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ABSTRACT 

The High Contrast Imaging Testbed Phase Induced Amplitude Apodization (HCIT/PIAA) coronagraph system at JPL 
relies on an Electric-Field Conjugation (EFC) wavefront correction algorithm to obtain the required high contrast.  This 
algorithm works with one deformable mirror (DM) to estimate the electric-field to be controlled, and with one or 
multiple DM’s to create a “dark-hole” in the image plane.  We have investigated the effects of DM actuator errors on the 
efficiency of the EFC algorithm.  The structural design of the optical system as well as the parameters of various optical 
elements used in the analysis are drawn from those of the HCIT/PIAA system that have been and will be implemented 
with one or two DM’s. The simulation takes into account the surface errors of various optical elements.  In this paper, 
we report our findings in the case of narrowband wavelength light. 
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1. INTRODUCTION 
The High Contrast Imaging Testbed Phase Induced Amplitude Apodization (/HCIT/PIAA) coronagraph system at Jet 
Propulsion Laboratory [1] relies on a broadband wavefront correction algorithm called Electric-Field Conjugation (EFC) 
to obtain the required 10-10 contrast [2].  This algorithm works with one or multiple deformable mirrors (DM’s) to create 
a “dark-hole” in a predefined region of the image plane where terrestrial planets would be found.  It achieves the desired 
high contrast level in two stages.  The first is the reconstruction stage.  In this stage, the algorithm provides an estimate 
of the aberrated complex electric-field (e-field) in the image plane based on pairs of images taken at the final image 
plane using different DM configurations.  The second is the correction or the e-field conjugation stage.  In this stage the 
algorithm generates a correction based on the estimated e-field of the first stage. The correction is then applied to the 
DM actuators to null the image plane e-field in the predefined dark-hole region.   
 
We have investigated the effects of the DM actuator errors on the efficiency of the EFC algorithm.  Considered cases 
include random actuator gain errors, asymmetric actuator gain errors, the nonlinearity in DM actuator response to the 
applied control voltages, and bad (or dead) actuators.  The structural design of the optical system as well as the 
parameters of various optical elements used in the analysis are drawn from those of the HCIT/PIAA system that have 
been and will be implemented with one or two DM’s. The simulation takes into account the surface errors of various 
optical elements.  The optical simulation algorithm uses MACOS (Modeling and Analysis for Controlled Optical 
Systems) as its analytic tool [3].  Hence it is capable of performing full three-dimensional near-field diffraction analysis 
on HCIT’s optical model.  This paper presents results on the effects of DM actuator gain errors on the estimation and the 
control of the e-field at the final image-plane of HCIT/PIAA when the light source is a narrow-band beam.  The 
dependence of the broadband contrast performance of the HCIT/PIAA system on various errors, such as actuator errors, 
optical surface errors and rigid-body errors, will be studied and reported elsewhere. 

2. BACKROUND 
The study in this paper is the continuation of the work reported in Ref. [1].  Therefore, the layout of the optical system 
and the phase errors of the five optics used in this study are identical to those described in Ref. [1].  The main difference 
in the optical model parameters used in this paper and in Ref. [1] are the following:  (1) In this paper we treat the case of  
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an optical system with only one DM.  This is achieved by replacing DM2 with a flat mirror (see Fig. 1 in Ref. [1]).  (2) 
We use a new apodization profile to be explained below.  (3) We use a system aperture diameter D=30mm.  But the 
input beam is still a narrowband light having a center wavelength of λ0=800nm.   

2.1 DM Actuator Model  

The characteristics and the physical parameter of the 1024-actuator (or 32x32 actuator) DM used in this study are 
identical to those described in detail in Ref. [4].  Therefore, they will not be explained here.  In this subsection, we 
briefly explain the optical model of an actuator used in our simulations.  When a voltage V is applied to an actuator, its 
height increases or decreases, this in turn causes an upward or downward bending of the small area of the DM facesheet 
just above that actuator.  Theoretically, for the Xinetics DM used on our testbed, the actuator command V = 0V – 100V 
changes the actuator height by h(V) = 0nm – 500nm.  For convenience, we assume V = -50V to +50V for the actuator 
command and h(V) = -250nm to +250nm for the actuator height in our simulations.  The exact behavior of the h(V) 
versus V curve of a mounted actuator is not known to us.  But some preliminary measurements carried out at JPL 
indicate that the h(V) versus V curves are not linear and their shapes are different for different actuators.  We will study 
the several cases of the h(V) versus V curves in this paper.  The DM actuator model used in our simulations was 
developed at JPL based on the information provided by Xinetics, and is explained in Figs. 1(a-c) with Act(17,17) as an 
example, where we used Act(m,n) to denote an actuator having a row-number m and a column-number n, respectively.  
In an ideal case, h(V) = ηV with η = 5nm/V.  The results in Figs. 1(a-c) correspond to V = 2V and h(V) = 10nm.  In these 
figures, the RMS and PV are the root-mean-square and the peak-to-valley values of the corresponding surface map, 
respectively. 

   
Figure 1.  DM surface and exit pupil optical path difference (OPD) parameters when Actuator(17,17) is poked with V = 2V. 

(a) 99x99 pix DM surface map, (b) its x-slice, and (c) the corresponding exit pupil OPD.  The RMS and PV are the 
“root-mean-square” and the “peak-to-valley” values of the corresponding surface map, respectively. 

2.2 Definition of Half Dark-Hole Area  

For the current optical system with only one DM, we carry out wavefront control (WFC) over a half dark-hole region 
having a rectangular boundaries from Dfx /λ5/ =  to D/1λ1  in the x-direction and from Dfy /λ10/ −=  to D/0λ1  
in the y-direction.  For a simulation grid size of 512x512 pixels, this gave an e-field vector, e


, having a size of 2992x1 

pixels.  There are a total of 1024 DM actuators in the current 1-DM system, but we excluded the actuators with zero or 
very weak influences, thus reducing the number of the actuators used to 984.  We will keep track of the following three 
contrast parameters in this paper: (i) bC , the mean contrast inside a “Big” rectangular region from Dfx /λ5/ =  to 

D/0λ1  and from Dfy /λ10/ −=  to D/0λ1 .  (ii) sC , the mean contrast inside a “Small” rectangular region from 
Dfx /λ5/ =  to D/λ6  and from Dfy /λ1/ −=  to D/λ1 .  (iii) mC , the “Maximum” contrast value inside the small 

rectangular region defined above.  The nominal values of these parameters obtained for the error-free optical system 
without conducting any wavefront control are 5E34.1 −=bC , 5E85.8 −=sC , and 5E51.1 −=mC , respectively.  When 
the phase errors of the five optics are included in simulation, the above contrast values change to 5E64.1 −=bC , 

5E21.3 −=sC , and 5E63.6 −=mC , respectively.  We will include the phase errors of the five optics in this study 
unless otherwise stated.   
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2.3 Amplitude Drooping  

The illuminating beam of the current system exhibits a small level of amplitude-drooping at the exit pupil, but our 
simulations have shown that such amplitude-drooping does not have any adverse effect on the contrast performance of 
the HCIT/PIAA.  Therefore, this effect will not be taken into account in our simulations.   

2.4 Wavefront Control Algorithm and Approach 

We will use the EFC algorithm for our WFC, and calculate the gain matrix using the “actuator regularization” method 
explained in Refs. [1-2].  We use an optimized sensitivity matrix S~  and an optimized set of four actuator regularization 
values, 4000]  2000  1000  100[γwu = , with the corresponding WFC iteration numbers listed in the same order, 

25]  25  25  150[WFC =N .  That is, in a typical numerical WFC operation, the WFC process is completed in four phases 
with four different wuγ  values in the order given above, each with a different WFC iteration number also given above.  

The description of the process by which these optimum S~  and wuγ  were obtained is beyond the scope of this paper and 
will be presented in a separate publication.   

2.5 Apodized Pupil Profile and WFC Efficiency 

The apodized pupil profile used in this study is shown by the red-curve in Fig. 2(a).  This is the profile currently being 
used on the HCIT/PIAA testbed and corresponds to the output of a PIAA unit without a post-apodizer.  We call it 
“PIAA-A” in this paper.  One characteristic of this PIAA profile is that there is still substantial residual light near the 
edges of the pupil.  For that reason, including and not including the optics phase errors in simulation do not make much 
difference in the three types of contrast values, as explained in subsection 2.2, and the WFC process requires a large 
number of control iterations to achieve the ultimate dark-hole level, as is shown with a red-curve in Fig. 2(b), where the 
values of bC  is shown as a function of control iteration number.  The phase errors of all five optics were included in this 
simulation.  After 225 control iterations, we achieve a narrow-band half-dark hole having only 10E58.1 −=bC . It must 
be pointed out that utilizing a post-apodizer in the PIAA unit dramatically improves this situation.  For example, shown 
with a blue-curve in Fig. 2(a) is another PIAA profile referred to as “PIAA-B” in this paper.  It corresponds to the output 
of a PIAA unit having a post-apodizer, and under the same condition of rad-curve in Fig. 2(b), this profile yields 

12E68.3 −=bC  after only 50 control iterations.  The before- and the after-control PSFs corresponding to the above two 
PIAA profiles are shown in Figs. 3(a-d).  These PSF maps are included here as examples of the numerical PSFs obtained 
in the current HCIT/PIAA system.  The MACOS simulation tool allows us to calculate the complex e-field in the final 
focal plane directly, and we obtained the results presented in this sub-section that way, that is, without using the four-
probe e-field estimation routine [2].  However, we will use the four-probe e-field estimation routine in the remaining part 
of this paper unless otherwise stated.  

 
Figure 2. (a) Two apodization profiles, of which the red profile is used on the current HCIT/PIAA system, and (b) the 

corresponding contrast value Cb versus control iteration number. 
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Figure 3. The calculated before- and after-control PSFs (central square portion only) corresponding to the current 

HCIT/PIAA testbed model utilizing the apodized pupil profiles PIAA-A and PIAA-B, respectively.  The horizontal and 
the vertical axes are the field angles having a unit of λ/D. 

3. SIMULATION RESULTS  
3.1 Ideal Actuators 

As explained in sub-section 2.1, ideal actuators have 

 V50V50  ,nm/V5  ,)( +≤≤−== iiii VVVh ηη , (1) 

where the subscript i corresponds to the actuator number.  In this case, we obtain a result of bC  versus control iteration 
number similar to the red-curve in Fig. 2(b), and the pre- and post-control PSFs similar to Figs. 3(a-b), respectively (The 
results in Fig.2 and Fig. 3 were obtained without using the e-field estimation routine, whereas the ones in this subsection 
were obtained using the e-field estimation routine).  The contrast values after 225 control iterations are 10E61.1 −=bC , 

11E92.4 −=sC , and 10E42.1 −=mC , respectively.  The corresponding exit pupil OPD maps and the DM actuator 
height map are shown in Figs. 4(a-c), respectively.  As before (see Ref. [1]) and as is expected, the WFC process does 
not minimize the exit pupil wavefront error (WFE) in the current case, instead, it re-arranges the WFE to create the 
desired dark-hole.  The values of the actuator heights after 225 control iterations have a range of roughly -150nm to 
+100nm, as shown in Fig. 4(c).  

Figure 4.  (a) Exit-pupil OPD map before control, (b) after control, and (c) the actuator height map after 225 control 
iterations. 
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3.2 Linear Actuator response with Random Slope (or Gain) Errors  

Next, we investigate a case where all of the actuators have linear responses to the command voltage but with slightly 
different slopes, that is,  

 ( ) V50V50  ,nm/V5  ,1),( nruu +≤≤−=+= iiiii VVfVh ηησσ , (2) 

where fnri is a normally-distributed random-number variable.  Its values can be obtained using a seeded Matlab function, 
randn.m.  Because fnri has a standard-deviation (STD) of 1.0, the factor σufnri corresponds to the actuator response slope 
error with an STD of σu.  In our simulations, we introduced the same errors into both the four-probe e-field estimation 
and the EFC-based WFC operations.  Figure 5(a) shows one realization of ifnr  values of all 984 active actuators, and 
Fig. 5(b) shows the Cb versus control iteration number results corresponding to four σu values indicated on the figure 
legends.  As we can see, the Cb of the σu =0.3 case increases and oscillates first, and then decreases, but it decreases 
monotonically in the remaining three cases.  Even though the differences in the last Cb values are negligible for all 
practical purposes, the last Cb value gets slightly improved with the increased σu value in this particular case of slope 
errors.  Such a result is completely unexpected.   

  
Figure 5.  (a) The distribution of one fnri realization used in the current simulations.  (b) Cb versus control iteration number 

curves obtained with four different σu values.  

In order to understand what leads to the above results, we examined the behavior of the final focal-plane e-field in 
response to the applied actuator command.  The system influence functions (or sensitivity matrix) used in this study was 
obtained by changing the command voltage of each actuator from 0V to +1V (or by changing the input actuator height 
from 0nm to 5nm), and dividing the resultant differential e-field vector by ∆V = 1V (or ∆h = 5nm).  Let us denote such 
an influence function vector with )nm5(is


, where the subscript i corresponds to the actuator number as before.  When 

we conduct WFC to create a dark hole, the resulted actuator heights of the active actuators will differ from 5nm, in some 
cases by a lot, as is seen from Fig. 4(c).  Then, how accurate the )nm5(is


 are at other actuator height positions?  To find 

an answer for this question, for Act(17,17), we took the pseudo-inverse of )nm5(is


 to obtain a gain row-vector, 
)nm5(ig


, and reconstructed the actuator heights at other input actuator height values as 

 )()5()(rec hnmhh iii eg


×= , (3) 

where )(hie


 is a differential e-field column-vector defined in Ref. [1].  It is obtained from the e-field at some non-zero 
h-value minus the e-field at h = 0nm.  The result of )(rec hh i  for Act(17,17) is shown in Fig. 6(a) with a red-curve.  If we 
“turn off” the diffraction propagation completely and use only ray-tracing in our simulation, then we obtain the blue-
curve.  If the system had been linear, we would have obtained the green-curve.  As we can see, the current system is 
almost linear in the 0nm to +100nm actuator height range, but highly nonlinear and its slope is always < 1 in the 0nm to 
-100nm range.  In this case, an input of -100nm produces only a -66nm effect.  Figure 6(b) shows the ( ) ( )[ ] VV /V0~~ EE −  

maps when V = -20V and +20V (or h = -100nm and +100nm), respectively.  As is seen, the diffraction-propagation 
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makes the e-fields at h = -100nm and +100nm fairly asymmetric.  A careful examination of the actuator heights in Fig. 
4(c) revealed that 51.1% of them have negative values, whereas the values of fnri corresponding to those negative 
actuators (that is, the actuators having negative height values) split almost 50%-50%.  For that reason, in the current 
particular case of fnri, the slope errors slightly improved the value of Cb.  

 

   
Figure 6.  (a) Reconstructed actuator height versus input actuator height.  (b) Magnitude of the normalized differential e-

fields when V = -20V and +20V, respectively.  

   
Figure 7.  (a) Values of Cb after 50 control iterations carried out with γwu = 100 and corresponding to 50 sets of random 

slope error realizations.  Cb of σu = 0 is the one obtained with NWFC = 225.  (b) Cb versus control iteration number, 
where the case numbers on the figure legends correspond to the horizontal axis of part (a).  

We carried the above simulations for another 50 realizations of the slope errors with σu = 0.1, 0.2, 0.3, γwu = 100 and 
NWFC = 50, and obtained the results shown in Fig. 7(a), where the last values of Cb were sorted first, then plotted as a 
function of slope error case number.  When σu = 0.3, in the five cases out of 50 (or in the 10% cases), the e-field 
estimation and control operations fail and result in Cb values larger than the pre-control value.  For those five cases we 
tried to use much less aggressive actuator regularization values, such as γwu = 5000, but still could not create a dark hole. 
We got similar results in two σu = 0.2 cases, Cases 49 and 50.  As is seen from Fig. 7(b), the random slope errors in 
actuator response curves slow down the efficiency of WFC in all “good” cases, i.e., the cases where Cb becomes smaller 
than its pre-control value.  We can expect that, in some of those “good” cases, the Cb value will never get as good as in 
the case of σu = 0.0.  

3.3 Linear Actuator Response with Asymmetric Slope Errors  

In this sub-section we consider a different type of actuator errors in which the actuator response curves of all active 
actuators are linear but have different slopes for positive and negative commands.  Mathematically, this can be expressed 
as 

 ( ) V50V50  ,nm/V5  ,1),( i +≤≤−=+= iiiii VVVh ηηδδ . (4) 
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We consider two types of scenarios under this category.  They are “Negative Slope Errors” and “Positive Slope Errors” , 
respectively, are mathematically represented by 
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Figure 8.  Cb versus control iteration number when the actuator response curves have (a) negative slope errors and (b) 

positive slope errors, respectively.  

Based on the information presented in the previous sub-section, the results in Fig. 8(a) can be easily understood.  
However, as is seen from Fig. 8(b), we get better Cb results with the increased positive slope errors also, just as in the 
case of negative slope errors.  We believe this is caused by the combination of several factors, such as the choices on γwu 
and NWFC, as well as the ultimate actuator height values required to create a dark hole in the current particular case of 
optical system.   

3.4 Nonlinear Actuator Response with Random Slope Errors 

In general, one can expect that the h versus V curve of each actuator is nonlinear and these curves are different for 
different actuators.  Some preliminary measurements of the actuator response curves [5] have indeed exhibited the 
evidence of such behavior, as is shown in Figs. 9(a-b) (Note that a command voltage axis stretch of 0 – 100V is used in 
these two figures).  Experimental details of these measurements are beyond the scope of this paper and will not be 
presented here.  Based on the knowledge learned from these measurements, we constructed a model of actuator 
nonlinear response curves with some random slope errors, which is 
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In Eqn. (6), δi are random numbers obtained from the Matlab function randn.m and re-scaled the negative and positive 
parts separately such that -0.3 ≤  δi ≤ +0.3.  This range of the δi values roughly corresponds to the dh/dV data in Fig. 9(b) 
at V = 30V.  Figures 10(a-b) show the several examples of h and dh/dV versus input command curves obtained using 
Eqn. (6).   

We carried out WFC simulations with γwu = 100 and NWFC = 50 for 50 sets of random δi realizations, and obtained the 
result shown in Fig. 11(a), where the last values of Cb were sorted first, then plotted as a function of slope error case 
number.  In this figure, there are 20 cases where Cb(σi≠0) ≤  Cb(σi=0), or, in another words, the Cb gets slight 
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3.5 Dead Actuators 

Finally, we examined a new situation where some of the active actuators are not responsive to the applied commands.  
We call such actuators as “dead actuators” in this paper.  In the current simulations, for the optical system with all five 
phase errors and the actuators whose h-V characteristic is given by Eqn. (1), we obtained actuator command solutions in 
each WFC iteration as usual, but set the command value or values of randomly selected one, two or three actuators to 0V 
when performing the next WFC iteration.  The sorted minimum values of the Cb are shown as a function of dead actuator 
case number in Fig. 12(a) for three different numbers of dead actuators, Ndead, and for a total of 50 dead actuator 
realizations.  Figure 12(b) shows the Cb versus control iteration number curves corresponding to the worst cases in Fig. 
12(a) for all three values of Ndead except Ndead = 3.  In the latter case, we failed to create a dark hole even with a much 
more conservative value of actuator regulation parameter, γwu = 4000.  Therefore, we did not include the result of the Cb 
corresponding to that case in Fig. 12(a), and presented the curve corresponding to the Case 49 of Ndead = 3 instead in Fig. 
12(b).  Figures 13(a-c) show the locations of the dead actuators randomly selected in the above simulations.  By direct 
observation, we did not notice anything special about the Case 50 of Ndead = 3, as shown in Fig. 14, where the locations 
of the three dead actuators are indicated with red-square marks on top of the actuator height maps corresponding to the 
case of Ndead = 0 and obtained at the end of the usual 225 WFC iterations.   

   
Figure 12.  (a) Values of Cb after 50 control iterations carried out with γwu = 100 and corresponding to one, two and three 

randomly selected dead actuators.  In these simulations, the values of all actuator commands were obtained as usual (or 
using all influence functions), but the command values of those dead actuators were set to 0V before carrying out the 
next WFC iteration.  (b) Cb versus control iteration number, where the case numbers on the figure legends correspond 
to the horizontal axis of part (a).  

     
Figure 13.  Locations of dead actuators randomly selected in the current simulations, with (a) Ndead = 1, (b) Ndead = 2, and (c) 

Ndead = 3,respectively, where Ndead denotes the number of dead actuators.  The green-square marks in all three parts 
show the locations of all the active actuators.   

Again, as we can see from Figs. 12(a-b), the effect of the one, two or three dead actuators, at least for the most cases 
considered here, is to slow down the process of WFC. 
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Figure 14.  Actuator heights of the Ndead = 0 case obtained after 225 WFC iterations and the locations of the three dead 

actuators corresponding to Ndead = 3, Case 50 in Figs. 12 and Fig. 13(c).   

3.6 Summary of Results 

The results of all the actuator error cases studied in this section are summarized in Table 1.   

Table 1.  Summary of the values of three types of contrast,  Cb ,  Cc and Cm, obtained before and/or after wavefront control 
when introducing different types of errors into the PIAA/HCIT system. 

Case 
# 

Error 
Parameter 

Value of Error 
Parameter Remarks Range of Good 

Case Cb Values 

Total 
Number 
of Cases 
Studied 

Number 
of Good 

Cases 

0.1 Nominal   Before Control 1.3E-05 1 1 

0.2 Figure 
Error 12 nm RMS 

Before Control 1.6E-05 1 1 

After Control 1.6E-10 1 1 

1.1 
σu 

0.1 
Linear h(V) with random 
slope errors 

4.0E-10 - 7.4E-10 50 50 

1.2 0.2 5.2E-10 - 1.8E-08 50 48 

1.3 0.3 7.1E-10 - 7.6E-07 50 45 

2.1 

δneg 

-0.30 

Linear h(V) with slope errors 
at V < 0V 

1.9E-10 1 1 

2.2 -0.15 1.7E-10 1 1 

2.3 0.15 1.5E-10 1 1 

2.4 0.30 1.4E-10 1 1 

3.1 

δpos 

-0.30 

Linear h(V) with slope errors 
at V > 0V 

2.1E-10 1 1 

3.2 -0.15 1.8E-10 1 1 

3.3 0.15 1.5E-10 1 1 

3.4 0.30 1.4E-10 1 1 

4 δi -0.3 to 0.3 Nonlinear h(V) with random 
slope errors 3.3E-10 - 9.0E-10 50 50 

5.1 

Ndead 

1 Linear h(V), and 1-3 
actuators are set to h(V) = 
0nm in e-field estimation & 
control 

3.8E-10 - 1.2E-09 50 50 

5.2 2 3.7E-10 - 1.8E-09 50 50 

5.3 3 3.8E-10 - 2.8E-09 50 49 
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4. CONCLUSION 
The behavior of the actuators of the deformable-mirrors (DMs) utilized on the HCIT/PIAA testbed plays crucial role in 
its contrast performance.  In order to gain some general understanding about the potentials and the limitations of the 
current single-DM HCIT/PIAA system, we have examined through modeling and simulations the effects of some 
common actuator errors on the estimation and the EFC-based control of the e-field over a half-dark hole region.  
Considered cases include random slope errors of actuator linear response curves, asymmetric slope errors of actuator 
linear response curves, nonlinear response curves of actuators with random slope errors, and 1-3 dead actuators.  We 
have shown that, within the extent of the actuator errors considered in this paper, the random, 30% slope errors in the 
linear actuator response curves have the largest negative impact on the contrast performance of the HCIT/PIAA.  In this 
case, we failed to create a half-dark hole in the 10% of the time, and the WFC efficiency was reduced in the remaining 
90% of the time, in some cases very severely.  Most of the other actuator errors considered in this paper have shown to 
be tolerable.  This study has been limited to a narrowband input light and a perfect PIAA unit.  We plan to extend this 
work to broadband input light and imperfect mapping system in our future studies. 

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the 
National Aeronautics and Space Administration.  
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