
Active Learning for Directed Exploration of Complex Systems

Michael C. Burl Michael.C.Burl@jpl.nasa.gov

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

Esther Wang eswang@caltech.edu

California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125

Abstract

Physics-based simulation codes are widely
used in science and engineering to model
complex systems that would be infeasible to
study otherwise. Such codes provide the
highest-fidelity representation of system be-
havior, but are often so slow to run that in-
sight into the system is limited. For exam-
ple, conducting an exhaustive sweep over a
d-dimensional input parameter space with k-
steps along each dimension requires kd sim-
ulation trials (translating into kd CPU-days
for one of our current simulations). An al-
ternative is directed exploration in which the
next simulation trials are cleverly chosen at
each step. Given the results of previous
trials, supervised learning techniques (SVM,
KDE, GP) are applied to build up simpli-
fied predictive models of system behavior.
These models are then used within an ac-
tive learning framework to identify the most
valuable trials to run next. Several active
learning strategies are examined including a
recently-proposed information-theoretic ap-
proach. Performance is evaluated on a set
of thirteen synthetic oracles, which serve as
surrogates for the more expensive simulations
and enable the experiments to be replicated
by other researchers.

1. Introduction

Many complex processes cannot be studied directly
for a variety of reasons including: cost, safety, non-
repeatability (e.g., destructive testing), lack of control
over relevant variables (e.g., conditions affecting global

Appearing in Proceedings of the 26 th International Conference on Machine

Learning, Montreal, Canada, 2009. Copyright 2009 California Institute of

Technology. Government sponsorship acknowledged.

climate), inability to replicate appropriate conditions
in a laboratory environment, and so on. Physics-based
numerical simulations offer the only practical means
to model and study many of these systems. The in-
ternal logic of a simulation code frequently takes the
form of coupled partial differential/difference equa-
tions that describe the interactions between a large
set of elemental nodes or particles. For example, the
planetary physics simulations of Durda et al (2004)
use a Smooth Particle Hydrodynamics (SPH) code
to model the propagation of energy and fragmenta-
tion during the initial collision between two asteroids
followed by an efficient N-body gravitational code to
model the subsequent interactions between the result-
ing fragments.

For our purposes, we are not so interested in the de-
tailed internals of the simulation code; we simply treat
the simulator as a black box that takes input parame-
ters and produces raw output. If necessary, a “grading
script” can be introduced to evaluate and transform
the raw output of the simulator into a binary-valued
decision indicating whether the simulation trial pro-
duced a desired outcome (+1) or not (−1). Different
grading scripts can address various scientific questions
within the scope of a single simulator; however, to sim-
plify the terminolgy, we will take “simulator” to mean
“simulator-grading script combination”.

A toy problem considered in the experiments is the
classic inverted pendulum on a cart studied in con-
trol theory (Kwakernaak & Sivan, 1972). The goal is
to balance the stick (inverted pendulum) in a vertical
position by moving the cart back and forth. The in-
put to this “simulator” consists of four state feedback
gain coefficients, and the output is a +1 if the result-
ing controller succeeds in balancing the stick and a −1
if it fails. Although in this example a learner could
plausibly receive a real-valued signal indicating how
close the control system was to succeeding (or failing),
we restrict our attention to the situation in which the

Active Learning for Directed Exploration of Complex Systems

learner is only informed of a binary-valued outcome,
as this assumption better fits our actual problem. Us-
ing simulations and directed exploration, we attempt to
efficiently learn the set of all controllers that stabilize
the system (produce a +1 output).

1.1. Related Work

Active learning has received considerable attention in
the machine learning community dating back to the
work of MacKay (1992) and Cohn et al. (1994). These
techniques have been applied with some success to the
problem of efficiently learning a predictive model of a
continuous-valued output, i.e., in the regression set-
ting. For example, Gramacy et al. (2004) used non-
stationary Gaussian process trees to explore a compu-
tational fluid dynamics simulation of a NASA reentry
vehicle. Pfingsten (2006) used a Bayesian active learn-
ing technique to assist in analyzing micro-mechanical
sensors. A research area known as Design and Anal-
ysis of Computer Experiments (DACE) (Sacks et al.,
1989) uses statistical methods, including kriging, to
construct surrogates to deterministic computer mod-
els. However, outside of our own pilot work (Burl
et al., 2006), there has been little effort directed toward
using active learning to efficiently explore simulations
that provide binary-valued outputs.

The directed exploration problem arises not only for
simulators, but also for physical systems that are capa-
ble of autonomously performing experiments. Knuth
et al. (2007) considered a problem in which a robot arm
with a light sensor sequentially makes measurements
within its workspace to efficiently determine the size
and location of a target region. Nested sampling and
Bayesian adaptive estimation were used, but the tech-
nique has not been demonstrated outside of a fairly
limited hypothesis space consisting of circular disks.
Their approach is closely related to the Bayesian Ex-
perimental Design philosophy used in (Veeramacha-
neni et al., 2006; Olivetti, 2008). Guestrin et al. (2005)
consider the problem of optimal sensor placement us-
ing Gaussian Processes and a mutual information cri-
terion. They conclude that the sensors should be
spread evenly throughout the domain since the pos-
terior variance in their predictions does not depend on
the observed sensor values. However, in the classifi-
cation setting that we consider, the observed “sensor
values”, i.e., the outcomes of simulator trials, are crit-
ical in deciding where to sample next.

2. Approach

The simulator takes as input a vector of parameters,
θ, defined over a continuous-valued input domain, Θ,

and, with the help of a grading script, outputs a
binary-valued indicator of whether the simulation trial
produced a desired outcome (+1) or not (−1). We
denote the end-to-end function from input to output
as q(θ). It is well known that some dynamical sys-
tems are chaotic; for such systems small variations in
θ could produce very different values from q . We do
not consider such systems, nor do we consider noisy
systems where the value returned for a given input θ

varies from one run to the next. Instead, we assume a
deterministic simulator that has some underlying spa-
tial coherence (spatial correlation, spatial structure,
continuity) in the q(·) function.

2.1. Approximation from Samples

The Nyquist Sampling Theorem, a fundamental result
from signal processing, states that a band-limited sig-
nal can be exactly represented by its samples provided
that the sampling rate is high enough. Because of
our spatial coherence assumption, an oracle will con-
sist mainly of low spatial frequency regions (except, of
course, for step edges at the transition between areas
of +1 and −1); hence, there is some hope that the
function can be well-approximated through a finite set
of samples. Results from computational learning the-
ory, such as the Support Vector Machine (SVM) of
Vapnik (1995), also suggest that one can learn any
well-behaved function from a set of training data. If
all of the grid points and corresponding labels from
the example above are supplied to an SVM learning
algorithm as training data, a relatively small subset of
the data, i.e., the support vectors, will be sufficient to
define a function that agrees almost everywhere with
the true function q(·).

For the simulation problem, we want to construct an
approximation, q̂(θ), to q(θ) such that q̂(·) agrees with
q(·) over most of the input domain. Further, the func-
tion q̂(·) will be defined from training examples: input-
output pairs that are in essence samples in the sig-
nal processing sense1 from the true function q(·). Al-
though one could select these samples through (i) a
grid strategy in which trial points are spread evenly
across the input domain or (ii) a random strategy in
which trial points are chosen at random within the do-
main, we believe that a more informative set of points
can be actively selected by taking into account the cur-
rent state of knowledge.

Thus, our basic approach consists of predictive mod-
eling plus active learning. The physics-based sim-
ulation is used as an oracle to sequentially gener-

1There is no constraint, however, that the samples be
regularly spaced.

Active Learning for Directed Exploration of Complex Systems

ate labeled training data in the form of input-output
pairs. At each step or round, the algorithm uses
a supervised learning algorithm to form a simplified
predictive model based on currently available train-
ing data. However, because the simulations are so
computationally-demanding (a current problem, for
example, takes one CPU-day per run), it is critical
to get the most out of each simulation trial. An active
learning algorithm then chooses an unlabeled point
that would be most valuable (in some sense) if it were
labeled (by a run through the simulator).

2.2. Predictive Models

A number of predictive models have been developed
within the machine learning community. We use the
term to refer to q̂(·), the surrogate function that is sup-
posed to approximate the input-output relationship of
the simulator-grading combination. As more data is
acquired through ongoing runs of the simulator, the es-
timate for q̂ will change (hopefully improve!); hence, a
superscript (r) will be added to q̂ to designate the esti-
mated landscape function after the r-th example from
the simulator has been observed. Also, since we re-
cover q̂(·) through a learning procedure that typically
depends on additional hyperparameters, e.g., kernel

type, kernel bandwidth, we use q̂
(r)

λ
(·) to designate the

estimated function after the r-th trial using hyperpa-
rameters λ.

Although ultimately the surrogate function will be re-
quired to produce binary-valued labels (+1) or (−1),
we prefer to think of q̂(·) as producing a continuous-
valued output that can be thresholded at different
values to produce a receiver operating characteristic
(ROC) curve. We consider three different types of pre-
dictive models for the surrogate function: support vec-
tor machines (SVM), kernel density estimation (KDE),
and Gaussian processes (GP).

2.2.1. Support Vector Machines (SVM)

Since their introduction by Vapnik, SVMs have been
extensively studied and reported on. Learning an SVM
from training data involves solving a quadratic pro-
gramming problem. We use the libsvm implementa-
tion (Chang & Lin, 2001) in our work. Hyperparam-
eters for the SVM learning problem include the type
of kernel (RBF, polynomial, etc.), any kernel specific
parameters (RBF bandwidth), and the regularization
constant (C). The learned model consists of some
number ns of support vectors si, weights βi, and a
scalar offset b. The decision statistic is defined as fol-

lows:

q̂(θ) = −b +

ns
∑

i=1

βiK(θ, si) (1)

where θ is a point in input space and K(·, ·) is the
kernel function. Note that we have omitted the usual
sgn(·) function around the right hand side to preserve
the continuous-valued decision statistic. We could use
a logistic function as in (Platt, 1999) to transform this
into a pseudo-probability.

2.2.2. Kernel Density Estimation (KDE)

With kernel density estimation (KDE), which is also
known as the Parzen Window Technique, we attempt
to directly estimate the posterior probability that a
point belongs to the positive or negative class. This is
accomplished by modeling the class-conditional prob-
ability densities. KDE estimates the posterior proba-
bility for the label t of a point z as follows:

p(t = +1|z,X,y) =
S+(z)

S+(z) + S−(z)
(2)

where S+(z) = α+ +
∑

X+
K(z,xi) and S−(z) = α− +

∑

X
−

K(z,xj). X+ is the set of instances in X that
have +1 labels and X− is the set of instances in X that
have −1 labels. The scalar values α+ and α− are used
in Bayesian fashion to define a prior probability that
must then be supported (or overturned) by the actual
data. Active learning requires frequent update of the
classifier given a newly selected training example. It
is clear from Equation 2 that KDE allows a simple
recursive update.

2.2.3. Gaussian Processes (GP)

Let r be a (hidden) random variable that represents
a continuous-valued version of the label t of z. The
posterior probability density over r given z and the
training set is:

p(r|z,X,y) = N
(

r; µr|z,X,y, σ2
r|z,X,y

)

(3)

where N represents the normal distribution. The con-
ditional mean and covariance are as follows:

µr|z,X,y = K(z,X) · K(X,X)−1 · y (4)

σ2
r|z,X,y=K(z, z)−K(z,X)K(X,X)−1K(X, z) (5)

Integrating the posterior probability distribution over
r from 0 to ∞ provides a probability for the event
{t = +1}.

p(t = +1|z,X,y) =

∫ ∞

0

p(r|z,X,y) dr (6)

= 1−Φ(0; µr|z,X,y, σ2
r|z,X,y) (7)

Active Learning for Directed Exploration of Complex Systems

where Φ is the cumulative distribution function of the
Gaussian distribution. As with KDE, the GP classifier
allows for a relatively straightforward recursive update
(in particular, the inverse covariance can be efficiently
updated using the Block Matrix Inversion Lemma).
The overall cost is roughly O(PM + P 2), where P is
the number of training examples and M is the number
of different values of z.

2.3. Active Learning Strategies

2.3.1. Passive Learning (PAS)

In passive learning, the next point is randomly choosen
from the remaining set of unlabeled points. In con-
trast, in active learning we choose the next point ac-
cording to some value criterion.

2.3.2. Most Confused Point (MCP)

A common active learning strategy (Tong & Koller,
2001) chooses the unlabeled point whose label is most
uncertain given current state of knowledge. Let q̂(r)(θ)
represent the probability that θ should be assigned to
class +1 given information up to round r. Then an
MCP strategy would choose:

θMCP = arg min |q̂(r)(θ) − 0.5| (8)

(For SVM, this expression assumes the raw hyperplane
distance has been converted into a pseudo-probability.)

Alternatively, we could convert the probabilities into
a single point entropy

H(p) = −p log2 p − (1 − p) log2(1 − p) (9)

and then select the point with maximum entropy.

2.3.3. Most Informative Point (MIP)

Even if the label of a particular point is highly uncer-
tain, knowledge of its true label may have little lever-
age over other unlabeled points. Consider a point A

that falls precisely between a well-understood region
of positive examples and a similar region of negative
examples. Knowing the label of A may not be very
valuable because A does not have much influence over
the other unlabeled points. Now consider a point B

that is in an unexplored cluster of points far away from
any currently labeled points. Knowing the label of B

may be extremely valuable because the other points in
the cluster would presumably belong to the same class.
Thus, knowing this label simultaneously removes un-
certainty about the labels of a many other points.

The basic MIP idea, as developed in (Holub et al.,
2008), is as follows. Suppose we have a set of training

instances X with known labels y ∈ {−1,+1}. From
this training set, we can learn a classifier that makes
a probabilistic prediction about the label t of a test
point z. The uncertainty about t given the training
instances and training labels can be measured with
the binary entropy function H(·) from Equation 9:

H(t|z,X,y) = H(p) (10)

where p is the classifier’s estimate of the probability
that the label of z is +1.

Now, suppose that we have the ability to “look ahead”
and add another point u to the set of training in-
stances citeLindenbaum04. We do not yet know the
label of this new point, only the probability that u

will have label v = +1. We can compute the uncer-
tainty about the label t of z given the original train-
ing instances (X), the training labels (y), and the new
training instance (u) along with the hypothesized label
v = +1. Using the hypothesized label v = −1, the un-
certainty under the same conditions can be computed.
Then, the expected uncertainty is given by:

H(t|u) = Ev {H(t|z,X,y,u, v)} (11)

= H(t|z,X,y,u, v = +1) · p(v = +1|u,X,y) +

H(t|z,X,y,u, v = −1) · p(v = −1|u,X,y) (12)

The expected information gain, ∆I, about the label t

is the expected amount of uncertainty that would be
removed by incorporating the new instance u into the
training set:

∆I(t; u) = H(t|z,X,y) − H(t|z,X,y,u) (13)

This represents the expected amount of information
(in bits) that we will gain about t by incorporating
u into the training set. With multiple unlabeled in-
stances (different points t), we can sum the expected
information gain to determine the overall value of in-
corporating u into the training set.

Since both KDE and GP directly provide probability
estimates for points, we consider using these meth-
ods with MIP. Two approaches could be tried to make
SVM compatible with MIP. The logistic regression ap-
proach of Platt could be used to convert the SVM hy-
perplane distance into a pseudo-probability. Alterna-
tively, the committee of classifiers approach introduced
in (Holub et al., 2008) could be used to construct prob-
abilities from a hard-classifier. However, this approach
requires two levels of lookahead, making it computa-
tionally impractical. We have yet to evaluate either of
these approaches for SVM.

Active Learning for Directed Exploration of Complex Systems

2.3.4. Randomization Meta-Strategy (META)

We also considered a meta-strategy in which the base
active learning algorithm does not make a definite
choice about which point to deliver to the oracle; in-
stead, the base algorithm simply provides a ranking
of the points or a weighted preference over the points.
The ranking (or weighted preference) is converted to
a probability distribution over the unlabeled points.
The actual point delivered to the oracle is picked ran-
domly according to this probability distribution. We
only evaluated the META stategy with SVM. Other
meta-learning strategies are considered by Baram and
Luz (Baram et al., 2004).

3. Experimental Results

3.1. Oracles

There is a significant cost in time and computer re-
sources in acquiring simulation data. In many cases,
the resulting datasets are proprietary making it diffi-
cult to use such data for algorithm development or
head-to-head comparisons. Hence, our experiments
were conducted using a set of surrogate oracles2. All
oracles are defined over the domain Θ = [−1,+1]d,
where d is the dimensionality (number of input param-
eters). Figure 1 (at the end of the paper) illustrates
the datasets.

3.2. Evaluation Methodology

Nine methods were evaluated on the thirteen surro-
gate oracles shown in Figure 1: SVM-PAS, SVM-MCP,
SVM-META, KDE-PAS, KDE-MCP, KDE-MIP, GP-
PAS, GP-MCP, GP-MIP. Each method was run seven
times on each of the oracles for 400 rounds of active
learning. To reduce the run time of the experiments,
the active learning algorithms considered only a subset
of 100 points from the unlabeled pool at each round.

All three of the supervised learning algorithms used
the same RBF kernel (K(x1,x2) = exp(−γ||x1 −
x2||2)) with parameter γ = 50. For SVM the regu-
larization parameter was set to C = 10. For KDE, the
values of α+ and α− were set to 0.1. For GP, the value
of the noise standard deviation σn was set to 0.1.

For each of the methods, a classifier was trained us-
ing the sequence of points selected by active learning
during round 1 through round r. The resulting classi-

fier, q̂
(r)
λ , was applied over a fine discretization of the

full domain of the oracle. At each discretized point, a

2Matlab code for reproducing these oracles is available
by request from the author.

real-valued number is produced by the classifier. For
KDE and GP, this number is an estimate of the poste-
rior probability that the point is in the positive class,
while for SVM, the number is the signed hyperplane
distance as in Equation 1.

ROC curves are calculated for each method and oracle,
as a function of the number of rounds, r, of active
learning. Figure 2 shows ROC curves for GP-MCP on
Oracle 7. Note that each curve has been resampled
using a fixed set of points on the Pfa axis from 0 to 1
spaced in steps of 0.0005.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pfa

Pd

Rounds = 50
Rounds = 100
Rounds = 200
Rounds = 400

Figure 2. ROC curves on Oracle 7 for GP-MCP. Curves
are color-coded by number of rounds (r). Seven trials were
conducted for each value of r to show the variability.

Traditionally, active learning algorithms are evaluated
with learning curves that show the classifier accuracy
as a function of round. However, our oracles and the
simulator problem in general have a significant imbal-
ance between the positive and negative classes, with
the negatives greatly outweighing the positives. A
classifier that simply says −1 regardless of the input
point will already achieve a high degree of agreement
with q(·). Instead of using classificaton accuracy, we
use the ROC curves to identify the probability of de-
tection Pd at a fixed false alarm rate and plot Pd versus
rounds. Figure 3 shows the modified learning curves
for each of the nine methods on Oracle 9.

3.3. Discussion

For each of the supervised learning techniques, the
results clearly show that active learning outperforms
passive learning. For example, Figure 4, column 1
shows KDE using MIP (information gain) for active
learning is almost always better than KDE using pas-
sive learning on all thirteen oracles at rounds 50, 100,
and 200.

Looking at additional pairs of box plots (not shown)
or at Tables 1-3, we can also conclude that the per-
formance of MCP active learning is approximately
the same across the three different supervised learn-

Active Learning for Directed Exploration of Complex Systems

0 50 100 150 200 250 300 350 400 450
0.4

0.5

0.6

0.7

0.8

0.9

1

Round

Pd

SVM−PAS
SVM−MCP
SVM−META
KDE−PAS
KDE−MCP
KDE−MIP
GP−PAS
GP−MCP
GP−MIP

Figure 3. Learning curves for each of the nine methods on
Oracle 9. Each curve shows the probability of detection
(Pd) at a fixed false alarm probability (Pfa = 0.05) as a
function of the number of rounds of active learning. Ex-
cept for SVM-MCP, the active methods clearly outperform
passive. KDE-MCP reaches 90% Pd at round 100, while
KDE-PAS doesn’t reach this level until after round 300,
representing speedup by a factor of three.

ing techniques. Perhaps surprisingly, MCP appears to
be somewhat better than the more sophisticated MIP.
A limitation of MIP is that it scales roughly quadrat-
ically with the size of the unlabeled pool. To make
this approach computationally feasible, we considered
a relatively small random subset of the full unlabeled
pool at each round. Further work is needed to make
this method more scalable. One possibility might be
to use MCP as a preliminary filter to prioritize which
points should be evaluated with the more expensive
information gain criterion.

SVM-META usually provided a benefit over SVM-
MCP. For Figure 3, which corresponds to Oracle 9,
SVM-MCP performs worse than passive learning.
Since Oracle 9 has multiple disconnected regions, we
believe that SVM-MCP is finding one of the regions
and focusing on refining the boundary of this region
without sufficiently exploring the rest of the domain
(effectively a sampling selection bias issue (Zadrozny,
2004)). Figure 4, row 2 shows that SVM-META per-
forms comparably to GP-MCP.

4. Conclusion

Directed exploration can be used to efficiently under-
stand the behavior of complex systems modeled by nu-
merical simulations. The simulator is used as an oracle
to sequentially generate training data (input-output
pairs); a simplified predictive model of the system is
learned from the currently available training data and
this model is used in an active learning framework to
choose the best simulation trials to run next. Perfor-
mance evaluation using active learning on a challeng-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
12

3

45
6

7

8

9

10

11
12

13

KDE−PAS

K
D

E
−

M
IP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 12345 6
7 8
910

11
12

13

KDE−PAS

K
D

E
−

M
IP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
12

34
5

6

7

8
9

10

11

12

13

SVM−META

G
P

−
M

C
P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 1234567 8
910

11

12

13

SVM−META

G
P

−
M

C
P

Figure 4. Head-to-head comparison between two methods
on all oracles. Each box corresponds to one oracle; box
size indicates standard error. Points above the red line
favor the y-axis method, below the red line favors the x-
axis method. (a) KDE-MIP vs. KDE-PAS (r = 50). (b)
KDE-MIP vs. KDE-PAS (r = 200). (c) GP-MCP vs.
SVM-META (r = 50). (d) GP-MCP vs. SVM-META
(r = 200). KDE-MIP dominates KDE-PAS. GP-MCP and
SVM-META perform similarly.

ing set of oracles showed a significant improvement
over passive learning, in some cases showing a speedup
by a factor of three in the number of rounds required
to reach 90% probability of detection at a false alarm
rate of 0.05.

Acknowledgement

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Ad-
ministration. The authors also thank the anonymous
reviewers and B. Enke and W.J. Merline of SwRI.

References

Baram, Y., El-Yaniv, R., & Luz, K. (2004). Online
choice of active learning algorithms. JMLR, 5, 255–
291.

Burl, M. C., DeCoste, D., Enke, B. L., Mazzoni, D.,
Merline, W. J., & Scharenbroich, L. (2006). Auto-
mated knowledge discovery from simulators. SIAM

International Conference on Data Mining.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: A library
for support vector machines.

Cohn, D., Atlas, L., & Ladner, R. (1994). Improving

Active Learning for Directed Exploration of Complex Systems

generalization with active learning. ML, 15, 201–
221.

Durda, D. D., Bottke, W. F., Enke, B. L., Merline,
W. J., Asphaug, E., Richardson, D. C., & Leinhardt,
Z. M. (2004). The formation of asteroid satellites in
large impacts: results from numerical simulations.
Icarus, 170, 243 – 257.

Gramacy, R. B., Lee, H. K., & Macready, W. G.
(2004). Parameter space exploration with gaussian
process trees. ICML.

Guestrin, C., Krause, A., & Singh, A. P. (2005). Near-
optimal sensor placements in gaussian processes.
ICML.

Holub, A., Perona, P., & Burl, M. C. (2008). Entropy-
based active learning for object recognition. CVPR

Workshop on Online Learning for Classification.

Knuth, K., Erner, P., & Frasso, S. (2007). Designing
intelligent instruments. MaxEnt, AIP Conference

Proceedings 954 (pp. 203–211).

Kwakernaak, H., & Sivan, R. (1972). Linear optimal

control systems. Wiley-Interscience.

MacKay, D. (1992). Information-Based Objective
Functions for Active Data Selection. Neural Com-

putation, 4, 590–604.

Olivetti, E. (2008). Sampling strategies for expensive

data. Doctoral dissertation, U. of Trento.

Pfingsten, T. (2006). Bayesian active learning for sen-
sitivity analysis. Lecture Notes in Computer Sci-

ence, 4212, 353.

Platt, J. (1999). Probabilistic outputs for support vec-
tor machines and comparison to regularized likeli-
hood methods. Advances in Large Margin Classi-

fiers (pp. 61–74). MIT Press.

Sacks, J., Welch, W., Mitchell, T., & Wynn, H. (1989).
Design and Analysis of Computer Experiments. Sta-

tistical Science, 4, 409–423.

Tong, S., & Koller, D. (2001). Support vector machine
active learning with applications to text classifica-
tion. Machine Learning Research, 2, 45–66.

Vapnik, V. (1995). The nature of statistical learning

theory. Springer, New York.

Veeramachaneni, S., Olivetti, E., & Avesani, P. (2006).
Active sampling for detecting irrelevant features.
ICML (pp. 961–968).

Zadrozny, B. (2004). Learning and evaluating classi-
fiers under sample selection bias. ICML.

Table 1. Probability of detection, Pd, for the SVM methods
on each oracle for Pfa = 0.05 at round=50.

OID SVM-PAS SVM-MCP SVM-Meta

1 0.918 ± 0.028 0.975 ± 0.005 0.988 ± 0.004
2 0.867 ± 0.037 0.979 ± 0.004 0.951 ± 0.019
3 0.774 ± 0.038 0.886 ± 0.043 0.908 ± 0.032
4 0.713 ± 0.044 0.636 ± 0.033 0.782 ± 0.033
5 0.653 ± 0.054 0.811 ± 0.035 0.872 ± 0.029
6 0.794 ± 0.044 0.843 ± 0.046 0.851 ± 0.040
7 0.612 ± 0.049 0.775 ± 0.019 0.748 ± 0.045
8 0.647 ± 0.047 0.810 ± 0.022 0.823 ± 0.021
9 0.591 ± 0.037 0.561 ± 0.101 0.602 ± 0.072
10 0.603 ± 0.110 0.866 ± 0.015 0.713 ± 0.031
11 0.287 ± 0.046 0.316 ± 0.064 0.354 ± 0.059
12 0.349 ± 0.070 0.268 ± 0.055 0.315 ± 0.054
13 0.238 ± 0.096 0.336 ± 0.144 0.392 ± 0.167

Table 2. Probability of detection, Pd, for the KDE methods
on each oracle for Pfa = 0.05 at round=50.

OID KDE-PAS KDE-MCP KDE-MIP

1 0.880 ± 0.030 0.988 ± 0.006 0.962 ± 0.021
2 0.865 ± 0.045 0.972 ± 0.009 0.981 ± 0.005
3 0.772 ± 0.043 0.947 ± 0.018 0.929 ± 0.019
4 0.713 ± 0.035 0.813 ± 0.048 0.822 ± 0.015
5 0.642 ± 0.047 0.795 ± 0.040 0.832 ± 0.033
6 0.763 ± 0.051 0.890 ± 0.015 0.885 ± 0.017
7 0.588 ± 0.052 0.731 ± 0.023 0.634 ± 0.028
8 0.674 ± 0.055 0.793 ± 0.023 0.815 ± 0.015
9 0.622 ± 0.038 0.725 ± 0.035 0.615 ± 0.035
10 0.603 ± 0.079 0.781 ± 0.050 0.881 ± 0.029
11 0.264 ± 0.039 0.235 ± 0.057 0.204 ± 0.026
12 0.332 ± 0.071 0.513 ± 0.036 0.167 ± 0.028
13 0.246 ± 0.079 0.140 ± 0.054 0.235 ± 0.114

Table 3. Probability of detection, Pd, for the GP methods
on each oracle for Pfa = 0.05 at round=50.

OID GP-PAS GP-MCP GP-MIP

1 0.873 ± 0.027 0.955 ± 0.009 0.929 ± 0.008
2 0.857 ± 0.046 0.951 ± 0.012 0.924 ± 0.012
3 0.768 ± 0.041 0.890 ± 0.022 0.762 ± 0.029
4 0.730 ± 0.033 0.866 ± 0.016 0.709 ± 0.014
5 0.666 ± 0.044 0.810 ± 0.033 0.841 ± 0.012
6 0.744 ± 0.051 0.878 ± 0.011 0.620 ± 0.037
7 0.609 ± 0.050 0.720 ± 0.032 0.531 ± 0.030
8 0.682 ± 0.051 0.820 ± 0.025 0.834 ± 0.042
9 0.631 ± 0.040 0.758 ± 0.030 0.591 ± 0.020
10 0.603 ± 0.079 0.685 ± 0.055 0.798 ± 0.026
11 0.265 ± 0.040 0.250 ± 0.025 0.385 ± 0.014
12 0.334 ± 0.071 0.474 ± 0.024 0.339 ± 0.021
13 0.243 ± 0.078 0.029 ± 0.012 0.217 ± 0.082

Active Learning for Directed Exploration of Complex Systems

Oracle 1

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Oracle 2

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Oracle 3

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Oracle 4

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Oracle 5

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Oracle 6

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Oracle 7

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Oracle 8

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Oracle 9

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40

0

10

20

30

40
0

5

10

15

20

25

30

35

40

X

Oracle 10

Y

Z

0 5 10 15 20 25 30 35 40

0

10

20

30

40
0

5

10

15

20

25

30

35

40

X

Oracle 11

Y

Z

0 5 10 15 20 25 30 35 40

0

10

20

30

40
0

5

10

15

20

25

30

35

40

X

Oracle 12

Y

Z

1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Oracle 13

Figure 1. Thirteen oracles were used to evaluate the algorithms. (1)-(9) LevelSet2D (d = 2, P+ = 0.125); (10)-(12)
LevelSet3D (d = 3, P+ = 0.062); (13) Inverted Pendulum (d = 4, P+ = 0.007).

