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Abstract— In October and November of 2008, the Jet 
Propulsion Laboratory installed and tested essential 
elements of Delay/Disruption Tolerant Networking (DTN) 
technology on the Deep Impact spacecraft. This experiment, 
called Deep Impact Network Experiment (DINET), was 
performed in close cooperation with the EPOXI project 
which has responsibility for the spacecraft. During DINET 
some 300 images were transmitted from the JPL nodes to 
the spacecraft. Then they were automatically forwarded 
from the spacecraft back to the JPL nodes, exercising DTN's 
bundle origination, transmission, acquisition, dynamic route 
computation, congestion control, prioritization, custody 
transfer, and automatic retransmission procedures, both on 
the spacecraft and on the ground, over a period of 27 days.  
All transmitted bundles were successfully received, without 
corruption.  The DINET experiment demonstrated DTN 
readiness for operational use in space missions.  This 
activity was part of a larger NASA space DTN development 
program to mature DTN to flight readiness for a wide 
variety of mission types by the end of 2011. This paper 
describes the DTN protocols, the flight demo 
implementation, validation metrics which were created for 
the experiment, and validation results. 
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I.  INTRODUCTION 

Disruption-Tolerant Networking (DTN; a.k.a. Delay-
Tolerant Networking) is a communication architecture that 
is designed to provide automated data communication 
services in networks characterized by frequent and lengthy 
episodes of partitioning, lengthy signal propagation delays, 
and/or heterogeneity in protocol support below the 
application layer. 

Research into DTN has culminated in the publication of 
Internet experimental RFCs (Requests For Comments) 
describing the overall architecture of DTN technology (RFC 
4838), the core DTN Bundle Protocol (RFC 5050), and the 
Licklider Transmission Protocol for automatic 
retransmission of data lost in transit (RFC 5326), with 
others in progress. Although this research has been 

substantially motivated by its applicability to such problem 
domains as sensor-based networks with scheduled 
intermittent connectivity, terrestrial wireless networks that 
cannot ordinarily maintain end-to-end connectivity, and 
underwater acoustic networks, the original driver for the 
research was the emerging need to provide capable network 
services in support of space flight operations. 

Historically, communications in spacecraft mission 
operations have been managed by the spacecraft team.  
Transmission and reception episodes are individually 
configured, started, and ended by command.  Reliability 
over deep space links is achieved by management: on loss 
of data, we command retransmission.  Even the relaying of 
data from Mars rovers through Mars orbiters is managed: 
we send transmission commands to the rovers, and later we 
send transmission commands to the orbiters that received 
the data from the rovers. 

An alternative approach would be to implement an 
automatic space data communications network, similar in 
capability to the Internet.  The Internet protocols 
themselves, however, are generally unsuitable for this 
purpose because they rely on timely and continuous end-to-
end delivery of data and acknowledgments: communication 
links to and from spacecraft are often subject to interruption 
and, for deep-space missions, signal propagation delays may 
be very large. 

DTN is an alternative network architecture that is designed 
to address these problems.  DTN runs as an “overlay” above 
the Internet where possible, but it runs directly over link-
layer protocols, taking the place of the IP network protocol 
where necessary.  That is, a TCP connection within an IP-
based network may be one “link” of a DTN end-to-end data 
path; a deep-space R/F transmission may be another.  
Reliability is achieved by retransmission between relay 
points within the network, not end-to-end retransmission.  
There is no reliance on end-to-end acknowledgment.  Route 
computation has temporal as well as topological elements, 
e.g., a schedule of planned contacts.  Lengthy signal 
propagation delays don’t compromise the accuracy of route 
computation.  Forwarding at each router is automatic but not 
necessarily immediate: store-and-forward rather than “bent 



pipe”, so link interruption doesn’t prevent the eventual 
delivery of data. 

Our discussion of flight validation results will rest on an 
understanding of the following features of the DTN 
architecture: 

• Priority.  The forwarding of DTN network protocol data 
units, termed bundles, is informed by user-assigned 
priority markings: bundles may be assigned High, 
Medium, or Low priority, with higher-priority bundles 
forwarded in preference to lower-priority bundles 
wherever forwarding opportunities are constrained. 

• Dynamic Routing.  Traffic flow within a delay-tolerant 
network, as in the Internet, is more efficient if routers 
can automatically select different forwarding paths at 
different times, depending on nodes’ anticipated ability 
to forward data on a timely basis.  Note, though, that 
Internet techniques for route computation are not well 
suited for operating a network over interplanetary 
distances where changes in topology may occur more 
rapidly than they can be reported. 

• Automated Forwarding.  Automatic initiation and 
termination of data transmission as transmission 
opportunities arise is a core capability of DTN.  

• Custody Transfer.  Performing retransmission of lost 
data at relay points rather than end-to-end enables each 
relay point along a bundle’s end-to-end path that 
receives the bundle to take custody of it, i.e. to relieve 
the prior retransmission point (source or relay) of any 
further responsibility for transmitting the bundle. 

• Delay Tolerant Retransmission.  The need to retransmit 
lost data is normally signaled by the receiver, upon 
detection of a gap in the received data.  But in the event 
that insufficient data is received to enable gap detection 
– or in the event that the signal itself is lost in 
transmission – the only way to initiate retransmission is 
to detect the lapse of a timer prior to arrival of a 
positive acknowledgment.  Computing accurate 
intervals for retransmission timers is especially 
challenging in a delay-tolerant network, as link 
interruption may defer transmission of 
acknowledgments.  Human operators readily compute 
these intervals based on their knowledge of contact 
schedules; DTN must do the same in order to automate 
retransmission. 

• Flow and Congestion Control.  Automated forwarding 
and retransmission rely on the availability of data 
storage resources, so rates of data transmission and 
reception must be controlled in order to prevent 
exhaustion of those resources and failure of network 
operations.  A fully automated network must 
accomplish this resource conservation automatically. 

Interplanetary Overlay Network (ION) is an implementation 
of the DTN architecture that is specifically intended to be 
usable for interplanetary communications.  As such, a key 
milestone in its development has been validation in 
operation on-board a functioning spacecraft.  The Deep 
Impact Network experiment provided an opportunity not 
only to validate the software in flight but also to apply 
metrics by which the operational suitability of the software 
could be objectively assessed. 

 

II. DINET OVERVIEW 

The Deep Impact Network Experiment (DINET) was a 
technology validation experiment of JPL’s implementation 
of Delay-Tolerant Networking (DTN) protocols. The 
DINET development produced a version of JPL’s 
implementation of Delay-Tolerant Networking protocols in 
flight and ground software that is now at technology 
readiness level (TRL) 8.  The DINET software (SW) is of 
sufficient quality that future flight projects can easily use it 
at low risk. DINET was implemented on the Deep Impact 
spacecraft and was closely coordinated with the EPOXI 
project. DINET operations were performed during the 
EPOXI spacecraft team “stand down” after Extrasolar 
Planet Observation and Characterization (EPOCH) 
operations and before the start of development for DIXI 
operations (i.e., during October and November 2008). 
DINET developments and operations were on a non-
interference basis with EPOXI to the maximum extent 
possible. DINET was sponsored by NASA Office of Space 
Operations / Space Communications and Navigation 
(OSO/SCAN) via JPL DSN office Space Networking and 
Mission Automation. The total cost of DINET was $1.4M, 
which included support for the EPOXI spacecraft team and 
their contractor Ball Aerospace and Technology 
Corporation.  

III. DTN IMPLEMENTATION 

A DTN implementation intended to function in an 
interplanetary network environment – specifically, aboard 
interplanetary research spacecraft separated from Earth and 
one another by vast distances – must operate successfully 
within two general classes of design constraints: link 
constraints and processor constraints. 

Link constraints 

All communications among interplanetary spacecraft are, 
obviously, wireless.  Less obviously, those wireless links 
are generally slow and are usually asymmetric. 

The electrical power provided to on-board radios is limited 
and antennae are relatively small, so signals are weak.  This 
limits the speed at which data can be transmitted intelligibly 



from an interplanetary spacecraft to Earth, usually to some 
rate on the order of 256 Kbps to 6 Mbps. 

The electrical power provided to transmitters on Earth is 
certainly much greater, but the sensitivity of receivers on 
spacecraft is again constrained by limited power and 
antenna mass allowances.  Because historically the volume 
of command traffic that had to be sent to spacecraft was far 
less than the volume of telemetry the spacecraft were 
expected to return,  spacecraft receivers have historically 
been engineered for even lower data rates from Earth to the 
spacecraft, on the order of 1 to 2 Kbps. 

As a result, the cost per octet of data transmission or 
reception is high and the links are heavily subscribed.  
Economical use of transmission and reception opportunities 
is therefore important, and transmission is designed to 
enable useful information to be obtained from brief 
communication opportunities: units of transmission are 
typically small, and the immediate delivery of even a small 
part (carefully delimited) of a large data object may be 
preferable to deferring delivery of the entire object until all 
parts have been acquired. 

Processor constraints 

The computing capability aboard a robotic interplanetary 
spacecraft is typically quite different from that provided by 
an engineering workstation on Earth.  In part this is due, 
again, to the limited available electrical power and limited 
mass allowance within which a flight computer must 
operate.  But these factors are exacerbated by the often 
intense radiation environment of deep space.  In order to 
minimize errors in computation and storage, flight 
processors must be radiation-hardened  and both dynamic 
memory and non-volatile storage (typically flash memory) 
must be radiation-tolerant.  The additional engineering 
required for these adaptations takes time and is not 
inexpensive, and the market for radiation-hardened 
spacecraft computers is relatively small; for these reasons, 
the latest advances in processing technology are typically 
not available for use on interplanetary spacecraft, so flight 
computers are invariably slower than their Earth-bound 
counterparts.  As a result, the cost per processing cycle is 
high and processors are heavily subscribed; economical use 
of processing resources is very important. 

The nature of interplanetary spacecraft operations imposes a 
further constraint.  These spacecraft are wholly robotic and 
are far beyond the reach of mission technicians; hands-on 
repairs are out of the question.  Therefore the processing 
performed by the flight computer must be highly reliable, 
which in turn generally means that it must be highly 
predictable.  Flight software is typically required to meet 
“hard” real-time processing deadlines, for which purpose it 
must be run within a hard real-time operating system 
(RTOS). 

One other implication of the requirement for high reliability 
in flight software is that the dynamic allocation of system 
memory may be prohibited except in certain well-
understood states, such as at system start-up.  Unrestrained 
dynamic allocation of system memory introduces a degree 
of unpredictability into the overall flight system that can 
threaten the reliability of the computing environment and 
jeopardize the health of the vehicle. 

 
1) ION Design Principles 

The design of the ION implementation of DTN reflects 
several core principles that are intended to address these 
constraints. 

Shared memory 

Since ION must run on flight processors, it had to be 
designed to function successfully within an RTOS.  Many 
real-time operating systems improve processing 
determinism by omitting the support for protected-memory 
models that is provided by Unix-like operating systems: all 
tasks have direct access to all regions of system memory.  
(In effect, all tasks operate in kernel mode rather than in 
user mode.)  ION therefore had to be designed with no 
expectation of memory protection.  But universally shared 
access to all memory can be viewed not only as a hazard but 
also as an opportunity.  Placing a data object in shared 
memory is an extremely efficient means of passing data 
from one software task to another. 

Zero-copy procedures 

Given ION’s orientation toward the shared memory model, 
a further strategy for processing efficiency offers itself: if 
the data item appended to a linked list is merely a pointer to 
a large data object, rather than a copy, then we can further 
reduce processing overhead by eliminating the cost of byte-
for-byte copying of large objects.  Moreover, in the event 
that multiple software elements need to access the same 
large object at the same time, we can provide each such 
software element with a pointer to the object rather than its 
own copy (maintaining a count of references to assure that 
the object is not destroyed until all elements have 
relinquished their pointers).  This serves to reduce 
somewhat the amount of memory needed for ION 
operations. 

Highly distributed processing 

The efficiency of inter-task communications based on 
shared memory makes it practical to distribute ION 
processing among multiple relatively simple pipelined tasks 
rather than localize it in a single, somewhat more complex 
daemon.  This strategy has a number of advantages: 

• The simplicity of each task reduces the sizes of the 
software modules, making them easier to understand 



and maintain, and thus it can somewhat reduce the 
incidence of errors. 

• The scope of the ION operating stack can be adjusted 
incrementally at run time, by spawning or terminating 
instances of configurable software elements, without 
increasing the size or complexity of any single task and 
without requiring that the stack as a whole be halted 
and restarted in a new configuration.  In theory, a 
module could even be upgraded with new functionality 
and integrated into the stack without interrupting 
operations. 

• The clear interfaces between tasks simplify the 
implementation of flow control measures to prevent 
uncontrolled resource consumption. 

Portability 

Designs based on these kinds of principles are foreign to 
many software developers, who may be far more 
comfortable in development environments supported by 
protected memory.  It is typically much easier, for example, 
to develop software in a Linux environment than in 
VxWorks 5.4.  However, the Linux environment is not the 
only one in which ION software must ultimately run. 

Consequently, ION has been designed for easy portability.  
POSIX™ API functions are widely used, and differences in 
operating system support that are not concealed by the 
POSIX abstractions are encapsulated in two small modules 
of platform-sensitive ION code.  The bulk of the ION 
software runs, without any source code modification 
whatsoever, equally well in Linux™ (Red Hat®, Fedora™, 
and Ubuntu™, so far), Solaris® 9, OS/X®, VxWorks® 5.4, 
and RTEMS™, on both 32-bit and 64-bit processors.  
Developers may compile and test ION modules in whatever 
environment they find most convenient.  Moreover, there is 
no need to maintain separate versions of the implementation 
for flight and ground.  This reduces cost and the risk of error 
in software maintenance. 

 
2) ION Software Elements 

The following elements of ION software, conforming to 
these principles, implement the DTN architecture in a 
manner that we believe will be suitable for interplanetary 
network applications. 

Interplanetary Communication Infrastructure (ICI) 

The ICI package in ION provides a number of core services 
that, from ION’s point of view, implement what amounts to 
an extended POSIX-accessible operating system.  ICI 
services include the following: 

Platform 

The platform system contains operating-system-sensitive 
code that enables ICI to present a single, consistent 

programming interface to those common operating system 
services that multiple ION modules utilize.  For example, 
the platform system implements a standard semaphore 
abstraction that may invisibly be mapped to underlying 
POSIX semaphores, SVR4 IPC semaphores, or VxWorks 
semaphores, depending on which operating system the 
package is compiled for.  The platform system also 
implements a standard shared-memory abstraction, enabling 
software running on operating systems both with and 
without memory protection to participate readily in ION’s 
shared-memory-based computing environment. 

Personal Space Management (PSM) 

Although sound flight software design may prohibit the 
uncontrolled dynamic management of system memory,  
private management of assigned, fixed blocks of system 
memory is standard practice.  Often that private 
management amounts to merely controlling the reuse of 
fixed-size rows in static tables,  but such techniques can be 
awkward and may not make the most efficient use of 
available memory.  The ICI package provides an alternative, 
called PSM, which performs high-speed dynamic allocation 
and recovery of variable-size memory objects within an 
assigned memory block of fixed size. 

Memmgr 

The static allocation of privately-managed blocks of system 
memory for different purposes implies the need for multiple 
memory management regimes, and in some cases a program 
that interacts with multiple software elements may need to 
participate in the private shared-memory management 
regimes of all.  ICI’s memmgr system enables multiple 
memory managers – for multiple privately-managed blocks 
of system memory – to coexist within ION and be 
concurrently available to ION software elements. 

Lyst 

The lyst system is a comprehensive, powerful, and efficient 
system for managing doubly-linked lists in private memory.  
It is the model for a number of other list management 
systems supported by ICI; as noted earlier, linked lists are 
heavily used in ION inter-task communication. 

Smlist 

Smlist is another doubly-linked list management service.  It 
differs from lyst in that the lists it manages reside in shared 
(rather than private) DRAM, so operations on them must be 
semaphore-protected to prevent race conditions. 

Simple Data Recorder (SDR) 

SDR is a system for managing non-volatile storage, built on 
exactly the same model as PSM.  Put another way, SDR is a 
small and simple “persistent object” system or “object 
database”.  It enables straightforward management of linked 
lists (and other data structures of arbitrary complexity) in 
non-volatile storage, nominally within a single file whose 



size is pre-defined and fixed.  SDR includes a transaction 
mechanism that protects database integrity by ensuring that 
the failure of any database operation will cause all other 
operations undertaken within the same transaction to be 
backed out.  The intent of the system is to assure retention 
of coherent protocol engine state even in the event of an 
unplanned flight computer reboot in the midst of 
communication activity. 

Zero-Copy Objects (ZCO) 

ION’s zero-copy objects system leverages the SDR system’s 
storage flexibility to let user application data be 
encapsulated in any number of layers of protocol without 
copying the successively augmented protocol data unit from 
one layer to the next.  It also implements a reference 
counting system that enables protocol data to be processed 
by multiple software elements concurrently – e.g., a bundle 
may be both delivered to a local endpoint and, at the same 
time, queued for forwarding to another node – without 
requiring that distinct copies of the data be provided to each 
element. 

Licklider Transmission Protocol (LTP) 

The ION implementation of LTP conforms fully to RFC 
5326, but it also provides two additional features that 
enhance functionality without affecting interoperability with 
other implementations: 

• The service data units – nominally bundles – passed to 
LTP for transmission may be aggregated into larger 
blocks before segmentation.  By controlling block size 
we can control the volume of acknowledgment traffic 
generated as blocks are received, for improved 
accommodation of highly asynchronous data rates. 

• The maximum number of transmission sessions that may 
be concurrently managed by LTP (a protocol control 
parameter), multiplied by the maximum block size, 
constitutes a transmission “window”  – the basis for a 
delay-tolerant, non-conversational flow control service 
over interplanetary links 

In the ION stack, LTP serves effectively the same role that 
is performed by TCP in the Internet architecture, providing 
flow control and retransmission-based reliability. 

All LTP session state is safely retained in an SDR database 
for rapid recovery from a spacecraft or software fault. 

Bundle Protocol (BP) 

The ION implementation of BP conforms fully to RFC 
5050, including support for the following standard 
capabilities: 

• Prioritization of data flows 

• Bundle reassembly from fragments 

• Flexible status reporting 

• Custody transfer, including re-forwarding of custodial 
bundles upon failure of nominally reliable convergence-
layer transmission 

The system also provides two additional features that 
enhance functionality without affecting interoperability with 
other implementations: 

• Rate control provides support for congestion 
forecasting and avoidance. 

• Bundle headers are encoded into compressed form 
before issuance, to reduce protocol overhead and 
improve link utilization. 

In addition, ION BP includes an implementation of Contact 
Graph Routing (CGR), a system for computing dynamic 
routes through time-varying network topology assembled 
from scheduled, bounded communication opportunities.  
However, the details of CGR are beyond the scope of this 
paper. 

To summarize, BP serves effectively the same role that is 
performed by IP in the Internet architecture, providing route 
computation, forwarding, congestion avoidance, and control 
over quality of service.  Together, the BP/LTP combination 
offers capabilities comparable to TCP/IP in the Internet. 

All bundle transmission state is safely retained in an SDR 
database for rapid recovery from a spacecraft or software 
fault. 

 
3) ION implementation architecture 

The ION implementation of BP/LTP is designed to work 
well within the constraints of the spacecraft flight software 
environment, emphasizing safety and efficiency.  Figure 1 
provides an overview of ION’s architecture. 

A few notes on this main line data flow: 

 For simplicity, the data flow depicted here is a “loopback” 
flow in which a single BP “node” is shown sending data 
to itself (a useful configuration for test purposes). In order 
to depict typical operations over a network we would 
need two instances of this node diagram, such that the 
<LSO> task of one node is shown sending data to the 
<LSI> task of the other and vice versa.  

 A BP application or application service (such as Remote 
AMS) that has access to the local BP node – for our 
purposes, the “sender” – invokes the bp_send function to 
send a unit of application data to a remote counterpart.  
The destination of the application data unit is expressed as 
a BP endpoint ID (EID).  The application data unit is 
encapsulated in a bundle and is queued for forwarding. 

 The forwarder task identified by the “scheme” portion of 
the bundle’s destination EID removes the bundle from the 



forwarding queue and computes a route to the destination 
EID.   

 The output task for LTP transmission to the selected 
proximate node removes the bundle from the transmission 
queue and invokes the ltp_send function to append it to a 
block that is being assembled for transmission to the 
proximate node.  (Because LTP acknowledgment traffic is 
issued on a per-block basis, we can limit the amount of 
acknowledgment traffic on the network by aggregating 
multiple bundles into a single block rather than 
transmitting each bundle in its own block.) 

 The ltpmeter task for the selected proximate node divides 
the aggregated block into multiple segments and enqueues 
them for transmission by underlying link-layer 
transmission software, such as an implementation of the 
CCSDS AOS protocol. 

 Underlying link-layer software at the sending node 
transmits the segments to its counterpart at the proximate 
node (the receiver), where they are used to reassemble the 
transmission block. 

 The receiving node’s input task for LTP reception extracts 
the bundles from the reassembled block and dispatches 
them: each bundle whose final destination is some other 
node is queued for forwarding, just like bundles created 
by local applications, while each bundle whose final 
destination is the local node is queued for delivery to 
whatever application “opens” the BP endpoint identified 
by the bundle’s final destination endpoint ID. 

 The destination application or application service at the 
receiving node opens the appropriate BP endpoint and 
invokes the bp_receive function to remove the bundle 
from the associated delivery queue and extract the 
original application data unit, which it can then process. 

The DTN protocols are at relatively high layers of the 
communication protocol “stack” and rely on the support of 
communication software at lower layers to effect, for 
example, signal radiation and acquisition.  Existing EPOXI 
operational software provides this support but is not 
designed to interact with the ION software, and vice versa. 

An additional increment of DINET software, called Deep 
Impact Adaptation Software (DIAS), is therefore needed to 
act as an intermediary between ION and the operational 
software currently residing on the spacecraft and in the DI 
ground data system.  The DIAS system enables the 
exchange of data between ION modules and DI operational 
software modules, thereby indirectly enabling the flow of 
DINET data, without requiring significant modification of 
DI flight or ground software. 

The fundamental design decision underlying the DIAS 
design is simple.  To minimize modification of DI 
operational software, we merely replace DI’s 
implementation of the CCSDS File Delivery Protocol 

(CFDP) with a CFDP simulator, called “PX”.  DI 
operational software, both in flight and on the ground, 
continues to invoke the CFDP protocol data unit (PDU) 
transmission and reception functions exactly as it does now, 
but the PDUs that are transmitted and received are neither 
produced nor consumed by CFDP protocol engines.  Instead 
those PDUs are artificially produced and consumed by the 
PX system, which simply encapsulates segments of DTN 
data in bogus CFDP file data segment PDUs (FPDUs).  In 
effect, we “tunnel” DTN traffic through underlying CFDP. 

 
 

IV. EPOXI OPERATIONS 
The EPOXI (Deep Impact extended mission) spacecraft was 
a unique opportunity to demonstrate the DINET technology. 
The EPOXI spacecraft has a backup flight computer which is 
always on and available for communications.  
1) The prime flight computer controls all spacecraft 

functions, even while communication with the ground is 
through the backup flight computer. 

2) The EPOXI spacecraft already had the CFDP protocol 
implemented for file transfer to and from the ground. 

3) The EPOXI project was able to benefit from the DINET 
effort and had the personnel available for flight software 
implementation and test, as well as spacecraft operations 
during the DINET experiment. 

 
It was critical to the EPOXI project that the DINET 
experiment posed minimal risk to the EPOXI mission. The 
EPOXI flight team worked closely with the DINET team to 
design an implementation approach that minimized risk to 
the spacecraft. The DINET software was installed on the 
backup software partition on the backup flight computer. 
Once the backup flight computer was booted with the DNET 
software, the boot configuration was restored to the original 
EPOXI software load. In the event of a spacecraft problem 
requiring a flight computer side swap, the backup computer 
with the DIINET software would be re-booted as prime, with 
the original EPOXI software running. 
 
EPOXI operations during the month of DINET operations 
was performed by uploading a sequence to the spacecraft, 
which would switch the telemetry source to the SDST 
between the prime and backup flight computers, 
corresponding to the contact graph intervals installed during 
the DINET software upload. This made spacecraft operations 
“hands-off” during the DINET operational passes. The 
EPOXI flight control team would switch the updated DINET 
ground system software into place during the DINET 
operational passes and turn over the data-link to the DINET 
operations team. 
 

V. EXPERIMENT DESIGN 

The basic topology of DINET is shown in Figure 2 (i.e., two 
surface assets, a relay orbiter, and Earth). The surface assets 



are designated Mars and Phobos, and the Deep Impact (DI) 
spacecraft fills the role of the relay orbiter.  

 
 

Figure 2  DINET Topology 
 

Figure 3 shows how this topology was implemented during 
the experiment. The ION software with the DTN protocols 
was resident in each of the eleven network nodes.  

The 4-week period of DINET operations was divided into 
two configurations (a and b) of four tracking passes each. 
Configuration a had no injection of artificial data loss. 
During configuration b, 3.125% of all LTP segments were 
randomly discarded upon reception at the DI spacecraft and 
at each of the three DSOT nodes. On the fourth tracking pass 
of each segment, the contact between Phobos and EPOXI 
was omitted.  A brief “cross-link” contact between Phobos 
and Mars was scheduled for a time shortly before the 4th 
tracking pass of each experiment, providing an alternate path 
for data from Phobos. 
 

VI. DINET OPERATIONS 
An essential component of the DINET project is the 
Experiment Operations Center (EOC).  The EOC served to: 

• Produce Experiment Payload Data:  Input JPEG image 
files as a single file per bundle, Mark bundle priority, 
Meter output to specified data rate.  

• Consume Experiment Payload Data:  Store in local file 
system at node upon reception, Display image upon 
reception. 

• Consume Software Diagnostic Messages (ION logs):   
ION log messages transmitted to EOC software via 
TCP/IP socket, Received messages parsed & stored in a 
SQL database. 

• Consume Protocol Diagnostic Messages (BSRs):  BSRs 
transmitted from ION nodes to EOC software via the 
ION stack, Received messages parsed & stored in an 
SQL database. 

• EOC Bundle Network Configured / Monitored With 
GUI:  BSRs transmitted from ION nodes to EOC 
software via the ION stack, Received messages parsed 
& stored in a SQL database, Messages displayed 
through the GUI in real time. 

The EOC generated and received the test communications 
traffic as well as “out-of-DTN band” command and control 
traffic of the DTN experiment, stored DTN flight test 
information in a database, provided display systems for 
monitoring DTN operations status and statistics (e.g., 
bundle throughput), and supported query and analyses of the 
data collected. 

The DINET EOC was located within the JPL Protocol 
Technology Lab (PTL).  The PTL provides connectivity to 
other NASA centers and external entities, and is itself a node 
in the larger DTN Experiment Network (DEN).  The DINET 
EOC is envisioned to become a general tool in this broader 
context of experimental testing of DTN across a 
geographically dispersed user community. 

 

VII. FLIGHT VALIDATION RESULTS 
Four specific performance evaluation metrics were created  
to aid in the flight validation of DTN.  This section explains 
those metrics and reports on DINET’s performance against 
them. 

 

Terms of validation 
Let GXYZ denote the transmission opportunity – or contact – 
from node X to node Y on DINET pass #Z.  The duration of 
GXYZ in seconds, denoted by DXYZ, is the end time of GXYZ 
minus the start time of GXYZ .  The data rate of GXYZ in 
bytes per second is denoted by CXYZ.  The raw capacity of 
XYZ, denoted by KXYZ, is equal to DXYZ * CXYZ.  (Note that 
this is ideal capacity; the actual capacity of the link will be 
the ideal capacity reduced by actual signal noise on XYZ.  
Moreover, transient outages in transmission – as were 
experienced during four of the eight DINET transmission 
opportunities – necessarily reduce the total capacity of an 
opportunity.) 

 

The total data return capacity S72a from the EPOXI 
spacecraft (node 7) to the Earth subnet (node 2) while 
DINET is in configuration a is ∑K72Z for Z = 14.  The 
total data return capacity S72b from the EPOXI spacecraft 
(node 7) to the Earth subnet (node 2) while DINET is in 
configuration b  is ∑K72Z for Z = 58. 



The total data return capacity SM7a from the two Mars 
subnets (nodes 3 and 5) to the EPOXI spacecraft (node 7) 
while DINET is in configuration a is ∑KM7Z for Z = 14.  
The total data return capacity SM7b from the two Mars 
subnets (nodes 3 and 5) to the DI spacecraft (node 7) while 
DINET is in configuration b is ∑KM7Z for Z = 58. 

The EPOXI spacecraft is the bottleneck in the flow of data 
from the Mars subnets to the Earth subnet: the total science 
data return capacity of DINET in configuration a, SM2a, is 
either the capacity of the transmission opportunities from 
the Mars subnets to EPOXI or the capacity of the 
transmission opportunities from EPOXI to the Earth subnet, 
whichever is less.  That is,  SM2a = SM7a ┴ S72a and SM2b = 
SM7b ┴ S72b. 

The volume of priority-0 science data that is received at the 
Earth subnet over the entire course of DINET while in 
configuration a is denoted by R0a.  Similarly, the volume of 
priority-1 and priority-2 science data received at the Earth 
subnet over the entire course of DINET while in 
configuration a is denoted by R1a and R2a.  The raw volume 
of science data received at the Earth subnet over the entire 
course of DINET in configuration a, RTa, is the sum of 
these: RTa = R0a + R1a + R2a.  Similarly, RTb = R0b + R1b + R2b. 

The urgency-weighted volume of science data received at 
the Earth subnet over the entire course of DINET in 
configuration a, WTa, is the weighted sum: WTa = R0a + (2 * 
R1a) + (4 * R2a).  Similarly, WTb = R0b + (2 * R1b) + (4 * 
R2b). 

The reference volume of priority-0 science data received at 
the Earth subnet while DINET is in configuration a, denoted 
by Q0a, is computed as RTa multiplied by the proportion of 
all image bundles that were published with priority 0 during 
this phase of the experiment.  (This is the proportion of RTa 
that we would expect to be priority-0 data, that is, the 
expected value of R0a if there were no reordering of data 
transmissions in the network due to priority.)  Similarly, Q1a 
= .60 * RTa and Q2a = .25 * RTa, and the same relationships 
can be expressed for the configuration-b phase of the 
experiment as well. 

The urgency-weighted reference volume of science data 
received at the Earth subnet while DINET is in 
configuration a, VTa, is the weighted sum: VTa = (.5 * Q0a) + 
Q1a + (2.0 * Q2a).  Similarly, VTb = (.5 * Q0b) + Q1b + (2.0 * 
Q2b). 

The size of the Interplanetary Overlay Network (ION) data 
store at each node X, IX, is a DINET configuration 
parameter.  The size of the traffic storage allocation AX at 
each node X is computed by AX = .6 * IX. 

The total unassigned space SXZ at each node X for pass Z 
was reported by each node at least once on each day on 
which there was a tracking pass. 

A path from node A to node B while DINET is in 
configuration a is any series of J distinct contacts GX(1)Y(1)a,  
GX(2)Y(2)a, … GX(J)Y(J)a  such that (a) X1 = A, (b) YJ = B, (c) XN 
(where N > 1) = YN-1, and (d) the start time of  GX(N)Y(N)a 
(where N > 1) >= the stop time of GX(N-1)Y(N-1)a.  The net 
capacity for a given path is the smallest value of contact 
capacity among all the contacts included in that path. 

A multipath is a set of zero or more paths from node A to 
node B.  Formally: 

• The net capacity for a multipath containing zero paths is 
zero. 

• The net capacity for a multipath that is formed by adding 
a path to a multipath is the sum of the net capacities of the 
path and multipath or the smallest value of contact 
capacity among all contacts that are common to the path 
and multipath, whichever is less.  

 
Metric 1 – Path utilization rate (U) 

Path utilization rate for DINET in configuration a is given 
by Ua = RTa / SM2a.  It measures the effectiveness of 
automatic forwarding, custody transfer, and delay-tolerant 
retransmission. 

Validation criteria: 

Ua > 90%.  (DTN uses both high-rate and low-rate links 
efficiently.) 

Ub > 90%.  (DTN remains efficient despite an increase in 
the rate of data loss.) 

Findings: 

Analysis of the DINET experiment log indicates that Ua 
was 76.2% and Ub was 72.4%.   

Note, however, that passes 2 and 8 were underutilized 
due to insufficiency of offered uplink data as discussed 
later, so their path utilization rates don’t accurately 
reflect protocol efficiency.  Additionally, note that 
about 20% of available uplink capacity was consumed 
by link service overhead, mainly telecommand coding.  
When only passes 1, 3, 4, 5, 6, and 7 are considered and 
all non-DTN overhead is subtracted from available 
transmission capacity, Ua and Ub are 97.4% and 92.5% 
respectively.  With these provisos, both validation 
criteria were satisfied. 

Note that the increased data loss rate in configuration b 
was found to correlate to a reduced path utilization rate 
as expected. 

 
Metric 2 – Delivery acceleration ratio (G) 



The delivery acceleration ratio for configuration a is given 
by Ga = WTa / VTa.  It measures the effectiveness of the 
priority system. 

Validation criteria: 

Ga > 1.05  (Prioritization accelerates the delivery of 
urgent data.) 

Gb > 1.1  (The advantage of prioritization increases 
with the rate of data loss.) 

Findings: 

Analysis of the DINET experiment log indicates that Ga 
was 1.10 and Gb was 1.12.  Both validation criteria 
were satisfied. 

 
Metric 3 – ION node storage utilization 

Retention of a stable margin of unassigned space at each 
node measures the effectiveness of congestion control. 

Validation criteria: 

The total number of bundles for which custody is refused 
anywhere in the network for the reason “depleted 
storage”, throughout each configuration, is always zero.  
(We never run out of storage anywhere.) 

NX7 = NX6 for all values of X.  (Storage utilization 
stabilizes over the course of network operations.) 

Findings: 

Analysis of the DINET experiment log indicates that 
both validation criteria were satisfied, except that NX7 
was 156,816 bytes less than NX6 for node 10 (only).  N10 
had remained constant from passes 4 through pass 6.  
We suspect that some new functionality requiring 
additional storage space – possibly not related to the 
DTN protocols – was initially exercised on node 10 after 
pass 6 and prior to pass 7; analysis is continuing. 

 
Metric 4 – Multipath advantage 

The multipath advantage MAB for traffic on the multipath 
from A to B conferred by the addition of a path is computed 
as the net capacity of the augmented multipath divided by 
the net capacity of  the multipath excluding the added path, 
minus 1.  When routing is static, all paths must necessarily 
comprise contacts between the same pairs of nodes in the 
same sequence; this precludes the addition of other paths to 
the multipath, limiting total multipath capacity.  Multipath 
advantage therefore measures the effectiveness of dynamic 
routing. 

Validation criteria: 

The multipath advantage for traffic from node 20 to 
node 8 that is conferred by the cross-link contacts 

between nodes 10 and 6 is greater than 20%.  
(Dynamic routing among multiple possible paths 
increases the total network capacity from Phobos to 
Earth.) 

Findings: 

The computed multipath advantage for traffic from 
node 20 to node 8 through the entire DINET 
experiment is 35%.  Thus, the validation criterion was 
satisfied.  Note, however, that errors in the 
implementation of dynamic routing prevented the 
expression of this advantage in improvements in 
delivery acceleration ratio.  This metric will be revisited 
in future DINET experiments. 
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Figure 1  ION General Processing Flow 
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Figure 3  DINET Topology as Physically Implemented 
Send images from nodes 12 to node 8 via nodes 6, 3, 7, 2, 4.  Also send images from nodes 20 to node 8 via nodes 10, 5,7, 2, 
4. BRS = Bundle Relay Service; LTP = Licklider Transmission Protocol; UDP = user datagram protocol  
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