
Disruption Tolerant Networking Flight Validation Experiment on NASA’s EPOXI
Mission

Jay Wyatt, Scott Burleigh, Ross Jones, Leigh Torgerson, Steve Wissler
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive

Pasadena, California, 91109
{E.Jay.Wyatt, Scott.C.Burleigh, Ross.M.Jones, Jordan.L.Torgerson, Steven.S.Wissler}@jpl.nasa.gov

Abstract— In October and November of 2008, the Jet
Propulsion Laboratory installed and tested essential
elements of Delay/Disruption Tolerant Networking (DTN)
technology on the Deep Impact spacecraft. This experiment,
called Deep Impact Network Experiment (DINET), was
performed in close cooperation with the EPOXI project
which has responsibility for the spacecraft. During DINET
some 300 images were transmitted from the JPL nodes to
the spacecraft. Then they were automatically forwarded
from the spacecraft back to the JPL nodes, exercising DTN's
bundle origination, transmission, acquisition, dynamic route
computation, congestion control, prioritization, custody
transfer, and automatic retransmission procedures, both on
the spacecraft and on the ground, over a period of 27 days.
All transmitted bundles were successfully received, without
corruption. The DINET experiment demonstrated DTN
readiness for operational use in space missions. This
activity was part of a larger NASA space DTN development
program to mature DTN to flight readiness for a wide
variety of mission types by the end of 2011. This paper
describes the DTN protocols, the flight demo
implementation, validation metrics which were created for
the experiment, and validation results.

Keywords- DTN, EPOXI, networking, protocols

I. INTRODUCTION

Disruption-Tolerant Networking (DTN; a.k.a. Delay-
Tolerant Networking) is a communication architecture that
is designed to provide automated data communication
services in networks characterized by frequent and lengthy
episodes of partitioning, lengthy signal propagation delays,
and/or heterogeneity in protocol support below the
application layer.

Research into DTN has culminated in the publication of
Internet experimental RFCs (Requests For Comments)
describing the overall architecture of DTN technology (RFC
4838), the core DTN Bundle Protocol (RFC 5050), and the
Licklider Transmission Protocol for automatic
retransmission of data lost in transit (RFC 5326), with
others in progress. Although this research has been

substantially motivated by its applicability to such problem
domains as sensor-based networks with scheduled
intermittent connectivity, terrestrial wireless networks that
cannot ordinarily maintain end-to-end connectivity, and
underwater acoustic networks, the original driver for the
research was the emerging need to provide capable network
services in support of space flight operations.

Historically, communications in spacecraft mission
operations have been managed by the spacecraft team.
Transmission and reception episodes are individually
configured, started, and ended by command. Reliability
over deep space links is achieved by management: on loss
of data, we command retransmission. Even the relaying of
data from Mars rovers through Mars orbiters is managed:
we send transmission commands to the rovers, and later we
send transmission commands to the orbiters that received
the data from the rovers.

An alternative approach would be to implement an
automatic space data communications network, similar in
capability to the Internet. The Internet protocols
themselves, however, are generally unsuitable for this
purpose because they rely on timely and continuous end-to-
end delivery of data and acknowledgments: communication
links to and from spacecraft are often subject to interruption
and, for deep-space missions, signal propagation delays may
be very large.

DTN is an alternative network architecture that is designed
to address these problems. DTN runs as an “overlay” above
the Internet where possible, but it runs directly over link-
layer protocols, taking the place of the IP network protocol
where necessary. That is, a TCP connection within an IP-
based network may be one “link” of a DTN end-to-end data
path; a deep-space R/F transmission may be another.
Reliability is achieved by retransmission between relay
points within the network, not end-to-end retransmission.
There is no reliance on end-to-end acknowledgment. Route
computation has temporal as well as topological elements,
e.g., a schedule of planned contacts. Lengthy signal
propagation delays don’t compromise the accuracy of route
computation. Forwarding at each router is automatic but not
necessarily immediate: store-and-forward rather than “bent

pipe”, so link interruption doesn’t prevent the eventual
delivery of data.

Our discussion of flight validation results will rest on an
understanding of the following features of the DTN
architecture:

• Priority. The forwarding of DTN network protocol data
units, termed bundles, is informed by user-assigned
priority markings: bundles may be assigned High,
Medium, or Low priority, with higher-priority bundles
forwarded in preference to lower-priority bundles
wherever forwarding opportunities are constrained.

• Dynamic Routing. Traffic flow within a delay-tolerant
network, as in the Internet, is more efficient if routers
can automatically select different forwarding paths at
different times, depending on nodes’ anticipated ability
to forward data on a timely basis. Note, though, that
Internet techniques for route computation are not well
suited for operating a network over interplanetary
distances where changes in topology may occur more
rapidly than they can be reported.

• Automated Forwarding. Automatic initiation and
termination of data transmission as transmission
opportunities arise is a core capability of DTN.

• Custody Transfer. Performing retransmission of lost
data at relay points rather than end-to-end enables each
relay point along a bundle’s end-to-end path that
receives the bundle to take custody of it, i.e. to relieve
the prior retransmission point (source or relay) of any
further responsibility for transmitting the bundle.

• Delay Tolerant Retransmission. The need to retransmit
lost data is normally signaled by the receiver, upon
detection of a gap in the received data. But in the event
that insufficient data is received to enable gap detection
– or in the event that the signal itself is lost in
transmission – the only way to initiate retransmission is
to detect the lapse of a timer prior to arrival of a
positive acknowledgment. Computing accurate
intervals for retransmission timers is especially
challenging in a delay-tolerant network, as link
interruption may defer transmission of
acknowledgments. Human operators readily compute
these intervals based on their knowledge of contact
schedules; DTN must do the same in order to automate
retransmission.

• Flow and Congestion Control. Automated forwarding
and retransmission rely on the availability of data
storage resources, so rates of data transmission and
reception must be controlled in order to prevent
exhaustion of those resources and failure of network
operations. A fully automated network must
accomplish this resource conservation automatically.

Interplanetary Overlay Network (ION) is an implementation
of the DTN architecture that is specifically intended to be
usable for interplanetary communications. As such, a key
milestone in its development has been validation in
operation on-board a functioning spacecraft. The Deep
Impact Network experiment provided an opportunity not
only to validate the software in flight but also to apply
metrics by which the operational suitability of the software
could be objectively assessed.

II. DINET OVERVIEW

The Deep Impact Network Experiment (DINET) was a
technology validation experiment of JPL’s implementation
of Delay-Tolerant Networking (DTN) protocols. The
DINET development produced a version of JPL’s
implementation of Delay-Tolerant Networking protocols in
flight and ground software that is now at technology
readiness level (TRL) 8. The DINET software (SW) is of
sufficient quality that future flight projects can easily use it
at low risk. DINET was implemented on the Deep Impact
spacecraft and was closely coordinated with the EPOXI
project. DINET operations were performed during the
EPOXI spacecraft team “stand down” after Extrasolar
Planet Observation and Characterization (EPOCH)
operations and before the start of development for DIXI
operations (i.e., during October and November 2008).
DINET developments and operations were on a non-
interference basis with EPOXI to the maximum extent
possible. DINET was sponsored by NASA Office of Space
Operations / Space Communications and Navigation
(OSO/SCAN) via JPL DSN office Space Networking and
Mission Automation. The total cost of DINET was $1.4M,
which included support for the EPOXI spacecraft team and
their contractor Ball Aerospace and Technology
Corporation.

III. DTN IMPLEMENTATION

A DTN implementation intended to function in an
interplanetary network environment – specifically, aboard
interplanetary research spacecraft separated from Earth and
one another by vast distances – must operate successfully
within two general classes of design constraints: link
constraints and processor constraints.

Link constraints

All communications among interplanetary spacecraft are,
obviously, wireless. Less obviously, those wireless links
are generally slow and are usually asymmetric.

The electrical power provided to on-board radios is limited
and antennae are relatively small, so signals are weak. This
limits the speed at which data can be transmitted intelligibly

from an interplanetary spacecraft to Earth, usually to some
rate on the order of 256 Kbps to 6 Mbps.

The electrical power provided to transmitters on Earth is
certainly much greater, but the sensitivity of receivers on
spacecraft is again constrained by limited power and
antenna mass allowances. Because historically the volume
of command traffic that had to be sent to spacecraft was far
less than the volume of telemetry the spacecraft were
expected to return, spacecraft receivers have historically
been engineered for even lower data rates from Earth to the
spacecraft, on the order of 1 to 2 Kbps.

As a result, the cost per octet of data transmission or
reception is high and the links are heavily subscribed.
Economical use of transmission and reception opportunities
is therefore important, and transmission is designed to
enable useful information to be obtained from brief
communication opportunities: units of transmission are
typically small, and the immediate delivery of even a small
part (carefully delimited) of a large data object may be
preferable to deferring delivery of the entire object until all
parts have been acquired.

Processor constraints

The computing capability aboard a robotic interplanetary
spacecraft is typically quite different from that provided by
an engineering workstation on Earth. In part this is due,
again, to the limited available electrical power and limited
mass allowance within which a flight computer must
operate. But these factors are exacerbated by the often
intense radiation environment of deep space. In order to
minimize errors in computation and storage, flight
processors must be radiation-hardened and both dynamic
memory and non-volatile storage (typically flash memory)
must be radiation-tolerant. The additional engineering
required for these adaptations takes time and is not
inexpensive, and the market for radiation-hardened
spacecraft computers is relatively small; for these reasons,
the latest advances in processing technology are typically
not available for use on interplanetary spacecraft, so flight
computers are invariably slower than their Earth-bound
counterparts. As a result, the cost per processing cycle is
high and processors are heavily subscribed; economical use
of processing resources is very important.

The nature of interplanetary spacecraft operations imposes a
further constraint. These spacecraft are wholly robotic and
are far beyond the reach of mission technicians; hands-on
repairs are out of the question. Therefore the processing
performed by the flight computer must be highly reliable,
which in turn generally means that it must be highly
predictable. Flight software is typically required to meet
“hard” real-time processing deadlines, for which purpose it
must be run within a hard real-time operating system
(RTOS).

One other implication of the requirement for high reliability
in flight software is that the dynamic allocation of system
memory may be prohibited except in certain well-
understood states, such as at system start-up. Unrestrained
dynamic allocation of system memory introduces a degree
of unpredictability into the overall flight system that can
threaten the reliability of the computing environment and
jeopardize the health of the vehicle.

1) ION Design Principles

The design of the ION implementation of DTN reflects
several core principles that are intended to address these
constraints.

Shared memory

Since ION must run on flight processors, it had to be
designed to function successfully within an RTOS. Many
real-time operating systems improve processing
determinism by omitting the support for protected-memory
models that is provided by Unix-like operating systems: all
tasks have direct access to all regions of system memory.
(In effect, all tasks operate in kernel mode rather than in
user mode.) ION therefore had to be designed with no
expectation of memory protection. But universally shared
access to all memory can be viewed not only as a hazard but
also as an opportunity. Placing a data object in shared
memory is an extremely efficient means of passing data
from one software task to another.

Zero-copy procedures

Given ION’s orientation toward the shared memory model,
a further strategy for processing efficiency offers itself: if
the data item appended to a linked list is merely a pointer to
a large data object, rather than a copy, then we can further
reduce processing overhead by eliminating the cost of byte-
for-byte copying of large objects. Moreover, in the event
that multiple software elements need to access the same
large object at the same time, we can provide each such
software element with a pointer to the object rather than its
own copy (maintaining a count of references to assure that
the object is not destroyed until all elements have
relinquished their pointers). This serves to reduce
somewhat the amount of memory needed for ION
operations.

Highly distributed processing

The efficiency of inter-task communications based on
shared memory makes it practical to distribute ION
processing among multiple relatively simple pipelined tasks
rather than localize it in a single, somewhat more complex
daemon. This strategy has a number of advantages:

• The simplicity of each task reduces the sizes of the
software modules, making them easier to understand

and maintain, and thus it can somewhat reduce the
incidence of errors.

• The scope of the ION operating stack can be adjusted
incrementally at run time, by spawning or terminating
instances of configurable software elements, without
increasing the size or complexity of any single task and
without requiring that the stack as a whole be halted
and restarted in a new configuration. In theory, a
module could even be upgraded with new functionality
and integrated into the stack without interrupting
operations.

• The clear interfaces between tasks simplify the
implementation of flow control measures to prevent
uncontrolled resource consumption.

Portability

Designs based on these kinds of principles are foreign to
many software developers, who may be far more
comfortable in development environments supported by
protected memory. It is typically much easier, for example,
to develop software in a Linux environment than in
VxWorks 5.4. However, the Linux environment is not the
only one in which ION software must ultimately run.

Consequently, ION has been designed for easy portability.
POSIX™ API functions are widely used, and differences in
operating system support that are not concealed by the
POSIX abstractions are encapsulated in two small modules
of platform-sensitive ION code. The bulk of the ION
software runs, without any source code modification
whatsoever, equally well in Linux™ (Red Hat®, Fedora™,
and Ubuntu™, so far), Solaris® 9, OS/X®, VxWorks® 5.4,
and RTEMS™, on both 32-bit and 64-bit processors.
Developers may compile and test ION modules in whatever
environment they find most convenient. Moreover, there is
no need to maintain separate versions of the implementation
for flight and ground. This reduces cost and the risk of error
in software maintenance.

2) ION Software Elements

The following elements of ION software, conforming to
these principles, implement the DTN architecture in a
manner that we believe will be suitable for interplanetary
network applications.

Interplanetary Communication Infrastructure (ICI)

The ICI package in ION provides a number of core services
that, from ION’s point of view, implement what amounts to
an extended POSIX-accessible operating system. ICI
services include the following:

Platform

The platform system contains operating-system-sensitive
code that enables ICI to present a single, consistent

programming interface to those common operating system
services that multiple ION modules utilize. For example,
the platform system implements a standard semaphore
abstraction that may invisibly be mapped to underlying
POSIX semaphores, SVR4 IPC semaphores, or VxWorks
semaphores, depending on which operating system the
package is compiled for. The platform system also
implements a standard shared-memory abstraction, enabling
software running on operating systems both with and
without memory protection to participate readily in ION’s
shared-memory-based computing environment.

Personal Space Management (PSM)

Although sound flight software design may prohibit the
uncontrolled dynamic management of system memory,
private management of assigned, fixed blocks of system
memory is standard practice. Often that private
management amounts to merely controlling the reuse of
fixed-size rows in static tables, but such techniques can be
awkward and may not make the most efficient use of
available memory. The ICI package provides an alternative,
called PSM, which performs high-speed dynamic allocation
and recovery of variable-size memory objects within an
assigned memory block of fixed size.

Memmgr

The static allocation of privately-managed blocks of system
memory for different purposes implies the need for multiple
memory management regimes, and in some cases a program
that interacts with multiple software elements may need to
participate in the private shared-memory management
regimes of all. ICI’s memmgr system enables multiple
memory managers – for multiple privately-managed blocks
of system memory – to coexist within ION and be
concurrently available to ION software elements.

Lyst

The lyst system is a comprehensive, powerful, and efficient
system for managing doubly-linked lists in private memory.
It is the model for a number of other list management
systems supported by ICI; as noted earlier, linked lists are
heavily used in ION inter-task communication.

Smlist

Smlist is another doubly-linked list management service. It
differs from lyst in that the lists it manages reside in shared
(rather than private) DRAM, so operations on them must be
semaphore-protected to prevent race conditions.

Simple Data Recorder (SDR)

SDR is a system for managing non-volatile storage, built on
exactly the same model as PSM. Put another way, SDR is a
small and simple “persistent object” system or “object
database”. It enables straightforward management of linked
lists (and other data structures of arbitrary complexity) in
non-volatile storage, nominally within a single file whose

size is pre-defined and fixed. SDR includes a transaction
mechanism that protects database integrity by ensuring that
the failure of any database operation will cause all other
operations undertaken within the same transaction to be
backed out. The intent of the system is to assure retention
of coherent protocol engine state even in the event of an
unplanned flight computer reboot in the midst of
communication activity.

Zero-Copy Objects (ZCO)

ION’s zero-copy objects system leverages the SDR system’s
storage flexibility to let user application data be
encapsulated in any number of layers of protocol without
copying the successively augmented protocol data unit from
one layer to the next. It also implements a reference
counting system that enables protocol data to be processed
by multiple software elements concurrently – e.g., a bundle
may be both delivered to a local endpoint and, at the same
time, queued for forwarding to another node – without
requiring that distinct copies of the data be provided to each
element.

Licklider Transmission Protocol (LTP)

The ION implementation of LTP conforms fully to RFC
5326, but it also provides two additional features that
enhance functionality without affecting interoperability with
other implementations:

• The service data units – nominally bundles – passed to
LTP for transmission may be aggregated into larger
blocks before segmentation. By controlling block size
we can control the volume of acknowledgment traffic
generated as blocks are received, for improved
accommodation of highly asynchronous data rates.

• The maximum number of transmission sessions that may
be concurrently managed by LTP (a protocol control
parameter), multiplied by the maximum block size,
constitutes a transmission “window” – the basis for a
delay-tolerant, non-conversational flow control service
over interplanetary links

In the ION stack, LTP serves effectively the same role that
is performed by TCP in the Internet architecture, providing
flow control and retransmission-based reliability.

All LTP session state is safely retained in an SDR database
for rapid recovery from a spacecraft or software fault.

Bundle Protocol (BP)

The ION implementation of BP conforms fully to RFC
5050, including support for the following standard
capabilities:

• Prioritization of data flows

• Bundle reassembly from fragments

• Flexible status reporting

• Custody transfer, including re-forwarding of custodial
bundles upon failure of nominally reliable convergence-
layer transmission

The system also provides two additional features that
enhance functionality without affecting interoperability with
other implementations:

• Rate control provides support for congestion
forecasting and avoidance.

• Bundle headers are encoded into compressed form
before issuance, to reduce protocol overhead and
improve link utilization.

In addition, ION BP includes an implementation of Contact
Graph Routing (CGR), a system for computing dynamic
routes through time-varying network topology assembled
from scheduled, bounded communication opportunities.
However, the details of CGR are beyond the scope of this
paper.

To summarize, BP serves effectively the same role that is
performed by IP in the Internet architecture, providing route
computation, forwarding, congestion avoidance, and control
over quality of service. Together, the BP/LTP combination
offers capabilities comparable to TCP/IP in the Internet.

All bundle transmission state is safely retained in an SDR
database for rapid recovery from a spacecraft or software
fault.

3) ION implementation architecture

The ION implementation of BP/LTP is designed to work
well within the constraints of the spacecraft flight software
environment, emphasizing safety and efficiency. Figure 1
provides an overview of ION’s architecture.

A few notes on this main line data flow:

 For simplicity, the data flow depicted here is a “loopback”
flow in which a single BP “node” is shown sending data
to itself (a useful configuration for test purposes). In order
to depict typical operations over a network we would
need two instances of this node diagram, such that the
<LSO> task of one node is shown sending data to the
<LSI> task of the other and vice versa.

 A BP application or application service (such as Remote
AMS) that has access to the local BP node – for our
purposes, the “sender” – invokes the bp_send function to
send a unit of application data to a remote counterpart.
The destination of the application data unit is expressed as
a BP endpoint ID (EID). The application data unit is
encapsulated in a bundle and is queued for forwarding.

 The forwarder task identified by the “scheme” portion of
the bundle’s destination EID removes the bundle from the

forwarding queue and computes a route to the destination
EID.

 The output task for LTP transmission to the selected
proximate node removes the bundle from the transmission
queue and invokes the ltp_send function to append it to a
block that is being assembled for transmission to the
proximate node. (Because LTP acknowledgment traffic is
issued on a per-block basis, we can limit the amount of
acknowledgment traffic on the network by aggregating
multiple bundles into a single block rather than
transmitting each bundle in its own block.)

 The ltpmeter task for the selected proximate node divides
the aggregated block into multiple segments and enqueues
them for transmission by underlying link-layer
transmission software, such as an implementation of the
CCSDS AOS protocol.

 Underlying link-layer software at the sending node
transmits the segments to its counterpart at the proximate
node (the receiver), where they are used to reassemble the
transmission block.

 The receiving node’s input task for LTP reception extracts
the bundles from the reassembled block and dispatches
them: each bundle whose final destination is some other
node is queued for forwarding, just like bundles created
by local applications, while each bundle whose final
destination is the local node is queued for delivery to
whatever application “opens” the BP endpoint identified
by the bundle’s final destination endpoint ID.

 The destination application or application service at the
receiving node opens the appropriate BP endpoint and
invokes the bp_receive function to remove the bundle
from the associated delivery queue and extract the
original application data unit, which it can then process.

The DTN protocols are at relatively high layers of the
communication protocol “stack” and rely on the support of
communication software at lower layers to effect, for
example, signal radiation and acquisition. Existing EPOXI
operational software provides this support but is not
designed to interact with the ION software, and vice versa.

An additional increment of DINET software, called Deep
Impact Adaptation Software (DIAS), is therefore needed to
act as an intermediary between ION and the operational
software currently residing on the spacecraft and in the DI
ground data system. The DIAS system enables the
exchange of data between ION modules and DI operational
software modules, thereby indirectly enabling the flow of
DINET data, without requiring significant modification of
DI flight or ground software.

The fundamental design decision underlying the DIAS
design is simple. To minimize modification of DI
operational software, we merely replace DI’s
implementation of the CCSDS File Delivery Protocol

(CFDP) with a CFDP simulator, called “PX”. DI
operational software, both in flight and on the ground,
continues to invoke the CFDP protocol data unit (PDU)
transmission and reception functions exactly as it does now,
but the PDUs that are transmitted and received are neither
produced nor consumed by CFDP protocol engines. Instead
those PDUs are artificially produced and consumed by the
PX system, which simply encapsulates segments of DTN
data in bogus CFDP file data segment PDUs (FPDUs). In
effect, we “tunnel” DTN traffic through underlying CFDP.

IV. EPOXI OPERATIONS
The EPOXI (Deep Impact extended mission) spacecraft was
a unique opportunity to demonstrate the DINET technology.
The EPOXI spacecraft has a backup flight computer which is
always on and available for communications.
1) The prime flight computer controls all spacecraft

functions, even while communication with the ground is
through the backup flight computer.

2) The EPOXI spacecraft already had the CFDP protocol
implemented for file transfer to and from the ground.

3) The EPOXI project was able to benefit from the DINET
effort and had the personnel available for flight software
implementation and test, as well as spacecraft operations
during the DINET experiment.

It was critical to the EPOXI project that the DINET
experiment posed minimal risk to the EPOXI mission. The
EPOXI flight team worked closely with the DINET team to
design an implementation approach that minimized risk to
the spacecraft. The DINET software was installed on the
backup software partition on the backup flight computer.
Once the backup flight computer was booted with the DNET
software, the boot configuration was restored to the original
EPOXI software load. In the event of a spacecraft problem
requiring a flight computer side swap, the backup computer
with the DIINET software would be re-booted as prime, with
the original EPOXI software running.

EPOXI operations during the month of DINET operations
was performed by uploading a sequence to the spacecraft,
which would switch the telemetry source to the SDST
between the prime and backup flight computers,
corresponding to the contact graph intervals installed during
the DINET software upload. This made spacecraft operations
“hands-off” during the DINET operational passes. The
EPOXI flight control team would switch the updated DINET
ground system software into place during the DINET
operational passes and turn over the data-link to the DINET
operations team.

V. EXPERIMENT DESIGN

The basic topology of DINET is shown in Figure 2 (i.e., two
surface assets, a relay orbiter, and Earth). The surface assets

are designated Mars and Phobos, and the Deep Impact (DI)
spacecraft fills the role of the relay orbiter.

Figure 2 DINET Topology

Figure 3 shows how this topology was implemented during
the experiment. The ION software with the DTN protocols
was resident in each of the eleven network nodes.

The 4-week period of DINET operations was divided into
two configurations (a and b) of four tracking passes each.
Configuration a had no injection of artificial data loss.
During configuration b, 3.125% of all LTP segments were
randomly discarded upon reception at the DI spacecraft and
at each of the three DSOT nodes. On the fourth tracking pass
of each segment, the contact between Phobos and EPOXI
was omitted. A brief “cross-link” contact between Phobos
and Mars was scheduled for a time shortly before the 4th
tracking pass of each experiment, providing an alternate path
for data from Phobos.

VI. DINET OPERATIONS
An essential component of the DINET project is the
Experiment Operations Center (EOC). The EOC served to:

• Produce Experiment Payload Data: Input JPEG image
files as a single file per bundle, Mark bundle priority,
Meter output to specified data rate.

• Consume Experiment Payload Data: Store in local file
system at node upon reception, Display image upon
reception.

• Consume Software Diagnostic Messages (ION logs):
ION log messages transmitted to EOC software via
TCP/IP socket, Received messages parsed & stored in a
SQL database.

• Consume Protocol Diagnostic Messages (BSRs): BSRs
transmitted from ION nodes to EOC software via the
ION stack, Received messages parsed & stored in an
SQL database.

• EOC Bundle Network Configured / Monitored With
GUI: BSRs transmitted from ION nodes to EOC
software via the ION stack, Received messages parsed
& stored in a SQL database, Messages displayed
through the GUI in real time.

The EOC generated and received the test communications
traffic as well as “out-of-DTN band” command and control
traffic of the DTN experiment, stored DTN flight test
information in a database, provided display systems for
monitoring DTN operations status and statistics (e.g.,
bundle throughput), and supported query and analyses of the
data collected.

The DINET EOC was located within the JPL Protocol
Technology Lab (PTL). The PTL provides connectivity to
other NASA centers and external entities, and is itself a node
in the larger DTN Experiment Network (DEN). The DINET
EOC is envisioned to become a general tool in this broader
context of experimental testing of DTN across a
geographically dispersed user community.

VII. FLIGHT VALIDATION RESULTS
Four specific performance evaluation metrics were created
to aid in the flight validation of DTN. This section explains
those metrics and reports on DINET’s performance against
them.

Terms of validation
Let GXYZ denote the transmission opportunity – or contact –
from node X to node Y on DINET pass #Z. The duration of
GXYZ in seconds, denoted by DXYZ, is the end time of GXYZ
minus the start time of GXYZ . The data rate of GXYZ in
bytes per second is denoted by CXYZ. The raw capacity of
XYZ, denoted by KXYZ, is equal to DXYZ * CXYZ. (Note that
this is ideal capacity; the actual capacity of the link will be
the ideal capacity reduced by actual signal noise on XYZ.
Moreover, transient outages in transmission – as were
experienced during four of the eight DINET transmission
opportunities – necessarily reduce the total capacity of an
opportunity.)

The total data return capacity S72a from the EPOXI
spacecraft (node 7) to the Earth subnet (node 2) while
DINET is in configuration a is ∑K72Z for Z = 14. The
total data return capacity S72b from the EPOXI spacecraft
(node 7) to the Earth subnet (node 2) while DINET is in
configuration b is ∑K72Z for Z = 58.

The total data return capacity SM7a from the two Mars
subnets (nodes 3 and 5) to the EPOXI spacecraft (node 7)
while DINET is in configuration a is ∑KM7Z for Z = 14.
The total data return capacity SM7b from the two Mars
subnets (nodes 3 and 5) to the DI spacecraft (node 7) while
DINET is in configuration b is ∑KM7Z for Z = 58.

The EPOXI spacecraft is the bottleneck in the flow of data
from the Mars subnets to the Earth subnet: the total science
data return capacity of DINET in configuration a, SM2a, is
either the capacity of the transmission opportunities from
the Mars subnets to EPOXI or the capacity of the
transmission opportunities from EPOXI to the Earth subnet,
whichever is less. That is, SM2a = SM7a ┴ S72a and SM2b =
SM7b ┴ S72b.

The volume of priority-0 science data that is received at the
Earth subnet over the entire course of DINET while in
configuration a is denoted by R0a. Similarly, the volume of
priority-1 and priority-2 science data received at the Earth
subnet over the entire course of DINET while in
configuration a is denoted by R1a and R2a. The raw volume
of science data received at the Earth subnet over the entire
course of DINET in configuration a, RTa, is the sum of
these: RTa = R0a + R1a + R2a. Similarly, RTb = R0b + R1b + R2b.

The urgency-weighted volume of science data received at
the Earth subnet over the entire course of DINET in
configuration a, WTa, is the weighted sum: WTa = R0a + (2 *
R1a) + (4 * R2a). Similarly, WTb = R0b + (2 * R1b) + (4 *
R2b).

The reference volume of priority-0 science data received at
the Earth subnet while DINET is in configuration a, denoted
by Q0a, is computed as RTa multiplied by the proportion of
all image bundles that were published with priority 0 during
this phase of the experiment. (This is the proportion of RTa
that we would expect to be priority-0 data, that is, the
expected value of R0a if there were no reordering of data
transmissions in the network due to priority.) Similarly, Q1a
= .60 * RTa and Q2a = .25 * RTa, and the same relationships
can be expressed for the configuration-b phase of the
experiment as well.

The urgency-weighted reference volume of science data
received at the Earth subnet while DINET is in
configuration a, VTa, is the weighted sum: VTa = (.5 * Q0a) +
Q1a + (2.0 * Q2a). Similarly, VTb = (.5 * Q0b) + Q1b + (2.0 *
Q2b).

The size of the Interplanetary Overlay Network (ION) data
store at each node X, IX, is a DINET configuration
parameter. The size of the traffic storage allocation AX at
each node X is computed by AX = .6 * IX.

The total unassigned space SXZ at each node X for pass Z
was reported by each node at least once on each day on
which there was a tracking pass.

A path from node A to node B while DINET is in
configuration a is any series of J distinct contacts GX(1)Y(1)a,
GX(2)Y(2)a, … GX(J)Y(J)a such that (a) X1 = A, (b) YJ = B, (c) XN
(where N > 1) = YN-1, and (d) the start time of GX(N)Y(N)a
(where N > 1) >= the stop time of GX(N-1)Y(N-1)a. The net
capacity for a given path is the smallest value of contact
capacity among all the contacts included in that path.

A multipath is a set of zero or more paths from node A to
node B. Formally:

• The net capacity for a multipath containing zero paths is
zero.

• The net capacity for a multipath that is formed by adding
a path to a multipath is the sum of the net capacities of the
path and multipath or the smallest value of contact
capacity among all contacts that are common to the path
and multipath, whichever is less.

Metric 1 – Path utilization rate (U)

Path utilization rate for DINET in configuration a is given
by Ua = RTa / SM2a. It measures the effectiveness of
automatic forwarding, custody transfer, and delay-tolerant
retransmission.

Validation criteria:

Ua > 90%. (DTN uses both high-rate and low-rate links
efficiently.)

Ub > 90%. (DTN remains efficient despite an increase in
the rate of data loss.)

Findings:

Analysis of the DINET experiment log indicates that Ua
was 76.2% and Ub was 72.4%.

Note, however, that passes 2 and 8 were underutilized
due to insufficiency of offered uplink data as discussed
later, so their path utilization rates don’t accurately
reflect protocol efficiency. Additionally, note that
about 20% of available uplink capacity was consumed
by link service overhead, mainly telecommand coding.
When only passes 1, 3, 4, 5, 6, and 7 are considered and
all non-DTN overhead is subtracted from available
transmission capacity, Ua and Ub are 97.4% and 92.5%
respectively. With these provisos, both validation
criteria were satisfied.

Note that the increased data loss rate in configuration b
was found to correlate to a reduced path utilization rate
as expected.

Metric 2 – Delivery acceleration ratio (G)

The delivery acceleration ratio for configuration a is given
by Ga = WTa / VTa. It measures the effectiveness of the
priority system.

Validation criteria:

Ga > 1.05 (Prioritization accelerates the delivery of
urgent data.)

Gb > 1.1 (The advantage of prioritization increases
with the rate of data loss.)

Findings:

Analysis of the DINET experiment log indicates that Ga
was 1.10 and Gb was 1.12. Both validation criteria
were satisfied.

Metric 3 – ION node storage utilization

Retention of a stable margin of unassigned space at each
node measures the effectiveness of congestion control.

Validation criteria:

The total number of bundles for which custody is refused
anywhere in the network for the reason “depleted
storage”, throughout each configuration, is always zero.
(We never run out of storage anywhere.)

NX7 = NX6 for all values of X. (Storage utilization
stabilizes over the course of network operations.)

Findings:

Analysis of the DINET experiment log indicates that
both validation criteria were satisfied, except that NX7
was 156,816 bytes less than NX6 for node 10 (only). N10
had remained constant from passes 4 through pass 6.
We suspect that some new functionality requiring
additional storage space – possibly not related to the
DTN protocols – was initially exercised on node 10 after
pass 6 and prior to pass 7; analysis is continuing.

Metric 4 – Multipath advantage

The multipath advantage MAB for traffic on the multipath
from A to B conferred by the addition of a path is computed
as the net capacity of the augmented multipath divided by
the net capacity of the multipath excluding the added path,
minus 1. When routing is static, all paths must necessarily
comprise contacts between the same pairs of nodes in the
same sequence; this precludes the addition of other paths to
the multipath, limiting total multipath capacity. Multipath
advantage therefore measures the effectiveness of dynamic
routing.

Validation criteria:

The multipath advantage for traffic from node 20 to
node 8 that is conferred by the cross-link contacts

between nodes 10 and 6 is greater than 20%.
(Dynamic routing among multiple possible paths
increases the total network capacity from Phobos to
Earth.)

Findings:

The computed multipath advantage for traffic from
node 20 to node 8 through the entire DINET
experiment is 35%. Thus, the validation criterion was
satisfied. Note, however, that errors in the
implementation of dynamic routing prevented the
expression of this advantage in improvements in
delivery acceleration ratio. This metric will be revisited
in future DINET experiments.

ACKNOWLEDGMENT

The work described in this report was performed at the Jet
Propulsion Laboratory, California Institute of Technology
under a contract with the National Aeronautics and Space
Administration (NASA). Reference herein to any specific
commercial product, process or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government,
NASA or the Jet Propulsion Laboratory, California Institute
of Technology. DINET was implemented by the following
personnel: Rashied Amini, Yan Brenman, Scott Burleigh,
Loren Clare, Micah Clark , Andre Girerd, Son Ho, Nuha
Jawad, Ross Jones, Margaret Lam, Marisol Mercado,
Amalaye Oyake, Richard Rieber, Joshua Schoolcraft, Leigh
Torgerson, Shin-Ywan Wang and Jay Wyatt. The following
members of the EPOXI project team were essential to the
success of DINET; Steve Wissler, Richard Reiber, Greg
LaBorde, Leticia Montanez and Al Nakata.

The Deep Impact Networking Experiment was sponsored by
the Space Communications and Navigation Office in
NASA's Space Operations Mission Directorate. NASA's
Science Mission Directorate and Discovery Program
provided experimental access to the EPOXI spacecraft.

The EPOXI mission team provided critical support
throughout development and operations. The following
members of the EPOXI project team were essential to the
success of DINET; Steve Wissler, Richard Reiber, Greg
LaBorde, Leticia Montanez and Al Nakata. Finally, Rich
Benson provided DSN scheduling support.

REFERENCES
[1] JPL Publication 09-2 Disruption Tolerant Network

Flight Validation Report
[2] 1. K. Scott and S. Burleigh, Bundle Protocol

Specification, RFC 5050, Internet Society, Reston, VA,
November 2007.

[3] 2. M. Ramadas, S. Burleigh and S. Farrell, Licklider
Transmission Protocol―Specification, RFC 5326,
Internet Society, Reston, VA, September 2008.

[4] 3. R.W. Clayton, P.M. Davis, X. Perez-Campos,
“Seismic Structure of the Subducted Cocos Plate,”

American Geophysical Union, abstract #T32A-01, Fall
Meeting 2007.

[5] 4. A. Doria, “Saami Network Connectivity:Technical
Overview of SNC.” Available at
www.cdt.luth.se/babylon/snc; accessed February 11,
2009.

Application

bp_send() bp_receive()

ipnfw

ltpclo ltpcli

traffic database

ltp_send() ltpmeter

<LSO> <LSI>

contact graph

forwarding
queue

xmits,
nodes,
origins

plans,
rules,

groups

routing table

transmission
queue

service data units
(outbound block)

LTP
segments

LTP segments
(inbound block>

delivery
queue

Figure 1 ION General Processing Flow

http://www.cdt.luth.se/babylon/snc

Figure 3 DINET Topology as Physically Implemented
Send images from nodes 12 to node 8 via nodes 6, 3, 7, 2, 4. Also send images from nodes 20 to node 8 via nodes 10, 5,7, 2,
4. BRS = Bundle Relay Service; LTP = Licklider Transmission Protocol; UDP = user datagram protocol

	I. Introduction
	II. DINET Overview
	III. DTN Implementation
	1) ION Design Principles
	2) ION Software Elements
	3) ION implementation architecture

	IV. EPOXI Operations
	V. Experiment Design
	VI. DINET Operations
	VII. Flight Validation Results
	Terms of validation
	Metric 1 – Path utilization rate (U)
	Metric 2 – Delivery acceleration ratio (G)
	Metric 3 – ION node storage utilization
	Metric 4 – Multipath advantage
	Acknowledgment
	References

