
The Deep Impact Network Experiment Operations Center Monitor and Control System
Shin-Ywan (Cindy) Wang, J. Leigh Torgerson, Joshua Schoolcraft, Yan Brenman

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

{ Shin-Ywan.Wang, Jordan.L.Torgerson, Joshua.Schoolcraft, Bremann.Yan}@jpl.nasa.gov

Abstract— The Interplanetary Overlay Network (ION)
software at JPL is an implementation of Delay/Disruption
Tolerant Networking (DTN) which has been proposed as an
interplanetary protocol to support space communication. The
JPL Deep Impact Network (DINET) is a technology
development experiment intended to increase the technical
readiness of the JPL implemented ION suite. The DINET
Experiment Operations Center (EOC) developed by JPL’s
Protocol Technology Lab (PTL) was critical in accomplishing
the experiment. EOC, containing all end nodes of simulated
spaces and one administrative node, exercised publish and
subscribe functions for payload data among all end nodes to
verify the effectiveness of data exchange over ION protocol
stacks. A Monitor and Control System was created and
installed on the administrative node as a multi-tiered internet-
based Web application to support the Deep Impact Network
Experiment by allowing monitoring and analysis of the data
delivery and statistics from ION. This Monitor and Control
System includes the capability of receiving protocol status
messages, classifying and storing status messages into a
database from the ION simulation network, and providing web
interfaces for viewing the live results in addition to interactive
database queries.

Keywords-Deep Impack Network (DINET); Delay/Disruption
Tolerant Network (DTN); Interplanetary Overlay Network
(ION); Bundle Protocol (BP); Experiment Operations Center
(EOC); Asynchronous Message System (AMS); Protocol
Technology Lab (PTL).

I. OVERVIEW OF DELAY AND DISRUPTION TOLERANT
INTEROPERABLE NETWORKING (DTN)

A delay-tolerant network is a network architecture
designed to operate effectively as an overlay on top of
regional networks, or as an interplanetary internet. The
interaction among regional networks can be characterized by
long delay, asymmetric data rate, intermittent connectivity
and high error rate due to the extreme environments and
distances encountered in deep space communication at an
interplanetary scale. In order to overcome stated problems,
DTN mainly uses store-and-forward service to move data
from the source to the destination. The DTN bundle protocol
(BP) forms an end-to-end message-oriented overlay network
between the transport layer and the application layer.
Devices implementing the bundle layer are called DTN
nodes. This network layer uses bundles as the message data
units to accomplish the hop-by-hop transfer, reliable delivery
and optional end-to-end acknowledgement through a DTN.

The bundle protocol also includes the diagnostic and
management features, a flexible naming scheme capable of
encapsulating different naming and addressing systems, and
a basic security model.

II. OVERVIEW OF THE DEEP IMPACT NETWORK
EXPERIMENT

NASA is working to raise the Technology Readiness
Level of DTN for the purpose of infusing it into space
exploration missions and supporting a ground and space-
based relay infrastructure. The JPL Deep Impact Network
Experiment (DINET) was a technology development
experiment intended to increase the technical readiness of the
JPL DTN implementation, Interplanetary Overlay Network
(ION) software. It was the first DTN experiment performed
in deep space.

DINET utilized the Deep Impact spacecraft as a flying
testbed for DTN validation. In the DINET topology, the
Deep Impact spacecraft acted as a router to pass the payload
data from one simulated space region to another. There three
regions were Earth, Mars, and Phobos and included three end
nodes to produce and consume the payload data as shown in
Figure 1. In the network, the data delivery starting from one
end node was first routed to the ground system of that end
node region, then to the Deep Impact spacecraft via RF links,
then to the ground system of the destination region,
eventually arriving at the destination end node.

Earth

Phobos Mars

Figure 1. DINET virtual topology

Deep
Impact

Copyright 2009 California Institute of Technology. Government sponsorship acknowledged.

The simulated network regions and associated hardware

were located within the Experiment Operations Center
(EOC) where DINET operations were performed. The
ground system terminating each region with the spacecraft is
referred to as DSOT (Data System Operations Team). The
DINET DTN node connectivity is depicted in Figure 2. More
details about network connectivity and data delivery are
contained in section III.

III. DINET EXPERIMENT OPERATION CENTER (EOC)
The DINET (EOC) developed by JPL Protocol

Technology Lab (PTL) as shown in Figure 3 was critical to
the DINET experiment. EOC, containing all end nodes of
simulated spaces and one administrative node, exercised the
publish and subscribe functionalities for payload data
among all end nodes to verify the effectiveness of data
exchange over the ION communications stack. The ION
based Monitor and Control System is an innovative,

ipnadminep
(extracts administrative

message info from bundles)

Log Message Receiver
and processor

Web
GUI

ION status
message and

EVR from node
2, 4, 8, 3, 6, 12,

5, 10, 20

Monitor and Control System

ION status
database

EOC Administrative Node

7 2 4 8

3 6 12

5 10 20

16

ION protocol bundles
ION software diagnostic
message

“Earth
”

“Mars”

“Phobos”

DSOT ground
system

Deep
Impact

nodes in EOC
(machines in PTL)

Figure 2: DINET structure and software on administrative node

Bundle status
report forwarded
via nodes 4 & 8

Image
files

Image
files

Image
display

intranet-based software application which provides live
network health and performance statistics. With this
system, as illustrated in Figure 2, these ION software
diagnostic messages and protocol status messages issued by
network nodes are collected, analyzed, stored into a
database in real-time. This application also provides a web
interface for viewing the data update and topology updates
in real-time and for interactive database queries.

As the lower part of Figure 2 depicts for the DINET EOC,
three machines (DTN nodes 8, 12 & 20) in the PTL were
designated to simulate the end nodes which publish and
subscribe experiment data via AMS (Asynchronous
Message System), an implementation of a publish/subscribe
protocol for the ION network. The end nodes on Mars and
Phobos publish experiment payload data, i.e. JPEG image
files, and the end node on Earth subscribes, receives and
displays the image files. For the DINET experiment, each
published DTN bundle contained one image file. Another
three machines (DTN nodes 4, 6, & 10) in PTL were used to
simulate the routers on all space regions located between the
end nodes and the ground systems. Therefore, one side of
entire EOC was connected to the ground system routers on
simulated Earth, Mars, and Phobos regions. DSOT
provided three nodes (DTN nodes 2, 3 & 5) to serve as
ground systems for the three simulated regions. A seventh
machine (DTN node 16) and two large screens in PTL were
employed as the administrative and the visualization system
to monitor and analyze experiment data delivery status and
statistics. The centralization of the Monitor and Control
System in the administrative node aided the researchers in
performing informative and useful ION experiments.

IV. MONITOR AND CONTROL SYSTEM
The Monitor and Control System is designed as a multi-

tier client-server web application. A middleware process
services the data requests between the database and the user.
The multi-tier hierarchical structure makes the application
extensible and distributive. The implementation of the
Monitor and Control System in the EOC utilized the
technologies of Java, JavaScript, AJAX, JSP (JavaServer
Page), and a MySQL database to provide the means for the
DINET experiment operator to monitor ION bundle delivery
and operational status effectively. Moreover, the devised
infrastructure of the DINET Monitor and Control system
can be extended to monitor the operation status, data
transmission and to update the display of the topology for
other space mission simulations.

A. Software Modules
Figure 4 shows that the Monitor and Control System in

the DINET EOC consists of the following major executable
pieces: DINETLogProcessor, DINETAdm,
DINETQueryAdm, DINETTopology, Update_Receiver and
Servlet. DINETAdm and DINETQueryAdm are the
implementation of a Web GUI running on the client side.
Update_Receiver and Servlet run on the Web server. Servlet
is primarily designed for use with the web-based HTTP
protocol to process and return client requests. For the
devised Monitor and Control System, the client-side Web
GUI sends a request to the server’s servlet. The servlet then
interacts with all relevant computational libraries, analyzes
the data, and returns the result to the client GUI.
DINETAdm and DINETQueryAdm dynamically update the
GUI contents as network operations proceed. The
Update_Receiver which is started at the Web server initiates
a TCP socket connection to receive message and topology
update notices respectively from DINETLogProcessor and
DINETTopology. It then responds to Servlet’s request if
any message or topology update notification has been
received. DINETLogProcessor sets up a TCP/IP socket
connection to all nodes to receive the ION status messages,
parse and categorize the messages, and deposit messages
contents into the SQL database. Additionally,
DINETLogProcessor sends signals to the Web server via
TCP/IP socket as notification of the arrival of new status
messages. DINETTopology is a topology description
generator which dynamically updates the network topology
description in xml format based on the ION network
configuration, which is initialized prior to mission
operations and updated during the course of the mission
whenever the network’s connectivity changes. Figure 5
shows an example of topology description created by
DINETTopology. The Web GUI of the Monitor and Control
System displays the DINET topology in a matrix style as

Figure 3 Protocol Technology Lab in JPL

depicted in Figure 6. The row and column location of each
node on the matrix is specified in the description file. Each
connected link which contains two end nodes is also
described in the xml description file. Similar to
DINETLogProcessor, DINETopology notifies the Web
server of any changes in the network topology via TCP/IP
socket. DINETAdm is a web-based graphic display system
which updates the display of the network topology and the
ION status messages in real-time by sending the request to
and getting the returns from the server’s servlets. As a
companion to DINETAdm, DINETQueryAdm provides
another web-based graphic display which interactively
accepts and responds to users’ queries on ION status
messages.

B. Supporting Libraries
Under the major executable pieces, there are several

libraries constructed to support specific functions. They are
LibDatabase, LibLogProcessor, LibSocket, LbLogProvide
and LibTopology. The functions of each library are
described as follows.

LibDatabase

- provides functions to manipulate and interface with
the database, such as

o setting connections to the database,

o creating tables in the database,
o inserting items into database tables,
o deleting items from the database tables,
o querying table content by giving entry

criterion.

LibLogProcessor
- builds the database and tables in order to store the

contents of received log messages
- parses and classifies messages,
- stores message contents into the database.

 LibSocket
- initiates the socket connection on the server side
- receives messages from remote clients.

LibLogProvider
- interprets queries issued from the application, i.e.

DINETQueryAdm,
- sends queries to the database by interacting with

LibDatabase.
- returns the query result to the application.

LibTopology

- parses xml topology description
- draws the network topology using a Java applet.

DINETLogProcessor

GUI
DINETadm

DINETQueryAdm

DINETTopology

Log Messages from
all nodes

LibLogProcessor LibDatabase

LibLogProvider LibSocket

LibTopology

Message
database

TCP/IP connection
Message data deposit and retrieval
Module dependency

ION network
configuration

Figure 4 Modules of Monitor and Control System

Update_Receiver & Servlet

C. Types of Log Messages
The Monitor and Control System in the EOC received

messages from all nodes in DINET during mission
operations. The messages included ION software status
messages, ION bundle status report messages, and node
publish/subscription messages. All messages are formatted
in consistent plain text style prior to arriving at the
processing unit of the destination, i.e. DINETProcessor at
the administrative node in the EOC.

Bundle status reports - administrative messages in the
form of DTN bundles as defined in bundle protocol - are
used to inform of the bundle processing status and are
issued by all nodes in the network and destined for the
administration node via the ION stack. At the administration
node, the ‘ipnadminep’ software converted bundle status
reports into the text-style log messages, and further
redirected them to the processing unit of the DINET
Monitor and Control System. Bundle status reports provide
information about the deletion of any undelivered bundle in
the network and thus allow the administrative node to
initiate some specific action in reaction upon reception of
the message.

Figure 6 The Main GUI page

<?xml Version="1.0" encoding="UTF-8" ?>
<root>
<topology>matrix(4,4)</topology>
<matrixrow>-1</matrixrow>
<matrixcol>-1</matrixcol>
<node>
 <nodeId>node16</nodeId>
 <x>4</x>
 <y>1</y>
</node>
<node>
 :
<connection>
<endpoint>
<name>node2</name>
</endpoint>
<endpoint>
<name>node4</name>
</endpoint>
<direction>twoway</direction>
<linktype>ion</linktype>
</connection>
 :
</root>

Figure 5 Topology description by DINETTopology

 ION software status messages are logged by all nodes
and programmatically redirected to the administrative node
by ION logging functions via TCP/IP backchannel, not via
ION stack. ION status messages are of five general types:
informational, warning, diagnostic, communication
statistics, and other (miscellaneous) status messages.
Informational messages mainly inform of the occurrence of
events nominal but significant software events. The warning
messages inform of the occurrence of events that are off-
nominal but are likely due to configuration or operational
error rather than software failure. Diagnostic messages
inform of the occurrence of events that are off-nominal and
might be due to software errors. A statistics message
provides network performance statistics over a stated

interval. An “other status message” is seen in response to
specific operator-initiated activity. The publish/subscription
messages denote the publish and subscription status from
the endpoint nodes involving the action of
publish/subscription.

Messages issued by the Deep Impact spacecraft were
encapsulated in EVR telemetry packets. As the ground
system received these telemetry packets, it extracted the log
messages from the encapsulation and re-transmitted the
messages to the administrative node via TCP/IP socket
connection.

Figure 7 The GUI query page

All these status messages and statistics helped the
mission operations staff keep abreast of the network data
flow and experiment status.

D. Web GUI
The Monitor and Control System primarily provides two

types of web GUI pages, the main GUI page and the query
GUI page. They allow the user to activate experiment
operation, monitor operational status, and send queries to
get stored messages.

Figure 6 is a screen shot of the main GUI page. In this
page, either an existing experiment name or a new
experiment name is selected for executing operations.
There are 11 tables on the page which display live messages
received from DINET nodes. The message display is
started by selecting the “start/update” button and
temporarily paused by selecting the “pause” button. All
messages received and stored in the database can be dumped
into a text file by selecting the “save” button and entering a
file name. The top and middle of the page shows the
network topology which is updated dynamically as the
connectivity changes.

 Figure 7 shows an example of the GUI query page.
In order to query the messages stored in the database, the
user specifies an experiment name, (optional) message type,
message source node, number of messages, and period of
message creation time. When the “query” button is clicked,
the messages stored in the database which meet the query
criterion are extracted to be displayed in the query page, and
those resultant messages can also be dumped into a text file
by clicking the “save” button and entering a file name. The
table content and topology display on both web GUI pages
are locally and dynamically updated without interfering with
the overall display of both pages. If the total amount of
messages which meet the query criterion exceeds a certain
amount, the messages returned from the Web server may
slow down the GUI display. Therefore, the servlet at the
Web server is designed to send the information of the
qualified messages in separate batches once the message
return exceeds the aforementioned certain value for the
purpose of displaying the Web GUI content efficiently.

V. RESULTS
 During DINET operations, all types of ION log
messages from all nodes (three endpoint nodes, three ground
nodes, three routers, the Deep Impact spacecraft, and the
administrative node) were collected in real-time by the
Monitor and Control System and dynamically displayed and
updated on the PTL visualization displays. With the results
gathered by the Monitor and Control System, aspects of

experiment performance could be analyzed instantly,
speeding up the validation process of the mission.

VI. FUTURE DIRECTION
The Monitor and Control system is designed as a multi-

tier client-server web application. The multi-tier hierarchical
structure makes the application extensible and distributive.
For example, the number of operational nodes, log message
type, performance data instrumentation and storage can be
expanded. The GUI page displays can be rapidly modified
to suit based on the current multi-tier infrastructure.

This devised infrastructure of the Monitor and Control

system can be further customized to monitor the operation
status, data transmission, and the topology updates for
varied simulated space network missions. The topology
update can be enhanced to be in more animated and realistic
style in which not just the connectivity of the topology but
also the relative location and status among network
elements is displayed. In addition, a distributed network
recovery system can be further developed based on
diagnostic messages received from network nodes to check
the health of the network and heal repairable errors in an
automated fashion.

ACKNOWLEDGMENT
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology and the National Aeronautics and Space
Administration.

REFERENCES

[1] Delay- Tolerant Networking Research Group (DTNRG)
wiki: http://www.dtnrg.org/wiki/Home

[2] S. Burleigh, “Delay-Tolerant Networking for Space Flight
Operations: Design and Development,” paper AIAA-2008-
3221, SpaceOps, 12-16 May 2008, Heidelberg, Germany.

[3] K. Scott and S. Burleigh, “Bundle Protocol Specification,”
RFC5050, experimental, November 2007.

[4] V. Cerf and S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K.
Scott, K. Fall, H. Weiss “Delay-Tolerant Networking
Architecture”, RFC 4838.

[5] “Asynchronous Message Service,” CCSDS Draft
Recommended Standard (Red Book) CCSDS 735.1-R-2, July
2008..

[6] J.Leigh Torgerson, Loren Clare, S. Y. Wang, Joshua
Schoolcraft, “The Deep Impact Network Experiment
Operations Center”, IEEE Aerospace Conference, Big Sky,
Montana, March 2009.

	I. Overview of Delay and Disruption Tolerant Interoperable Networking (DTN)
	II. Overview of The Deep Impact Network Experiment
	III. DINET Experiment Operation Center (EOC)
	IV. Monitor and Control System
	A. Software Modules
	B. Supporting Libraries
	C. Types of Log Messages
	D. Web GUI

	V. Results
	VI. Future Direction
	Acknowledgment
	References

