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Abstract

This paper describes a constraint embedding approach for the handling of local closure con-

straints in multibody system dynamics. The approach uses spatial operator techniques to eliminate

local-loop constraints from the system and effectively convert the system into tree-topology systems.

This approach allows the direct derivation of recursive O(N) techniques for solving the system

dynamics and avoiding the expensive steps that would otherwise be required for handling the closed-

chain dynamics. The approach is very effective for systems where the constraints are confined to

small-subgraphs within the system topology. The paper provides background on the spatial opera-

tor O(N) algorithms, the extensions for handling embedded constraints, and concludes with some

examples of such constraints.

There has been a considerable amount of interest in recent years in the development of
efficient computational algorithms for solving the dynamics of multibody systems. The O(N) class
of forward dynamics algorithms stand out as important breakthroughs on this front [1, 2, 3]. The
O(N) algorithms apply to tree-topology multibody systems. Extensions to the broader class of
closed-chain systems build upon the tree-topology algorithms. A closed-chain approach consists of
treating the closed-chain topology as a tree-topology system subject additional closure constraint.
The resulting forward dynamics solution consists of [?]: (a) ignoring the closure constraints and
using the O(N) algorithm to solve for the “free” unconstrained accelerations for the system; (b)
using the tree-topology solution to compute a correction force to enforce the closure-constraints;
followed by (c) correcting the unconstrained accelerations with correction acclerations resulting from
the correction forces. The correction step (b) required the computation of the reflected inertias
at the closure nodes, referred to as the operational space inertia in order to obtain the correction
forces. This is an expensive process requiring recursive computations across the system topology.

The subject of this paper on the class of multibody systems where the closure-constraints
are local, i.e., where they are confined to small groupings of bodies within the system. Impor-
tant examples of such local closure-constraints are constraints associated with four-bar linkages,
geared motors, differential suspensions etc. This paper shows how one can elimnate these closure-
constraints by embedding them directly into the system dynamics and effectively replacing the body
groupings with virtual aggregate bodies. Once eliminated, we are able to extend the well-known
O(N) algorithms to solve the dynamics of the system.

We begin with a brief overview of the spatial operator algebra approach to setting up the
equations of motion for the system, followed by the steps leading to the derivation of O(N) forward-
dynamics algorithms for tree-topology systems. We then move on to the case of systems with local
closure constraints and describe the embedding technique. We derive modifications for the O(N)
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algorithm needed to handle the embedded constraints. We conclude with specific examples of
embedding local closure-constraints.

1 Overview of Spatial Operators for Serial Chain Systems

The aim of this subsection is to summarize briefly the essential ideas underlying spatial operators
leading up to the Newton-Euler Operator Factorization M(θ) = HφMφ∗H∗ of the manipulator
mass matrix. While this is done here for a serial chain manipulator, the factorization results
apply to a much more general class of complex joint-connected mechanical systems, including tree
configurations with flexible links and joints [4].

Consider a serial manipulator with N rigid links in Figure ??. The links are numbered in
increasing order from tip to base. The outer-most link is link 1, and the inner-most link is link N.
The overall number of degrees-of-freedom for the manipulator is N. There are two joints attached
to the kth link. A coordinate frame Ok is attached to the inboard joint, and another frame O

+
k−1

is attached to the outboard joint. Frame Ok is also the body frame for the kth link. The kth

joint connects the (k + 1)st and kth links, and its motion is defined as the motion of frame Ok

with respect to frame O
+
k . When applicable, the free-space motion of a manipulator is modeled

by attaching a 6 degree-of-freedom joint between the base link and the inertial frame about which
the free-space motion occurs. However, in this paper, without loss of generality and for the sake
of notational simplicity, all joints are assumed to be single rotational degree-of-freedom joints with
the kth joint coordinate given by θ(k). Extension to joints with more rotational and translational
degrees-of-freedom is easy [5].

The transformation operator φ(k,k− 1) between the Ok−1 and Ok frames is

φ(k,k − 1) =

(

I3 l̃(k,k− 1)

0 I3

)

∈ R
6×6

where l(k,k − 1) is the vector from frame Ok to frame O(k−1), and l̃(k,k − 1) ∈ R
3×3 is the

skew–symmetric matrix associated with the cross-product operation.

The spatial velocity of the kth body frame Ok is V(k) = [ω∗(k), v∗(k)]∗ ∈ R
6, where ω(k)

and v(k) are the angular and linear velocities of Ok. With h(k) ∈ R
3 denoting the kth joint axis

vector, H(k) = [h∗(k), 0] ∈ R
1
× R

6 denotes the joint map matrix for the joint, and the relative
spatial velocity across the kth joint is H∗(k)θ̇(k). The spatial force of interaction f(k) across the
kth joint is f(k)= [N∗(k), F∗(k)]∗ ∈ R

6, where N(k) and F(k) are the moment and force components
respectively. The 6 × 6 spatial inertia matrix M(k) of the kth link in the coordinate frame Ok is

M(k) =

(

J (k) m(k)p̃(k)

−m(k)p̃(k) m(k)I3

)

where m(k) is the mass, p(k)∈ R
3 is the vector from Ok to the kth link center of mass, and

J (k)∈R3×3 is the rotational inertia of the kth link about Ok. I3 is the 3 × 3 unit matrix.
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The recursive Newton–Euler equations are [6, 2]































V(N + 1)= 0; α(N + 1)= 0

for k = N · · · 1

V(k) = φ∗(k+ 1,k)V(k+ 1) +H∗(k)θ̇(k)

α(k) = φ∗(k+ 1,k)α(k+ 1)+H∗(k)θ̈(k) + a(k)

end loop































f(0)=0

for k = 1 · · · N

f(k) = φ(k,k − 1)f(k − 1)+M(k)α(k) + b(k)

T(k) = H(k)f(k)

end loop

where T(k) is the applied moment at joint k. The nonlinear, velocity dependent terms a(k) and
b(k) are respectively the Coriolis acceleration and the gyroscopic force terms for the kth link.

The “stacked” notation θ= col
{

θ(k)
}

∈ R
N is used to simplify the above recursive Newton-

Euler equations. This notation [7] eliminates the arguments k associated with the individual links
by defining composite vectors, such as θ, which apply to the entire manipulator system. We define

T = col
{

T(k)
}

∈ R
N V = col

{

V(k)
}

∈ R
6N

f = col
{

f(k)
}

∈ R
6N α = col

{

α(k)
}

∈ R
6N

a = col
{

a(k)
}

∈ R
6N b = col

{

b(k)
}

∈ R
6N

In this notation, the equations of motion are [2, 8]:

V = φ∗H∗θ̇; α = φ∗[H∗θ̈+ a] (1)

f = φ[Mα+ b]; T = Hf = Mθ̈ + C (2)

where the mass matrix M(θ) = HφMφH∗; C(θ, θ̇)= Hφ[Mφ∗a + b] ∈ R
N is the Coriolis term;

H = diag
{

H(k)
}

∈ R
N×6N; M = diag

{

M(k)
}

∈ R
6N×6N; and φ ∈ R

6N×6N

φ = (I − Eφ)−1 =













I 0 . . . 0

φ(2, 1) I . . . 0
...

...
. . .

...

φ(n, 1) φ(n, 2) . . . I













(3)

3



with φ(i, j) = φ(i, i− 1) · · ·φ(j + 1, j) for i > j. The shift operator Eφ ∈ R
6N×6N is defined as

Eφ =



















0 0 0 0 0

φ(2, 1) 0 . . . 0 0

0 φ(3, 2) . . . 0 0
...

...
. . .

...
...

0 0 . . . φ(N,N − 1) 0



















(4)

Using spatial operators one can obtain operator factorizations of the mass matrix and its
inverse as follows:

M = HφMφ∗H∗

= [I +HφK]D[I +HφK]∗

[I +HφK]−1 = I −HψK

M−1 = [I −HψK]∗D−1[I −HψK]

These identifies have been used extensively [2, 8, 9, 7, 3, 10, 11, 12], to develop a variety of
spatially recursive algorithms for forward dynamics, for both rigid and flexible multi-body systems
of arbitrarily specified topologies, as well as closed-form analytical expressions for the inverse of
the mass matrix. The spatial operators ψ, D correspond to a suitably defined spatially recursive
Kalman filter, with the spatial operator K representing the Kalman gain for this filter. We also
refer to these operators ψ, D and K as”articulated” quantities, because of their relationship to the
articulated inertias first introduced by [1].

1.1 Mass Matrix Innovations Factorization

The mass matrix has [?] the alternative factorization

M = (I +HφK)D(I +HφK)∗ (5)

where the outer factors are mutual transposes of each other. The factor (I + HφK) is a square,
invertible matrix whose inverse is

(I+HφK)−1 = I−HψK (6)

involving the articulated Kalman filtering recursion ψ and the shifted Kalman gain operator K.
This implies that the inverse of the mass matrix is

M−1 = (I−HψK)∗D−1(I−HψK) (7)

The identity implies, and is implied by, a tip-to-base Kalman filtering operation followed by a base-
to-tip Bryson smoothing operation. The spatially recursive algorithm that results has been shown
to be equivalent to the articulated inertia forward dynamics algorithm advanced by Featherstone
[1]. The identity also results in an explicitly symbolic expression for the inverse of the mass matrix.
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2 O(N) Forward Dynamics

The expression in Eq. (??) can be broken into the following sequence of intermeidiate quantities:

z = ψ(KT + Pa + b)

ǫ = T −Hz = T −Hψ(KT + Pa + b)

ν = D−1ǫ = D−1[T −Hψ(KT + Pa + b)]

α = ψ(H∗ν+ a) = ψ∗(H∗D−1[T −Hψ(KT + Pa + b)] + a)

θ̈ = ν− K∗α = [I −HψK]∗D−1[T −Hψ(KT

+Pa + b)] − K
∗ψ∗a

(8)

These operator expressions can be converted into recursive computational algorithms without re-
quiring the explicit computation of the component operators. The resultingO(N) forward dynamics
procedure is described in Algorithm ?? and its structure is illustrated in Figure ??.







































































































P(0) = 0, z(0) = 0, T(0) = 0, τ(0) = 0

for k = 1 · · · n

ψ(k,k− 1) = φ(k,k− 1)τ(k − 1)

z(k) = ψ(k,k− 1)z(k− 1) + P(k)a(k) + b(k) + K(k,k− 1)T(k− 1)

P(k) = ψ(k,k− 1)P(k− 1)ψ∗(k,k− 1) +M(k)

D(k) = H(k)P(k)H∗(k)

G(k) = P(k)H∗(k)D−1(k)

K(k+ 1,k) = φ(k+ 1,k)G(k)

τ(k) = I − G(k)H(k)

ǫ(k) = Ť(k) −H(k)z(k)

ν(k) = D−1(k)ǫ(k)

end loop

(9)






























α(n + 1) = 0

for k = n · · · 1

θ̈(k) = ν(k) − K∗(k+ 1,k)α(k+ 1)

α(k) = ψ∗(k+ 1,k)α(k + 1) +H∗(k)ν(k) + a(k)

end loop

This algorithm includes the recursive steps for the computation of the P(.)’s and z(.)’s in
Chapter ??. One modification here is to the z(.)’s part in that now we no longer have the restriction
that the system is at rest. The fact that the computational cost of this algorithm is O(N) follows
from the fact that the computational cost of each of the steps in the above algorithm is of fixed
size, and each of these steps is carried out n times during the course of the algorithm.

As we see here, this forward dynamics algorithm does not require the explicit computation
of either M or C. Indeed it did not require the explicit computation of any of the spatial operators
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either. It illustrates the ease with which the high level operator level manipulations can be used
to establish key identities and results, and at a later stage when the time for computations arises,
these results can be mapped into highly efficient computational algorithms.

3 Constraint Embedding

Let us assume that within the multibody system, we we have a a sub-group of bodies with some
constraints among them. In effect, the true degrees of freedom associated with this sub-group is
less than the number associated with their collective hinge degrees of freedom . Examples of such
local loops include those from geared motors, 4-bar linkages/wishbone suspensions, differentials,
skid-steered wheels (eg. ATRVJr) etc. The question, we address here is the process of embedding
these constraints directly into the dynamics model so that we can continue to use the simpler tree
topology model instead of the more general closed-chain dynamics formulations.

The approach here is to think of replacing the subgroup with a single equivalent link so
that the closure constraints are eliminated from the various recursions. However this proxy link is
no longer a regular link, but instead a aggregate link responsible for appropriately handling the
contribution of the sub-group links to the system dynamics. Note, that the new model is an exact
replacement for the original model and no approximations are involved.

The proposed approach requires that with appropriate renumbering, we can indeed number
the links in the sub-group contiguously. Let us assume that the indexing goes from i to j with i > j.

Define VS = col
{

V(i), · · ·V(j)
}

, θ̇S = col
{

θ̇(i), · · · θ̇(j)
}

. Then we have,

VS = E∗
φS

VS + ES
∗V(i+ 1) +H∗

Sθ̇S

V(j − 1) = φ∗(j, j − 1)BS
∗VS +H∗(j − 1)θ̇(j − 1) (10)

With φS

△
= (I − EφS

)−1, we have

VS = φ∗
SES

∗V(i + 1) + φ∗
SH

∗
Sθ̇S (11)

Note that φS is a subblock of the full φ for the sub-graph links. In effect, we are partitioning
all the spatial operators to create single block entries to represent the aggregate link. Our new
aggregate link for the sub-graph then has spatial velocity defined by VS. Due to the internal
constraints, clearly not all elements of θ̇S are independent. Hence, there exists a (configuration
dependent) mapping XS such that

θ̇S = XSθ̇RS =⇒ H∗
Sθ̇S = H∗

RSθ̇RS where H∗
RS

△
= H∗

SXS (12)

In the above, θ̇RS denotes the truly independent generalized velocity sub-vector of θ̇S. We will
later explore how one might go about computing XS for sub-graphs. Hence, we have

VS = φ∗
SES

∗V(i + 1) + φ∗
SH

∗
RSθ̇RS (13)
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With this setup, all of the inverse and forward dynamics results continue to hold for the new
operators defined by embedding the constraints.

In the forward dynamics algorithm we thus have.

P+(j − 1) = τ(j− 1)P(j − 1)

PS = BSφ(j, j − 1)P+(j − 1)φ∗(j, j − 1)BS
∗ +MS

DS = HRSφSPSφ
∗
SH

∗
RS

GS = PSφ
∗
SH

∗
RSD−1

S

τS = GSHRSφS

P+
S = PS − τSPS

P(i+ 1) = ESP+
SES

∗ +M(i+ 1) (14)

Note that DS has the structure of a mass matrix. This mass matrix is for the sub-graph
multibody system. In this multibody system, link (i + 1) is regarded as the inertial frame, and
so the bodies in the sub-graph directly attached to this link are assumed to be independent base-
bodies attached to the inertial frame. Due to the cuts, this multi-body system has a tree-topology
structure. The mass of the link j includes the articulated body contribution from the sub-tree rooted
at link j− 1. Since DS is a mass matrix, D−1

S can be factored using the Innovations factorization,
i.e.

D−1

S = [I −HRSψSKS]∗D−1

IS[I −HRSψSKS] (15)

The articulated body inertia quantities are ones for just the sub-graph. The D−1

IS is the D−1

quantity associated with just the sub-graph multibody system as described above. Hence,

GS = PSψ
∗
SH

∗
RSD−1

IS[I −HRSψSKS]

τS = PSψ
∗
SH

∗
RSD−1

ISHRSψS = PSΩS

P+
S = PS − PSΩSPS (16)

Note thatΩS
△
= ψ∗

SH
∗
RSD−1

ISHRSψS is the Operational Space Inertia matrix for the sub-graph,
and that PSΩS is a projection operator.

Geared motors

θ̇S = [θmtr(k), θlnk(k)]∗ , θ̇RS = θlnk(k), XS = [µG(k), I]∗,

EφS
= 0, φS = I, ES = AG(i + 1, i), H∗

RS = HG
∗(i), BS = BG(j) (17)

For this case, since φS = I, we can stop at Eq. (14) since the following equations become degen-
erately trivial. Using the definitions in Eq. (17) it can be verified that the expressions we obtain
agree with those from earlier in this chapter.

Planar 4-bar linkage wishbone system

Assume that the link a and c are directly connected to link (i + 1). Link b is the child of
link a and its other end is connected to the end of link c through a hinge. Link j − 1 is connected
via a hinge to link b. The subgraph consists of links a, b and c. We make a cut at the hinge joining
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links b and c to convert the sub-graph into a tree-topology system.

ES = [φ(i+ 1, c), 0, φ(i + 1,a)], EφS
=







0 0 0

0 0 0

0 φ(a,b) 0







φS =







I 0 0

0 I 0

0 φ(a,b) I






, H∗

RS = [X(c), X(b), H(a)]∗, BS
∗ = [0, I, 0] (18)

In the above, X(c) and X(b) are the effective joint map matrices for the b and c matrices that
satisfy the closed-loop wishbone constraint.

Now we look at the problem of obtaining expressions for XS. When the constraint is directly
among the joint angles, as for the geared link/motor case, XS is straightforward to write. When
the constraint is a closure constraint as for the wishbone case, it can typically be expresed as:

Yθ̇S = [Y1, Y2]

[

θ̇S1

θ̇S2

]

= 0 (19)

In the above, the above partition is such that Y1 is square and full rank and so

θ̇S1 = −Y−1

1
Y2θ̇S2 =⇒ XS =

[

−Y−1

1
Y2

I

]

(20)

In the above, Y can be a constraint directly on the generalized velocities, or an indirect constraint
on the link spatial velocities.

tSubgraph

4 Concluding Remarks

This paper has described a constraint embedding approach for the handling of local closure con-
straints in multibody system dynamics. The approach uses spatial operator techniques to eliminate
local-loop constraints from the system and effectively convert the system into tree-topology systems.
Once converted, the host of techniques available - including O(N) forward dynamics algorithms -
are shown to be applicable to such systems.
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