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Abstract—We have designed and built a prototype 
Supercritical CO2 Cleaning (SCC) system at JPL.  The key 
features of the system are: 1) the parts inside a high-pressure 
vessel can be rotated at high speeds; 2) the same 
thermodynamic condition is maintained during First-In 
First-Out flushing to keep solvent power constant; and 3) 
the boil-off during decompression is induced in a separate 
vessel downstream.  Our goal is to demonstrate SCC’s 
ability to remove trace amounts of microbial and organic 
contaminants down to parts per billion levels from 
spacecraft material surfaces for future astrobiology 
missions.     The initial cleaning test results showed that 
SCC can achieve cleanliness levels of 0.01 µg/cm2 or less 
for hydrophobic contaminants such as dioctyl phthalate and 
silicone and it is less effective in the removal and 
inactivation of the hydrophilic bacterial spores as expected.  
However, with the use of a polar co-solvent, the efficacy 
may improve dramatically.   The same results were obtained 
using liquid CO2.  This opens up the possibility of using 
subcritical cleaning conditions, which may prove to be more 
compatible with certain spacecraft hardware. 
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1. INTRODUCTION 
Astrobiology mission plans are incorporating instrument 
technology with very high sensitivity for bio-organic 
compounds. For example, instruments on the Mars Science 
Laboratory (MSL) are capable of detecting target organic 
molecules in Martian samples.  The goal is to detect 
organics at parts per billion levels (nanograms of analyte per 
gram of soil).  

Conventional cleaning methods include sterilization, high 
temperature baking, vapor degreasing, and wiping.  
Sterilization methods are intended for killing live 
microorganisms.  Alcohol wiping and liquid sonication 

reduce the bio-burden on surfaces.  Both may leave 
remnants of dead or live microbes, or other residues, on 
surfaces, posing risk of cross contamination of 
extraterrestrial samples.  Wiping is ineffective in cleaning 
parts with complex geometry.  Vapor degreasing is not as 
effective at removing medium or low molecular weight 
hydrophilic biomolecules of relevance to astrobiology.  

To address the new bio-organic cleanliness requirements, 
we are developing an innovative new cleaning technology 
that will support the current Planetary Protection 
requirements and will facilitate future spacecraft 
contamination control requirements. This will provide 
additional technology needed to achieve the science goal of 
detecting very low levels of extraterrestrial materials in 
samples without significant risk of interference by terrestrial 
contaminants carried from Earth. 

Supercritical CO2 precision cleaning has been proven to be a 
viable method in the manufacturing environment for 
cleaning common oil, grease, and hazardous solvents [1].  
We adapt this precision cleaning technology to clean 
bacteria and organic molecules from small to medium sized 
parts with complex geometry in order to meet the flight 
instrument science requirements.  The critical point of CO2 
is moderately at T = 31 C and P = 1070 psi.  In a typical 
application region of 32 < T and 1,070 < P < 3,500 psi, 
supercritical CO2 fluid has high density, high diffusivity and 
low viscosity, and tremendous solvent properties regarding 
non-polar molecules.  It is able to spread out along a surface 
because of its negligible surface tension, dissolve the non-
polar molecules, and remove them from the surface even if 
it has an intricate geometry.  In this paper, we present the 
design and development of our prototype SCC system, SCC 
cleaning procedures, and preliminary cleanliness results of 
several known contaminants. 

2. SCC SYSTEM AND PROCEDURES  
We have designed and built a prototype SCC system as 
shown in Fig. 1.  The main components of our prototype 
system are: a) high-pressure cleaning vessel Vclean, b) boil-
off vessel Vboil located downstream from the cleaning vessel, 
c) syringe type high-pressure pump subsystem, d) heat 
exchanger, and e) Back Pressure Regulator (BPR).  
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meet the current flight-hardware cleaning requirement [4].  
The set of clean coupons had same residue as the cleaned 
ones, indicating a cross contamination in the same solvent.  
Table 2 shows the results of cleaning silicone off pre-
contaminated coupons in the identical runs as done for the 
DOP contaminants.  The same satisfactory cleanliness was 
obtained. 

Table 1.  Test results for DOP using both SCC and liquid 
CO2. 

 

We also prepared the coupons contaminated with 1.1 
µg/cm2 L-Cysteine.  As expected, neither SCC nor liquid 
CO2 had any effect on cleaning L-Cysteine off the pre-
contaminated coupons. 

Another set of experiments was conducted to determine if 
SCC or liquid CO2 can clean or inactivate spores deposited 
on aluminum coupons.  The coupons were each inoculated 
with approximately 6.2×105 Bacillus atrophaeus spores. 
Preliminary results show SCC and liquid Co2 are ineffective 
in the removal of the hydrophilic bacterial spores even the 
basket with coupons in it was rotated at a very high speed. 

4. CONCLUSION 
A new cleaning method using supercritical CO2 has been 
developed in a prototype to face the new challenges of 
continuously improving instrument sensitivity for bio-
molecule detection.  Supercritical CO2 was used as both 
solvent and carrier for removing organic and particulate 
contaminants.  The cleaning test results showed that the 
supercritical CO2 cleaning method can achieve a cleanliness 
of 0.01 µg/cm2 or less for hydrophobic contaminants such as 
dioctyl phthalate (DOP) and silicone [5].  This level of 

surface cleanliness will meet the current working guideline 
for hardware that will be in direct contact with the 
extraterrestrial sample.  Since the supercritical and liquid 
CO2 were both highly effective at cleaning and removing 
the DOP and silicone contaminants, it opens up the 
possibility of using subcritical cleaning conditions, which 
may prove to be more compatible with certain spacecraft 
hardware.  

None of the first three spore experiments showed any 
significant reduction in the number of spores remaining on 
the aluminum coupons. 

Once it is proved to be efficient at cleaning spacecraft and 
instrument surfaces that are incompatible with other 
solvents, it can be incorporated as an in-situ cleaning or 
extraction method for future Mars missions since 95% of 
the Martian atmosphere is CO2. 

As expected, preliminary results show that this technique is 
less effective in the removal and inactivation of the 
hydrophilic bacterial spores.  Further tests will be performed 
with the use of a polar co-solvent and the efficacy may 
improve dramatically. 

5. ACKNOWLEDGMENTS 
The research described in this paper was carried out at the 
Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics 
and Space Administration.  We acknowledge David Jackson 
from Cool Clean Technologies Inc for his knowledgeable 
suggestions in constructing the SCC cleaning apparatus. 

 

Table 2.  Test results for silicone using both SCC and liquid 
CO2. 

Sample 
(Coupons) 

Chemical Functional 
Group 

Amount 
(µg/cm2) 

Clean - Control Trace AHC < .01 
Low DOP 

Positive Control DOP, AHC 1.2 

High DOP 
Positive Control DOP, AHC 12.6 

Supercritical CO2 
Light DOP 1 Trace DOP, AHC ~ .02 
Light DOP 2 Trace DOP, AHC ~ .02 
Light DOP 3 Trace DOP, AHC ~ .02 
Heavy DOP Trace DOP, AHC ~ .02 
Heavy DOP Trace DOP, AHC ~ .02 
Heavy DOP Trace DOP, AHC ~ .02 

Liquid CO2 
Light DOP 1 Trace AHC < .01 
Light DOP 2 Trace AHC < .01 
Light DOP 3 Trace AHC < .01 
Heavy DOP Trace AHC < .01 
Heavy DOP Trace AHC < .01 
Heavy DOP Trace AHC < .01 

Sample 
(Coupons) 

Chemical Functional 
Group 

Amount 
(µg/cm2) 

Clean - Control Trace AHC < .01 
Silicone (low) 
Positive Control 

Silicone, Trace AHC 0.8 

Supercritical CO2  

Silicone (low) 1 Trace Silicone, Trace 
AHC 

< .01 

Silicone (low) 2 Trace Silicone, Trace 
AHC 

< .01 

Silicone (low) 3 Trace Silicone, Trace 
AHC 

< .01 

Liquid CO2 

Silicone (low) 1 Trace Silicone, Trace 
AHC 

< .01 

Silicone (low) 2 Trace Silicone, Trace 
AHC 

< .01 

Silicone (low) 3 Trace Silicone, Trace 
AHC 

< .01 
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