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Abstract—Spacecraft processors and memory are subjected to
high radiation doses and therefore employ radiation-hardened
components. However, these components are orders of magnitude
more expensive than typical desktop components, and they lag
years behind in terms of speed and size. We have integrated
algorithm-based fault tolerance (ABFT) methods into onboard
data analysis algorithms to detect radiation-induced errors,
which ultimately may permit the use of spacecraft memory
that need not be fully hardened, reducing cost and increasing
capability at the same time. We have also developed a lightweight
software radiation simulator, BITFLIPS, that permits evaluation
of error detection strategies in a controlled fashion, including
the specification of the radiation rate and selective exposure of
individual data structures. Using BITFLIPS, we evaluated our
error detection methods when using a support vector machine to
analyze data collected by the Mars Odyssey spacecraft. We found
ABEFT error detection for matrix multiplication is very successful,
while error detection for Gaussian kernel computation still has
room for improvement.

I. INTRODUCTION AND OBJECTIVES

Onboard data analysis is a powerful capability now being
adopted for current and future spacecraft missions. Rather
than functioning as remote data collectors that simply stream
information back to Earth for interpretation, spacecraft can
now determine the relative priorities of different observations
or generate compact summaries of large data sets, thereby
maximizing the use of limited bandwidth. They can even
detect and respond to short-lived events (e.g., dust devils [1])
that would otherwise be noticed only after they ended, if at
all.

However, one of the major challenges to increasing the
computational responsibility of a spacecraft is the radiation
environment in which it operates. Bit errors in memory and
altered computational results can all affect the output of
an onboard analysis system, potentially resulting in the loss
of data or a missed detection. Much work has gone into
developing radiation-hardened processors and memory as well
as software-based strategies for detecting and recovering from
such errors. A common hardware technique for achieving
radiation protection for SRAM is Triple-Modular Redundancy
(TMR), in which three identical components perform the same
memory operations and then vote on the result [2]. Software-
based strategies include error detection and correction (EDAC)
codes, which employ a “memory scrubber” process to run
continually in the background to correct errors [3], and
algorithm-specific tests to detect when an error has occurred

(e.g., [4], [5]). Most of the latter has focused on general
purpose computing.

In this work, we combine software-based error detection
with onboard data analysis algorithms. We focus on the
detection of computational errors caused by radiation-induced
errors in onboard memory. Our first contribution is a software
radiation simulator (BITFLIPS) that permits the specification
of the radiation-induced bit error rate as well as precise control
over which parts of memory are exposed. Second, we have
adapted software-based error detection methods for use by
support vector machines (SVMs), one of the the most widely
used machine learning methods today. We also propose a
new checksum-based strategy for detecting errors in Gaussian
kernel computation, needed by SVMs. Finally, we tested these
methods on data collected by the Mars Odyssey spacecraft.

II. RADIATION SIMULATION: BITFLIPS

While radiation can cause errors both in spacecraft memory
and in the processor, we focus on modeling and protecting
against the former. The CPU is such a critical component to
the entire spacecraft, not just the data analysis system, that it
is likely to be radiation-hardened for the foreseeable future.
However, spacecraft memory could potentially tolerate less
hardening, if the software itself can detect and compensate for
errors. The use of less-hardened memory components could
greatly decrease the cost and increase the capability of a
mission. Therefore, this seems the most realistic and profitable
arena in which to advance onboard error detection. Further,
even radiation-hardened memory experiences the occasional
error, so the ability to detect and recover from those errors is
useful even with more reliable components.

Radiation can cause a variety of errors in memory, include
flipped bits, stuck bits, and damaged components. Little can
be done in the latter two cases, but flipped bits (single-event
upsets or SEUs) are transient effects for which recomputation
can be a reasonable solution.

We designed and implemented a lightweight SEU software
simulator, BITFLIPS (Basic Instrumentation Tool for Fault
Localized Injection of Probabilistic SEUs), that is built on
the Valgrind debugger/profiler [6]. BITFLIPS injects errors in
a reproducible fashion and permits the specification of the
SEU rate as well as which program variables to expose and
when. We used BITFLIPS to test the performance of our
error detection algorithms at a wide range of error injection



rates, using receiver operating characteristic (ROC) curves to
determine the trade-offs between detection and false alarm
rates at various detection thresholds.

III. RADIATION DETECTION

Our approach to detection of radiation-induced errors is
based around postcondition checks on numerical subroutines.
If the operation was carried out successfully, certain rela-
tions between the routines inputs and its computed outputs
should hold true; where they do not, an error is indicated.
For example, when performing the matrix inverse operation
B = A~!, we expect AB = I. Due to the limitations of
finite-precision arithmetic, most often postconditions will not
hold true exactly; consequently we test whether they are true
within some error bound.

In general, it is desirable for such postcondition checks to
consume considerably less computational resources than the
original computation. Otherwise, it would be more direct and
informative to simply repeat the computation and compare the
results. One way to avoid this sort of exhaustive check is to
employ a probe vector w. Consider a linear operation with
factorable inputs and outputs:

InLy---L,=RiRy--R,. (1)

Since an error in one element will often fan out across the
result matrix as the computation progresses, we can use w to
compute checksum vectors that are compared instead:

L1L2"'pr;R1R2"'wa' 2)

This method, known as result-checking (RC), was used by
Freivalds [7] to check multiplication, and was analyzed in
a general context by Blum and Kannan [8]. This idea is
also the basis of the checksum augmentation approach of
Huang and Abraham [4] under the name algorithm-based fault
tolerance (ABFT) (for a comparison of RC and ABFT, see
[9]). Both approaches have since been extended by a number
of authors to various linear decompositions [10]-[12], the
FFT [13], [14], and other numerical operations. Boley et.
al. [15], [16] explored fault location and correction using
this method, as well as the use of multiple probe vectors.
The effects of multiple faults, including those that occur
during the postcondition test itself, have been explored through
experiment [17]. Previous work has also explored the setting
of error bounds for checksum tests [5], [11], [18].

In this work, we have applied this sort of algorithm-based
fault tolerance approach to support vector machines (SVMs),
one of the most widely used machine learning methods
today. SVMs are currently in use onboard the EO-1 (Earth
Observing 1) spacecraft to perform pixel-level classification
of hyperspectral images [19] and can also be used to perform
regression, such as estimating the dust and water ice content
of the Martian atmosphere [20].

A. Support Vector Machines

Support vector machines [21] infer a hyperplane to separate
labeled training data into two distinct classes. The hyperplane
can then be used to classify new items. Arbitrarily complex
decision boundaries (not just linear ones) can be created by
mapping the input data via a kernel function into a higher-
dimensional space in which the hyperplane is constructed.
SVMs have also been extended to apply to regression prob-
lems [22], in which the goal is to estimate a real-valued
quantity rather than assigning a discrete class to a new item.

Given a data set of n items X = {x1,...,2,}, where each
x; € R% is a d-dimensional feature vector, and a vector y such
that y; € {+1, —1} is the label for x;, an SVM is defined by
n + 1 parameters: a weight «; for each z; and a bias term, b.
Each x; with a non-zero weight «; is termed a support vector,
and it is only these items that influence the classification of
new data. New items are classified as follows:

f(x) =sign(}_ cuyi(z - ) +b). 3)
i=1
Let s be the number of support vectors, which we will refer
to as z; instead of x;, obtaining:

flx) = sign(z a;y;(x - zj) +b), )
j=1

If the two classes are not linearly separable, the dot product
(x - z;) can be replaced by a kernel function K(x, z;), which
is equivalent to using some mapping ¢(x) to transform each
z (and 2) into a feature space with more (possibly infinite)
dimensions and computing the dot products there. After adding

the kernel function, the SVM decision function becomes:

flx)= sign(z o,y K(z, z;) + b). (5)

j=1
Common choices for kernel functions are polynomials and
Gaussian radial basis functions. The Gaussian kernel is defined

as
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where v = 202 and o is the width of the kernel, or the standard
deviation of values.

To train the SVM, we must compute values for « and b,
which are usually obtained by solving the following quadratic
programming problem:

minimize: % Zu ;oYY K(2g, w5) — Zz @
subject to: 0<a; <C,) iy =0,

where C is a regularization parameter.

A similar derivation is obtained when using SVMs for
regression, with the addition of a tolerance parameter €, which
specifies how tightly the learned model’s predictions must fit to
the true y labels in the training data. In addition, each support
vector z; has two Lagrange multipliers, a; and .

flz) = Z(aj —aj)K(z,2z;) +b. (7



B. Algorithm-Based Fault Tolerance

To create a fault tolerant SVM method, we identified two
subroutines that occupy the majority of the running time
for the algorithm: matrix multiplication and Gaussian kernel
computation. Each subroutine has a testable postcondition and
is thus amenable to the ABFT approach.

1) Matrix Multiplication: Given a linear kernel, all of the
kernel values can be computed via matrix multiplication:

K=XZ (8)

where K is the kernel matrix, X € R™*? is the matrix of
data to be classified, and Z € R¥** is the matrix of support
vectors (s < n). Note that if X is the training data set, then
m = n, but more generally m can be any size for a new
data set. We replace all calls to K(x;,z;) with K; ;. Since
the SVM relies on this matrix being accurately computed, any
errors that occur in the creation of K may result in errors in
the SVM output (classification or regression).

Our goal is to determine whether or not an error occurred
during the computation of K from X and Z. We need to apply
a test to determine whether K = X Z but more cheaply than
doing a complete recomputation of the matrix multiplication.
Therefore, let ww = Zw for some arbitrary vector w € R** L (in
our tests, we used a w vector of all ones). Then by substitution,
Kw = XZw = Xw. To determine whether K is correct, we
simply compare Xw to Kw, checking m values rather than
all m x s values in K. We define the relative error size € as
the maximum difference between these values:

= ZlKw— Xl ©

subject to a normalization factor C' = ||w]|eo||X||co||Z|]co
that compensates for potential large variations in the values
of the input matrices. Xw is computed prior to the matrix
multiplication, and Kw is computed afterwards. If € exceeds
a pre-specified tolerance, then an error is flagged.

2) Gaussian Kernel: Computing the kernel matrix via ma-
trix multiplication is sufficient for linear kernels. However, for
Gaussian kernels, an additional operation is needed. First, we
compute the linear kernel K™ = X Z as above. Then we
update the kernel values as follows:
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We are concerned with whether an error occurs during the
computation of the exponential value. To do this, we utilize a
postcondition that compares the exponentiation of the sum of
input values to the product of their exporllﬁntiations Let T be
a matrlx with elements ¢;; = _ Jmall® 2B 12 1 SO Krbf

. Then the checksum we calculate for column J of the
kernel matrix before performing the individual exponentiations
is

1
— o 2 tid
cj—em i .

(1)

Normalizing the sum by m, the number of items being ana-
lyzed by the SVM, guarantees that the calculation will avoid
underflow if e~!l%ill is greater than the machine precision.

We then compute K;; = elii as usual. Afterwards, we
compute the second checksum:

& = [,

%

12)

where once again we introduce a corrective term to avoid
underflow. If no error has occurred, then c¢; = ¢;,Vj. Again,
we calculate an error size as the maximum difference between
the two values:

1 .
e = Glle = elloo, (13)
where the normalization factor C' = ellTll~/"As with the
matrix multiplication, if € exceeds a pre-specified tolerance,
then an error is flagged. Since we compute a total of 2m
checksum values, this is cheaper than recomputing all mn

entries of K.

IV. EXPERIMENTAL RESULTS
A. Data Sets

We evaluated the ABFT error detection methods on both
classification and regression tasks. The classification task
comes from the “letter” classification data set provided by the
UCI machine learning repository [23]. We used data for the
letters A and B to generate a binary classification problem.
Each letter was originally recorded as a rectangular matrix
of black and white pixels, then converted into 16 numerical
attributes that capture statistical information about the shape of
the letter. We trained models on 100 randomly selected items
from the full data set and tested on multiple disjoint sets of 100
randomly selected items. For this data set, we used a Gaussian
kernel (v = 0.05) and a regularization factor C value of 0.8.
These hyperparameters were selected after a cross-validation
search on held-out data.

The regression task uses spacecraft data and has been
previously identified as a useful onboard data analysis problem
in a high-radiation environment (Mars orbit). The data comes
from the THEMIS instrument on the Mars Odyssey spacecraft.
THEMIS is the Thermal EMission Imaging System, a camera
that records observations at visible (VIS) and infrared (IR)
wavelengths [24]. We previously developed onboard algo-
rithms for analyzing the IR data to detect thermal anomalies,
track the position of the polar cap edges, and estimate aerosol
(dust or water ice) content in the atmosphere [20]. That
evaluation assumed error-free computation. Here, we used the
water ice opacity estimation task, which relies on an SVM, as
the computation experiencing radiation.

The IR data consists of 8 distinct wavelength bands, with a
spatial resolution of 100 meters per pixel. Each image is 320
pixels (32 km) wide and a variable number (3600 to 14352) of
pixels long, divided into 256-line “framelets”. Each item in the
data set represents a single framelet; the feature values are the
average pixel value for each wavelength, across the framelet,
and the label for item is the water ice content (opacity) of the
atmosphere observed in that pixel. The full data set contains
223,690 items. For each SVM we trained on this data, we used
a Gaussian kernel (v = 0.1) with a C value of 50. Since this
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Fig. 1.
multiplication test and RBF is the Gaussian kernel test.

is a regression problem, we must also specify the maximum
error tolerance for the training process (¢ = 0.01).

B. Methodology

One aspect of this work that distinguishes it from previous
work is the incorporation of ABFT checksums to detect
errors caused by SEUs in memory, rather than processor
faults. We used the BITFLIPS radiation simulator to track all
data structures and inject SEUs at a specified rate. For both
classification and regression, we conducted several trials and
measured error detection performance in terms of detection
rate

TP
D= TP+ FN a4
and false alarm rate
FP
= FP+TN’ as)

where T'P is the number of true positives, F'P is the false
positives, T'N is the true negatives, and F'N is the false
negatives.

We focused on detecting end-result errors in the output of
the SVM, rather than detecting each time an SEU occurred.
That is, to determine whether an error had occurred (and there-
fore should have been detected), we compared the output of the
SVM that was obtained when running without SEUs injected
to that obtained when SEUs were injected. If they were the
same, no error occurred. Note that there may still have been
SEUs happening, but the SVM’s natural tolerance for a low
level of radiation prevented an error from occurring in the
output. If detecting an error triggers rollback or recomputation,
it is appropriate that this should only be done if the SEUs had
an impact on the analysis result.

For both classification and regression, we first generated 100
distinct SVMs, each trained on a different subset of 100 items.

0.2 0.4 0.6 0.8 1
False Alarm Rate

(b) Water Ice Regression (SEU rates: 5 x 10~8 (MM) and 1 x 10~ (RBF))

Error detection results when running BITFLIPS with the specified error rates, for both classification and regression tasks. MM is the matrix

We then tested each model on a disjoint set of 100 test items,
running it with and without SEUs injected. When SEUs were
being injected, we exposed the X, Z, and K matrices.

C. Results

We selected SEU injection rates that resulted in a substantial
number of errors, but also several error-free runs, so that we
could evaluate both detection and false alarm rates. For these
data sets, the SEU rate used for the letter classification task
was 5.0 x 1072 SEUs per kB per second. This resulted in
erroneous output for the matrix multiplication routine in 44
of 100 runs and for the Gaussian kernel computation in 79 of
100 runs. For water ice opacity regression, there was no single
SEU rate that yielded both erroneous and error-free runs for
both matrix multiplication and the Gaussian kernel. Therefore,
we report results for 5.0 x 10~® (matrix multiplication) and
1.0 x 10~ (Gaussian kernel). For comparison, commercial
SRAM in low-Earth orbit experiences about 1.2 x 10~ SEUs
per kB per second; radiation-hardened SRAM experiences up
to 1.2 x 10712,

Figure 1 shows the results for both classification and regres-
sion. Error detection for matrix multiplication on both tasks is
very good (e.g., achieving 70% detection with no false alarms
for letter classification). For onboard analysis, however, we
are willing to tolerate some false alarms, if it will increase the
detection rate and therefore the reliability of the SVM results.
We exceeded 90% detection with a 58% false alarm rate for
letter classification and a 42% false alarm rate for water ice
opacity regression.

The results for detecting errors in the Gaussian kernel
computation are less impressive, indicating that significant
room exists for improvement in tackling this problem. To
achieve 90% detection, we incur an 80% false alarm rate for
letter classification and a [x] false alarm rate for water ice
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opacity regression. One fundamental challenge of detecting
errors in the computation of an exponential function is that a
tiny error in « can be greatly magnified in the result of e*. For
the purposes of Gaussian kernel computation, we are raising
e to negative powers (see Equations 10 and 11). While the
regular computation of the kernel value K**f may succeed, the
checksum c; raises e to the sum of m t;; values, all of which
are negative. It is possible for this calculation to underflow,
despite the % normalization term. A different decomposition
to compute a characteristic checksum could improve over the
results we obtained with our current method.

The results of this investigation may also suggest that the
use of Gaussian kernels is not recommended for onboard data
analysis, due to their greater sensitivity to radiation effects (or
at least, our current ability to detect and recover from those
errors).

Figure 2 shows detection results obtained when different
SEU rates were specified for letter classification. For the ma-
trix multiplication test (Figure 2a), we found better detection
results in the presence of more radiation as compared with the
lower rate. At an SEU rate of 1.0 x 1078, 85% of errors were
detected with no false alarms, and 90% detection was achieved
with only 53% false alarms. This is likely because although
we seek only to detect whether at least one error occurred, at
higher SEU rates multiple errors could strike, increasing the
likelihood that at least one causes the error size e to exceed
the detection threshold. Increased detection at higher radiation
rates is a useful attribute for onboard analysis systems. In
contrast, the Gaussian kernel test results did not vary much
when different SEU rates were specified (Figure 2b).

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have described how algorithm-based fault
tolerance (ABFT) methods can used in the context of onboard
data analysis methods to increase their robustness in the
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Error detection results when running BITFLIPS with different specified error rates, for the letter classification task.

presence of radiation-induced errors. We focused on errors
that occur in memory (single-event upsets or SEUs) and later
affect the analysis results provided by support vector machines
(SVMs), a technology now being adopted for use onboard
spacecraft both for classification and regression.

We also described BITFLIPS, a lightweight software radi-
ation simulator that we developed. It provides precise control
over both the simulated SEU injection rate as well as which
elements of memory are exposed to the radiation. We believe
this work to be the first effort to combine ABFT methods with
SVMs and the first to test their combined capabilities in such
a simulator.

The techniques we proposed for detecting errors caused by
SEUs rely on the computation of checksum values before
and after executing a critical calculation, such as matrix
multiplication or exponentiation for a Gaussian (RBF) kernel.
Errors are detected when the difference between the expected
and actual checksums differ by more than a threshold amount.

Our results indicate that onboard data analysis methods can
successfully detect radiation-induced errors that strike during
the critical matrix multiplication step needed to compute the
kernel matrix for a support vector machine. Interestingly,
detection improved at higher SEU injection rates, as compared
to lower rates. Less reliable results were obtained with the
checksum we developed for detecting an error in the ex-
ponentiation process; this remains an open area for further
investigation.

Given the ability to detect errors, a clear next step is to add
a rollback-and-recompute capability. While these experiments
sought only to test the ability to determine whether any error
had occurred during computation, it would be even more
useful to identify which of the output values required recal-
culation. For matrix multiplication, the checksum is computed
as the max (infinity norm) over a vector of m values, one



per item being classified; (Kw — Xw) € R™*!. Identifying
which of these m items violates the error threshold provides
guidance in re-running the matrix multiplication, this time with
only a subset of X rather than the full matrix. This is much
more efficient than blindly recomputing K = XZ whenever
any error is detected. For Gaussian kernel computation, the
checksums are constants rather than vectors, so they can only
provide a coarse level of error information. Ultimately, we
aim to provide error-detecting and correcting methods as a
robust alternative to current onboard machine learning and data
analysis efforts.
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