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Abstract— 

This paper presents the JPL-developed Sequential Principal Component Analysis (SPCA) 
algorithm for feature extraction / image compression, based on “dominant-term selection” 
unsupervised learning technique that requires an order-of-magnitude lesser computation and has 
simpler architecture compared to the state of the art gradient-descent techniques.  This algorithm 
is inherently amenable to a compact, low power and high speed VLSI hardware embodiment.  The 
paper compares the lossless image compression performance of the JPL’s SPCA algorithm with 
the state of the art JPEG2000, widely used due to its simplified hardware implementability.  
JPEG2000 is not an optimal data compression technique because of its fixed transform 
characteristics, regardless of its data structure.  On the other hand, conventional Principal 
Component Analysis based transform (PCA-transform) is a data-dependent-structure transform.  
However, it is not easy to implement the PCA in compact VLSI hardware, due to its highly 
computational and architectural complexity.  In contrast, the JPL’s “dominant-term selection” 
SPCA algorithm allows, for the first time, a compact, low-power hardware implementation of the 
powerful PCA algorithm.  This paper presents a direct comparison of the JPL’s SPCA versus 
JPEG2000, incorporating the Huffman and arithmetic coding for completeness of the data 
compression operation.  The simulation results show that JPL’s SPCA algorithm is superior as an 
optimal data-dependent-transform over the state of the art JPEG2000. When implemented in 
hardware, this technique is projected to be ideally suited to future NASA missions for autonomous 
on-board image data processing to improve the bandwidth of communication. 

I. Introduction 
For image compression, techniques based upon the Discrete Cosine Transform (DCT) 
[1], Discrete Wavelet Transform (DWT) as JPEG2000 based transform[2], and 
Karhunen-Loeve Transform (KLT) (or PCA)[3] are among popular transforms that 
provide effective coefficients set based on orthogonal bases that can span the full data set 
for reconstruction.  Only PCA is a data-dependent-transform technique [4-5] that is used 
to find the most representable basis of the given data (not fixed transform), and is based 
on the second-order statistics.  This implies that PCA is also the most optimal linear 
transform compared with DCT and DWT as concluded by the inventor of the wavelet 
transform, Daubechies [6].   
 
Principal Component Analysis (PCA), as a feature based approach [7-8] to data-
dependent transform for data compression, is quite effective; however, its computational 
complexity O(N3) (N2 is the size of the covariance matrix) [3] remains a challenge in 
implementing the PCA in software, and its architectural complexity is the inhibiting 
factor in implementing it in a dedicated hardware. 
    
A better alternative, the Sequential PCA has appeared recently with promising results [8-
15]. The computational complexity in the sequential PCA still holds it back from 
becoming effective when implemented in software, however, architecturally, the 
sequential PCA-based gradient descent learning technique provides a simpler and 
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implementable hardware solution.  However, it suffers in learning convergence for 
consecutive principal vectors when previous principal components are extracted and 
removed from the energy function [16-17].  The left energy function that is continuously 
used to extract the next component is reduced, from which the learning based on gradient 
search will require longer time duration to settle in the shallow energy attractor as 
compared with the previous ones.  This obstacle discourages a hardware implementation 
for this technique.  
In this study, we have focused only between the state of the art-JPEG2000 and PCA 
transform and find the optimal transform between two of them. 

II. Technical approach 
Mathematical formulation  

At JPL, we have developed an optimal PCA learning technique [7-8] which serves two 
purposes: 1) simplified hardware implementation, specially in VLSI as a System-On-A-
Chip approach; 2) fast and reliable convergence due to simplifying computation 
technique namely Dominant Component Gradient and Dynamic Energy Learning Rate 
(DOGDYN) as compared with counterpart gradient descent.  Furthermore, our new 
technique requires much less computation and has optimized architecture to be more 
suitable for hardware implementation as a real time adaptive learning system. 
We adapt the objective function [12] below: 
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where m is the number of principal components and k is the number of measurement 
vectors.   is a measured vector at time t and wtx i is the ith principal vector (or eigen 
vector).   
With  
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Based on Ji(wi), wi is extracted as a principal component vector when Ji(wi) is minimized.  

a) PCA learning technique 
From equation (2), the learning algorithm can be processed sequentially for each 
principal vector that is based on the gradient descent as follows: 

ij

t
i

T
ii

t
i

ij

i
ij w

ywwy
w
Jw

∂

−∂
−=

∂
∂

−=∆
)(

2

      (3) 

From equation (3), only the dominant term [7] is used; the weight update can be obtained 
as follows:  
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E0 is the initial energy when the network starts learning and Ei-1 is the energy of the (i-1)th 

extracted principal component.  This learning approach is amenable to a simple hardware 
architecture by cascading the cell learning building block. 
 

b) Cell learning architecture 
From equation (4), the learning architecture is realized as in Figure 1.   
 
 
 
 
 
 
 
 
 

ijŷ  
 
Figure 1: Single New PCA learning unit.   
 

In Figure 1, the input data yij (i is the index of the component vector and j is the index of 
a value in the component vector i) is as defined in the equation (2).  The Σ box provides 
the inner product between vectors y and wi.  The result of the Σ box operation will again 
be summed with the previous multiplication of yij

t and wij and its output will be 
multiplied with the learning rate ζ before updating to wij as described in equation (4).  
This single unit can be cascaded into n units to obtain a PCA learning vector and this 
learning vector can be cascaded to obtain as many parallel eigenvector extractors as 
needed for each application. 

III. Applications and Results 
We now investigate the lossless compression based on the JPEG2000 transform and 
compare it to PCA-based transform.  Based on compactness of the histogram it will allow 
us to interpret the optimal one even for the lossy compression as well. 
For PCA transform, we used a 64-pixel (8x8 pixel array) as a basic vector size for this 
work.  For example, the 256x256 pixel image can be transformed into the 1024x64 
matrix and the total number of principal component analysis vector is 64.   
For JPEG2000 based transform, we use 3-stage DWT using Daubechies in MATLAB. 
We are focusing on two output results (shown in yellow box in Figure 2): histogram and 
compressed data of each technique.   

• The histogram will reveal the effectiveness of the transform via its energy 
distribution by which regardless of the coding technique the compression factor 
can be correlated for comparison purposes. 
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• The compressed data which is based on two coding techniques: Huffman and 
Arithmetic demonstrates its real results. 

The data flow is shown in Figure 2 below: 
 
 

 
 
    Figure 2. Data flow of our study. 
 
We have used seven gray scale images for this comparison study which are shown in 
Table I below: 
Table I: A list of the images and their sizes which are used in this study 
 
 
 
 
 
 
 
 
 
 
Due to the space constraints, we are only presenting the details of two images: baboon 
and airport and we are providing the only results of the rest of images.  
 
1. Baboon
Figure 3a is a baboon image and the histogram of JPEG2000 based transform and PCA 
based transform are shown in Figure 3b and 3c, respectively.  Obviously, the histogram 
indicated that PCA based transform is much more compact than the JPEG2000 based 
transform. 
These results have demonstrated that the PCA based transform is more optimal than 
JEPG2000 based transform and it agreed with the theoretical prediction (PCA is data 

 Size  
Lena 256x256 
Baboon 512x512 
Tank1 512x512 
Tank2 512x512 
Tank3 512x512 
Airplane 1024x1024 
Airport 1024x1024 

 Arithmetic 
or Huffman  Raw data PCA or 

DWT 
Quan
-tizer Encoding  

Arithmetic 
or Huffman  
Decoding  

Histogram 
result 

De-quantizer 
 

Inverse 
PCA or 
DWT 

Constructed 
image Compressed data 

Reconstr
ucted 
image  
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dependent transform which is more optimal and effective than JPEG2000 known as a 
fixed transform). 
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   (3b)      (3c) 

Figure 3: Original baboon image and histogram with quantized data after the 
transform.  
3a) Original Baboon image; 3b) JPEG2000 based technique; and 3c) PCA based 
technique 

 
2. Airport 
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Likewise, for the airport image shown in Figure 4a, PCA based transform (Figure 4c) has 
more advantage in compression than the JPEG2000 based transform which is in Figure 
4c. 
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   (4b)      (4c) 

 
Figure 4: Lossless compression of airport (1024x1024) and histogram of airport 
quantized data after the transform.  
4a) Lossless image; 4b) JPEG2000 based technique; and 4c) PCA based 
technique 
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A summary of our simulation results is given in Table II below: 
Table II: The comparison of simulation results between PCA based and JPEG2000 based 
transforms 

 JPEG2000 PCA  Ratio Cpca/CJpeg
 Huffman Arithmetic  Huffman Arithmetic Huffman Arithmetic 
Compressed image-
Elaine (in bytes) 
 
Compression ratio 

46590 
 
1.4067 

47653 
 
1.3753 

24226 
 
2.7052 

25661 
 
2.5539 

 
 
1.9231 

 
 
1.8570 

Compressed image-
Baboon (in bytes) 
 
Compression ratio 

205709 
 
1.2743 

206652 
 
1.2685 

122923 
 
2.1326 

126591 
 
2.0708 

 
 
1.6735 

 
 
1.6325 

Compressed image 
Tank1 (in bytes) 
Compression ratio 

187718 
 
1.3965 

189618 
 
1.3825 

96950 
 
2.7039 

99904 
 
2.6240 

 
 
1.9362 

 
 
1.8980 

Compressed image 
–Tank2 (in bytes) 
 
Compression ratio 

199249 
 
1.3157 

200989 
 
1.3043 

 108233 
 
2.4220 

112415 
 
2.3319 

 
 
1.8408 

 
 
1.7879 

Compressed image-
Tank3 (in bytes) 
 
Compression ratio 

191601 
 
1.3682 

192810 
 
1.3596 

98305 
 
2.6666 

104881 
 
2.4994 

 
 
1.9490 

 
 
1.8383 

Compressed image-
airplane (in bytes) 
 
Compression ratio 

696518 
 
1.5055     

699014 
 
1.5001    

  299536
 
3.5007    

287358 
 
3.6490 

 
 
2.3253 

 
 
2.4325 

Compressed image-
airport  (in bytes) 
 
Compression ratio 

753092 
 
1.3924     

752522 
 
1.3934    

381675 
 
2.7473    

380588 
 
2.7551 

 
 
1.9731 

 
 
1.9772 

 

IV. Discussion 
Obviously, PCA based transform is the most optimal one in mean squared sense as stated 
in the previous report [4] and demonstrated in this paper (via histogram); however, it is a 
computational power intensive with unfriendly hardware approach.  JPL has developed a 
real time adaptive PCA technique which satisfies the constraints such as fast computing 
and implementable in Very Large System Integration (VLSI) hardware. 

V. Conclusions 
As demonstrated earlier, the PCA based transform is advancement over JPEG200 to 
improve compression ratio for lossless and lossy compression.  Moreover, the PCA is a 
feature based approach which can be even more practical not only for data compression, 
but also for target detection and recognition.  
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