambiguously each action as a correct, fault, or recovery
action [5]:

e A correct action, executed in a correct state, results in
a correct state

e A fault action, executed in a correct state, results in
an error state (tolerated or failure)

e A correct or fault action, executed in a tolerated error
state, results in an error state (tolerated or failure)

e A recovery action, executed in a tolerated error state,
results in a correct state.

With the above terminology in place, we can now precisely
characterize a system as fault tolerant if it never enters a

failure state. Errors may occur in such a system, but they
never reach its service boundary and always allow recovery
to take place. The implementation of fault tolerance in gen-
eral implies three steps: error detection, error analysis, and
recovery.

The means for achieving dependability include fault pre-
vention, fault removal, and fault tolerance. Fault prevention
addresses methods that prevent faults to being incorporated
into a system. In the software domain, such methods include
restrictive coding structures that avoid common program-
ming faults, the use of object-oriented techniques, and the
provision of high-level APIs. An example for hardware fault
prevention is shielding against radiation-caused faults. Fault
remouwal refers to the a set of techniques that eliminate faults
during the design and development process. Verification and
Validation (VE&V) are important in this context: Verifica-
tion provides methods for the review, inspection, and test
of systems, with the goal of establishing that they conform
to their specification. Validation checks the specification in
order to determine if it correctly expresses the needs of the
system’s users.

For theoretical as well as practical reasons, neither fault
prevention nor fault removal provide complete solutions, i.e.,
in general for non-trivial programs there is no guarantee that
they do not contain design faults. However, even in a pro-
gram completely free of design faults, hardware malfunction
can cause software errors at execution time. In the domain
underlying this paper, the problem is actually more severe:
a spacecraft can be hit by radiation, which can cause arbi-
trary errors in data and control structures. This is discussed
in more detail in the next section.

3. FUTURE SPACE MISSIONS AND THEIR
REQUIREMENTS

Future deep-space missions face the challenge of design-
ing, building, and operating progressively more capable au-
tonomous spacecraft and planetary rovers. Given the la-
tency and bandwidth of spacecraft-Earth communication for
such missions, the need for enhanced autonomy becomes ob-
vious: Earth-based mission controllers will be unable to di-
rectly control distant spacecraft and robots to ensure timely
precision and safety, and to support “opportunistic science”
by capturing rapidly changing events, such as dust devils on
Mars or volcanic eruptions on a remote moon in the solar
system [4]. Furthermore, the high data volume yielded by
smart instruments on board of the spacecraft can overwhelm
the limited bandwidth of spacecraft-Earth communication,
enforcing on-board data analysis, filtering, and compression.
Science processing will require a high-performance capabil-
ity that may range up to hundreds of Teraops for on-board
synthetic aperture radar (SAR), hyperspectral assessment of
scenes, or stereo vision. Currently, the performance of tradi-
tional mission architectures lags that of commercial products
by at least two orders of magnitude; furthermore, this gap
is expected to widen in the future. As a consequence, the
traditional approach to on-board computing is not expected
to scale with the requirements of future missions. A radical
departure is necessary.

Emerging technology offers a way out of this dilemma.
Recent developments in the area of commercial multi-core
architectures have resulted in simpler processor cores, en-

activation

defect \\s‘ invalid state

External Fault
(caused by external failure)

propagation

Service Interface

propagation
to service
interface

Error—n

invalid state

Violation of
System SPEC

Service Interface

Figure 1: Threats: the fault-error-failure chain

hanced efficiency in terms of performance per Watt, and a
dramatic increase in the number of cores on a chip, as illus-
trated by Tilera Corporation’s Tile64 [22]—a homogeneous
parallel chip architecture with 64 identical cores arranged in
an 8x8 grid performing at 192 Gops with a power consump-
tion of 170-300mW per core—or Intel’s terachip announced
for 2011—an 80-core chip providing 1.01 Teraflops based on
a frequency of 3.16 GHz, with a power consumption of 62W.

These trends suggest a new paradigm for spacecraft ar-
chitectures, in which the ultra-reliable radiation-hardened
core component responsible for control, navigation, data
handling, and communication is extended with a scalable
commodity-based multi-core system for autonomy and sci-
ence processing. This approach will provide the basis for a
powerful parallel on-board supercomputing capability. How-
ever, bringing COTS components into space leads to a new
problem—the need to address their vulnerability to hard-
ware as well as software faults.

Space missions are subject to faults caused by equipment
failure or environmental impacts, such as radiation, temper-
ature extremes, or vibration. Missions operating close to
the Earth/Moon system can be controlled from the ground.
Such missions may allow controlled failure, in the sense
that they fail only in specific, pre-defined modes, and only to
a manageable extent, avoiding complete disruption. Rather
than providing the capability of resuming normal operation,
a failure in such a system puts it into a safe mode, from which
recovery is possible after the failure has been detected and
identified.

As an example, the on-board software controlling robotic
planetary exploration spacecraft for those portions of a mis-

sion during which there is no critical activity (such as de-
tumbling the spacecraft after launch or descent to a plan-
etary surface) can be organized as a system allowing con-
trolled failure. When a fault is detected during operation,
all active command sequences are terminated, components
inessential for spacecraft survival are powered off, and the
spacecraft is positioned into a stable sun-pointed attitude.
Critical information regarding the state of the spacecraft and
the fault are transmitted to ground controllers via an emer-
gency link. Restoring the spacecraft health is then delegated
to controllers on Earth.

However, a fail-safe approach is not adequate for deep-
space missions beyond immediate and continuous control
from the Earth. For such missions, fault tolerance is a key
prerequisite, i.e., a fail-operational response to faults must
be provided, implying that the spacecraft must be able to
deal autonomously with faults and continue to provide the
full range of critical functionality, possibly at the cost of
degraded performance. Systems which preserve continuity
of service can be significantly more difficult to design and
implement than fail-controlled systems. Not only is it nec-
essary to determine that a fault has occurred, the software
must be able to determine the effects of the fault on the sys-
tem’s state, remove the effects of the fault, and then place
the system into a state from which processing can proceed.

This is the situation on which the rest of this paper is
based. We focus on strategies and techniques for providing
adaptive, introspection-based fault tolerance for space-borne
systems.

Deep-space missions are subject to radiation in the form
of cosmic rays and the solar wind, exposing them to pro-

failure states

tolerated error states

correct states

correct/fault action
(unrecoverable)

fault action

fault action
(unrecoverable)

Figure 2: State space partitioning

tons, alpha particles, heavy ions, ultraviolet radiation, and
X-rays. Radiation can interact with matter through atomic
displacement—a rearrangement of atoms in a crystal lattice—
or ionization, with the potential of causing permanent or
transient damage [19]. Modern COTS circuits are protected
against long-term cumulative degradation as well as catas-
trophic effects caused by radiation. However, they are ex-
posed to transient faults in the form of Single Event Upsets
or Multiple Bit Upsets, which do not cause lasting damage
to the device. A Single Event Upset (SEU) changes the state
of a single bit in a register or memory, whereas a Multiple
Bit Upset (MBU) results in a change of state of multiple ad-
jacent bits. The probability of SEUs and MBUs depends on
the environment in which the spacecraft is operating, and on
the detailed characterization of the hardware components in
use. COTS semiconductor fabrication processes vary: with
the 65nm process now in commercial production, some of
the semiconductor foundries are using Silicon on Insulator
(SOI) construction, which makes the chips less susceptible
to these radiation effects.

Depending on the efficacy of fault tolerance mechanisms,
SEUs and MBUs can manifest themselves at different lev-
els. For example, faults may affect processor cores and
caches, DRAM memory units, memory controllers, on-chip
communication networks, I/O processors nodes, and inter-
connection networks. This can result in the corruption of
instruction fetch/decode, address selection, memory units,
synchronization, communication, and signal/interrupt pro-

cessing. In a sequential thread this may lead to the (unrec-
ognized) use of corrupted data and the execution of wrong
or illegal instructions, branches, and data accesses in the
program. Hangs or crashes of the program, as well as unwar-
ranted exceptions are other possible consequences. In a dis-
tributed system, transient faults can cause communication
errors, livelock, deadlock, data races, or arbitrary Byzantine
failures [13].

Some of these effects may be caught and corrected in
the hardware (e.g., via the use of an error-correcting code
(ECC)) with no disruption of the program. A combination
of hardware and software mechanisms may provide an effec-
tive approach, as in the case of the fault isolation of cores
in a multi-core chip [1]. Other faults, such as those causing
illegal instruction codes, illegal addresses, or the violation
of access protections may trigger a synchronous interrupt,
which can lead to an application-specific response. In a dis-
tributed system, watchdogs may detect a message failure.

However, in general, an error may remain undetected.
Consider the simple example of the possible effect a transient
fault may have (Figure 3): it illustrates an illegal read access
to a variable caused by the corruption of an assignment. As-
sume that the assignment in L1 is the only definition for x
reaching L2, and that an SEU destroys that assignment, for
example by changing its target from x to another variable.
Then the use of x in statement L2 is undefined.

Figure 4 outlines key building blocks of an architecture for

Original Program

Ll: x=a
: SEU

L2: y=x+1

Corrupted Program

Figure 3: Illegal variable access as a result of an SEU

space-borne computing in which the radiation-hardened core
is augmented with a COTS-based scalable high-performance
computing system (HPCS).

The Spacecraft Control & Communication System is the
core component of the on-board system, controlling the over-
all operation, navigation, and communication of the space-
craft. Due to its critical role for the operation and survival
of the spacecraft this system is typically implemented using
radiation-hardened components that are largely immune to
the harsh radiation environments encountered in space.

The Fault-Tolerant High-Capability Computational Sub-
system (FTCS) is designed to provide an additional layer of
fault tolerance around the HPCS via a Reliable Controller
that shields the Spacecraft Control & Communication Sys-
tem from faults that evaded detection or masking in the High
Performance Computing System. The Reliable Controller is
the only component of the FTCS that communicates directly
with the spacecraft control and communication system. As
a consequence, it must satisfy stringent reliability require-
ments. Important approaches for implementing the Reliable
Controller—either on a pure software basis, or by a combi-
nation of hardware and software—have been developed in
the Ghidrah [15] and ST8 systems [18].

4. INTROSPECTION

The rest of this paper deals with an introspection-based
approach to providing fault tolerance for the High Perfor-
mance Computing System in the architecture depicted in
Figure 4. A generic framework for introspection has been
described in [9]; here we outline its major components.

Introspection provides a generic software infrastructure
for the monitoring, analysis, and feedback-oriented manage-
ment of applications at execution time.

Consider a parallel application executing in the High Per-
formance Computing System. Code and data belonging
to the object representation of the application will be dis-
tributed across its components, creating a partitioning of the
application into application segments. An instance of the
introspection system consists of a set of interacting intro-
spection modules, each of which can be linked to applica-
tion segments. The structure of an individual introspection
module is outlined in Figure 5. Its components include:

e Application/System Links are either sensors or ac-
tuators. Sensors represent hardware or software events

that occur during the execution of the application;
they provide input from the application to the intro-
spection module. Actuators represent feedback from
the introspection module to the application. They are
triggered as a result of module-internal processing and
may result in changes of the application state, its com-
ponents, or its instrumentation.

e Inference Engine The nature of the problems to
which introspection is applied demands efficient and
flexible control of the associated application segments.
These requirements are met in our system by the Space-
craft Health Inference Engine (SHINE) as the core of
each introspection module. SHINE is a real-time infer-
ence engine that provides an expert systems capability
and functionality for building, accessing, and updating
a structured knowledge base.

e The Knowledge Base consists of declarative facts
and rules that specify how knowledge can be processed.
It may contain knowledge about the underlying sys-
tem, the programming languages supported, the appli-
cation domain, and properties of application programs
and their execution that are either derived by static or
dynamic analysis or supplied by the user.

e Agents The functionality of a module can be imple-
mented by a system of asynchronously operating au-
tonomous agents with internal state. The distributed
nature of the overall system and its implementation
using autonomous agents enable local analysis with-
out the need to always refer to a centralized entity
providing full global knowledge.

We have implemented a prototype introspection system
for a cluster of Cell Broadband Engines. Figure 6 illustrates
the associated hierarchy of introspection modules, where the
levels of the hierarchy, from bottom to top, are respectively
associated with the SPEs, the PPE, and the overall cluster.

5. ADAPTIVE FAULT TOLERANCE FOR
HIGH-PERFORMANCE ON-BOARD
COMPUTING

The prototype system mentioned above relied on user-
specified assertions guiding the introspection system. In the

Spacecraft Control&
Communication System

Fault—Tolerant High—Capability
Computational Subsystem (FTCS)

Spacecraft Spacecraft

Control Computer

Reliable Controller]
(CTRL)

High Performance

Interface

Communication
Subsystem

(COMM)

Computing System
(HPCS)

Intelligent Mass Data
Storage (IMDS)

t !

RUTTS

Interconnection Network(s)

T

i

Instrument
Interface

A

v

Instruments -
L1]

Figure 4: An architecture for scalable space-borne computing

following we outline the ideas underlying our current work,
which generalizes this system in a number of ways, with a
focus on providing support for the automatic generation of
assertions.

Our approach to providing fault tolerance for applica-
tions executing in the high-performance computing system
is adaptive in the sense that faults can be handled in a way
that depends on the potential damage caused by them. This
enables a flexible policy resulting in a reduced performance
penalty for the fault tolerance strategy when compared to
fixed-redundancy schemes. For example, an SEU causing a
single bitflip in the initial phase of an image processing algo-
rithm may not at all affect the outcome of the computation.
However, SEU-triggered faults such as the corruption of a
key data structure caused by an illegal assignment to one
of its components, the change of an instruction code, or the
corruption of an address computation may have detrimen-
tal effects on the outcome of the computation. Such faults
need to be handled through the use of redundancy, with an
approach that reflects their severity and takes into account
known properties of the application and the underlying sys-
tem.

5.1 Assertions

An assertion describes a propositional logic predicate that
must be satisfied at certain locations of the program, dur-
ing specific phases of execution, or in program regions such
as loops and methods. Its specification consists of four
components—the specification of an assertion expression,
the region in which this expression can be applied, the char-
acterization of the fault if the assertion is violated, and an
optional recovery specification. We illustrate this by a set
of examples.

assert ((A(7) < B(4)) in (L1) fault (F'1,4,...) recovery (...)
The assertion expression A(7) < B(i)) must be satisfied im-
mediately after the execution of the statement labeled by
L1. If it fails, a fault type, F1, is specified and a set of
relevant arguments is relayed to the introspection system.
Furthermore, a hint for the support of a recovery method is
provided. O

assert (z # 0) pre in (L2) fault (FT2,z,...)

assert (z = f2(z))in (L2) fault (FT3,x,y, z,...)

The two assertion expressions z # 0 and z = f2(x) respec-
tively serve as precondition and postcondition for a state-

Sensors

O OO0

Application
Segment(s)

0a---gb

Actuators

- - >
Inference Engine :
(SHINE))
- - >
control
o
Monitoring
to/from
introspection
modules
Feedback/
Recovery la- - -
r
| .- -

Figure 5: Introspection module

ment at label L2, with respective fault types F'T2 and F'T'3
for assertion violations. O

assert (diff> €) invariant in (7_loop) fault (...)

The assertion expression diff> € specifies an invariant that
is associated with the region defined by 7_loop. It must be
satisfied at any point of execution within this loop. O

5.2 Fault Detection and Recovery

Introspection-based fault tolerance provides a flexible ap-
proach that in addition to applying innovative methods can
leverage existing technology.

Methods that are useful in this context include assertion-
based acceptance tests that check the value of an assertion
and transfer control to the introspection system in case of vi-
olation, and fault detectors that can effectively mask a fault
by using redundant code based on analysis information (see
Section 5.3).

Furthermore, faults in critical sections of the code can
be masked by leveraging fixed redundancy techniques such
as TMR or NMR. Another technique is the replacement
of a function with an equivalent version that implements
Algorithm-Based Fault Tolerance (ABFT).

Information supporting the generation of assertion-based
acceptance tests as well as fault detectors can be derived
from static or dynamic automatic program analysis, retrieved
from domain- or system specific information contained in the
knowledge base or be directly specified by an expert user.
Figure 7 provides an informal illustration of the different

methods used to gather such information.

5.3 Analysis-Based Assertion Generation

Automatic analysis of program properties relevant for fault
tolerance can be leveraged from a rich spectrum of existing
tools and methods. This includes the static analysis of the
control and data structures of a program, its intra- and inter-
procedural control flow, data flow and data dependences,
data access patterns, and patterns of synchronization and
communication in multi-threaded programs [25, 17]. Other
static tools can check for the absence of deadlocks or race
conditions. Profiling from simulation runs or test executions
can contribute information on variable ranges, loop counts,
or potential bottlenecks [7]. Furthermore, dynamic analysis
provides knowledge that cannot be derived at compile time,
such as the actual paths taken during a program execution
and dynamic dependence relationships.

Consider a simple example. In data flow analysis, a use-
definition chain is defined as the link between the statement
that uses (i.e., reads) a variable to the set of all definitions
(i.e., assignments) of that variable that can reach this state-
ment along an execution path. Similarly, a definition-use
chain links a definition to all its uses. An SEU can break
such a chain, for example by redirecting an assignment. This
can result in a number of different faults, including the fol-
lowing:

e attempt to use an undefined variable or dereference an

f

external
links *

Sensors

Inference Engine

Knowledge
Base

-
- -
-
-
-
Sensors
O : Inference Engine
: —
o :
"""""""""
O : -
: ! Knowledge
O - Feedb/Rec Base
: Prognostics,
Actuators

Figure 6: Introspection hierarchy for a

undefined pointer
e rendering a definition of a variable useless
e leading to an undefined expression evaluation

e destroying a loop bound

The results of static analysis (as well as results obtained
from program profiling) can be exploited for fault detection
and recovery in a number of ways, including the generation
of assertions in connection with specific program locations
or program regions. Examples include asserting:

e the value of a variable that has been determined to be
a constant

the value range of a variable or a pointer

e the preservation of use-definition and definition-use chains

the preservation of dependence relationships

a limit for the number of iterations in a loop

~ - -
—
—
-~
-
-
-~ —
-~
-~
= o~
Sensors
0 : Inference Engine
H —
O :
rrrrrrrrrrrrrrr
O : -
: : Knowledge
O - Feedb/Rec Base
‘
Actuators £
~N
~
~
~
~
Sensor s
o
o o L4 o *

= | .2
Kiowledgf) .
Base :)

a *

cluster of Cell Broadband Engines

e an upper limit for the size of a data structure
e correctness of access sequences to files

The generation of such assertions must be based on the
statically derived information in combination with the gen-
eration of code that records the corresponding relationships
at runtime. A more elaborate technique that exploits static
analysis for the generation of a fault detector using redun-
dant code generation can be based on program slicing [23].
This is an analysis technique that extracts from a program
the set of statements that affect the values required at a cer-
tain point of interest. For example, it answers the question
which statements of the program contribute to the value of a
critical variable at a given location. These statements form
a slice. The occurrence of SEUs can disrupt the connection
between a variable occurrence and its slice. A fault detector
for a specific variable assignment generates redundant code
based only on that slice, and compares its outcome with that
of the original code.

Some of the techniques applied to sequential programs can
be generalized to deal with multi-threaded programs. Of

source program

analysis

instrumentation

instrumented program

application
and
system knowledge

Figure 7: Assertion generation

specific importance in this context are programs whose exe-
cution is organized as a data-parallel set of threads accord-
ing to the Single-Program-Multiple-Data (SPMD) paradigm
since the vast majority of parallel scientific applications be-
long to this category [21].

6. RELATED WORK

The Remote Ezploration and Ezperimentation (REE) [20]
project conducted at NASA was among the first to consider
putting a COTS-based parallel machine into space and ad-
dress the resulting problems related to application-adaptive
fault tolerance [11]. More recently, NASA’s Millenium ST-8
project [18] developed a “Dependable Multiprocessor” around
a COTS-based cluster using the IBM PowerPC 750FX as
a data processor, with a Xilinx VirtexII 6000 FPGA co-
processor for the support of application-specific modules for
digital signal processing, data compression, and vector pro-
cessing. A centralized system controller for the cluster is
implemented using a redundant configuration of radiation-
hardened Motorola processors.

Some significant work has been done in the area of as-
sertions. The EAGLE system [6] provides an assertion lan-
guage with temporal constraints. The Design for Verifica-
tion (D4V) [16] system uses dynamic assertions, which are
objects with state that are constructed at design time and
tied to program objects and locations. Language support
for assertions and invariants has been provided in Java 1.4,
Eiffel for pre- and post condition in Hoare’s logic, and the
Java Modeling Language (JML). Intelligent resource man-
agement in an introspection-based approach has been pro-
posed in [12].

Finally, the concept of introspection, as used in our work,

has been outlined in [24, 10]. A similar idea has been used
by Iyer and co-workers for application-specific security [8]
based on hardware modules embedded in a reliability and
security engine.

7. CONCLUSION

This paper focused on software-provided fault tolerance
for future deep-space missions providing an on-board COTS-
based computing capability for the support of autonomy. We
described the key features of an introspection framework for
runtime monitoring, analysis, and feedback-oriented recov-
ery, and outlined methods for the automatic generation of
assertions that trigger key actions of the framework. A pro-
totype version of the system was originally implemented on
a cluster of Cell Broadband Engines; currently, an imple-
mentation effort is underway for the Tile64 system.

Future work will address an extension of the introspection
technology to performance tuning and power management.
Furthermore, we will study the integration of introspection
with traditional V&V.

Acknowledgment

This research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration
and funded through the internal Research and Technology
Development program.

8. REFERENCES

[1] Nidhi Aggarwal, Parthasarathy Ranganathan,
Norman P. Jouppi, and James E. Smith. Isolation in

2]

8]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

Commodity Multicore Processors. IEEE Computer,
40(6):49-59, June 2007.

Algirdas Avizienis, Jean-Claude Laprie, and Brian
Randell. Fundamental Concepts of Dependability.
Technical report, UCLA, 2000. CSD Report No.
010028.

Algirdas Avizienis, Jean-Claude Laprie, Brian
Randell, and Carl Landwehr. Basic Concepts and
Taxonomy of Dependable and Secure Computing.
IEEFE Transactions on Dependable and Secure
Computing, 1(1), January-March 2004.

Rebecca Castano, Tara Estlin, Robert C. Anderson,
Daniel M. Gaines, Andres Castano, Benjamin
Bornstein, Caroline Chouinard, and Michele Judd.
OASIS: Onboard Autonomous Science Investigation
System for Opportunistic Rover Science. Journal of
Field Robotics, 24(5):379-397, 2007.

Felix C. Gértner. Fundamentals of Fault-Tolerant
Distributed Computing in Asynchronous
Environments. ACM Computing Surveys, 31(1):1-26,
1999.

Allen Goldberg, Klaus Havelund, and Conor McGann.
Runtime Verification for Autonomous Spacecraft
Software. In Proceedings 2005 IEEE Aerospace
Conference, pages 507-516, March 2005.

Klaus Havelund and Allen Goldberg. Verify Your
Runs. In Proceedings Verified Software: Theories,
Tools, Experiments (VSTTE’05), October 2005.
Ravishankar K. Iyer, Zbigniew Kalbarczyk, Karthik
Pattabiraman, William Healey, Wen-Mei W. Hwu,
Peter Klemperer, and Reza Farivar. Toward
Application-Aware Security and Reliability. IEEE
Security and Privacy, 5(1):57-62, 2007.

Mark James, Andrew Shapiro, Paul Springer, and
Hans Zima. Adaptive Fault Tolerance for Scalable
Cluster Computing in Space. International Journal of
High Performance Computing Applications (IJHPCA),
23(3), 2009. SAGE Publications.

Mark L. James and Hans P. Zima. An Introspection
Framework for Fault Tolerance in Support of
Autonomous Space Systems. In Proceedings 2008
IEEFE Aerospace Conference, March 2008.

Zbigniew T. Kalbarczyk, Ravishankar K. Iyer,
Saurabh Bagchi, and Keith Whisnant. Chameleon: A
software infrastructure for adaptive fault tolerance.
IEEE Trans. Parallel Distrib. Syst., 10(6):560-579,
1999.

Dong-In Kang, Jinwoo Suh, Janice O. McMahon, and
Stephen P. Crago. Preliminary Study toward
Intelligent Run-time Resource Management
Techniques for Large Multi-Core Architectures. In
Proceedings of the 2007 Workshop on High
Performance Embedded Computing (HPEC07),
September 2007.

L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem. ACM Trans. Programming
Languages and Systems, 4(3):382—401, July 1982.
Dionysius Lardner. Babbages’s Calculating Engine.
Edinburgh Review, July 1834. Reprinted in P.Morrison
and E.Morrison (Editors): Charles Babbage and His
Calculating Engines, Dover, New York, 1961.

Ming Li, Wenchao Tao, Daniel Goldberg, Israel Hsu,

(21]

(25]

and Yuval Tamir. Design and Validation of Portable
Communication Infrastructure for Fault-Tolerant
Cluster Middleware. In Cluster’02: Proceedings of the
IEEFE International Conference on Cluster Computing,
page 266, Washington, DC, USA, September 2002.
IEEE Computer Society.

Peter C. Mehlitz and John Penix. Design for
Verification with Dynamic Assertions. In Proceedings
of the 2005 29th Annual IEEE/NASA Software
Engineering Workshop (SEW’05), 2005.

Flemming Nielson, Hanne Riis Nielson, and Chris
Hankin. Principles of Program Analysis. Springer
Verlag, Berlin, Heidelberg, New York, 1999.

J. Samson, G. Gardner, D. Lupia, M. Patel, P. Davis,
V. Aggarwal, A. George, Z. Kalbarcyzk, and R. Some.
High Performance Dependable Multiprocessor II. In
Proceedings 2007 IEEE Aerospace Conference, pages
1-22, March 2007.

Philip P. Shirvani. Fault-Tolerant Computing for
Radiation Environments. Technical Report 01-6,
Center for Reliable Computing, Stanford University,
Stanford, California 94305, June 2001. Ph.D. Thesis.
R. Some and D. Ngo. REE: A COTS-Based Fault
Tolerant Parallel Processing Supercomputer for
Spacecraft Onboard Scientific Data Analysis. In
Proceedings of the Digital Avionics Systems System
Conference, pages 7.B.3—1-7.B.3—-12, 1999.

Michelle M. Strout, Barbara Kreaseck, and Paul
Hovland. Data Flow Analysis for MPI Programs. In
Proceedings of the 2006 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’06), June 2006.

Tile64 Processor Family, 2007. http://wwuw.tilera.com.
M. Weiser. Program Slicing. IEEE Transactions on
Software Engineering, 10:352-357, 1984.

Hans P. Zima. Introspection in a Massively Parallel
PIM-Based Architecture. In G. R. Joubert, editor,
Advances in Parallel Computing Volume 13, pages
441-448. Elsevier B.V., Amsterdam, The Netherlands,
2004.

Hans P. Zima and Barbara M. Chapman.
Supercompilers for Parallel and Vector Computers.
ACM Press Frontier Series, 1991.

