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ABSTRACT

In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with
bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware
implementations and have minimum distances that grow linearly with block sizes. We cover various higher-
order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the
received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We
will compare various low-complexity demappers and provide simulation results for assorted coded-modulation
combinations on the additive white Gaussian noise and independent Rayleigh fading channels.

1. INTRODUCTION

The Jet Propulsion Laboratory (JPL) has been designing structured Low-Density Parity-Check (LDPC) Codes
based on protographs and circulants.1, 2 The JPL construction enables high-speed decoder implementations
because the component protographs that are the building blocks to the bigger code graph can be decoded in
parallel. The structure of the protograph then determines the threshold and error floor of the overall code.
Divsalar et al.3,4 recognized that a protograph described by simple accumulate and repeat operators can yield
codes with sharp waterfalls and low error floors. A family of accumulate repeat-by-4 jagged accumulate (AR4JA)
LDPC codes was subsequently proposed for near-Earth and Deep-Space applications5 The family offers codes
with rates of 1/2, 2/3, and 4/5, and with information block lengths of 1024, 4096, and 16384 bits. Word error
rate performance for the code family can be found in an IEEE Proceedings article by Andrews et al.2

The National Aeronautics and Space Administration (NASA) has established the Constellation project to
build a next generation spacecraft to replace the aging Space Shuttle. Design for the Crew Exploration Vehicle
(CEV) is underway to meet a scheduled launch date in 2014. Together with a new vehicle, NASA also plans
to modernize its communications infrastructure and thereby, deploy modern coded-modulation schemes. The
primary communications link for near-Earth manned missions is in the S-band and the bandwidth allocation
is no more than 10 MHz wide with 6 MHz being the norm. This work explores various bandwidth efficient
coded-modulation schemes suitable for high data rate near-Earth communications. More specifically, we take
8-PSK, 16-APSK, and 16-QAM modulations in different combinations with high rate LDPC codes and compare
these performances first on the additive white Gaussian channel (AWGN), then on the independent Rayleigh
fading channel. The independent Rayleigh fading model also can be used with a channel interleaver where
multiple codeword frames are interleaved prior to modulation. We show that proper demodulation and decoding
of bandwidth efficient coded-modulation can approach Channel Capacity. This paper is organized as follows. In
Section 2, we provide a brief description of the AR4JA LDPC code family. LDPC belief propagation decoders take
as input soft symbol information. In Section 3, we derive the expressions to compute the exact log likelihood ratios
(LLRs) of the demodulated soft symbols for each modulation scheme. We also provide simple low-complexity
approximations to the exact expressions that would incur only a small performance penalty. In Section 4, we
describe modeling of independent Rayleigh fading. In Section 5 we catalog the performances of various coded-
modulation schemes on the AWGN and the independent Rayleigh fading channel. In Section 6, we close this
paper with a few remarks.

∗*Stephanie Duy was a summer intern at JPL from May-August, 2008 and is currently an undergraduate senior in the Department
of Electrical and Computer Engineering at the University of Maine
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Figure 1. (a) A regular (2, 4) protograph. (b) Expand protograph by 2 to eliminate parallel edges.

2. THE FAMILY OF AR4JA LDPC CODES

A protograph is a bi-partite graph with a relatively small number of nodes. The AR4JA LDPC code is built
by making copies of a protograph and permuting the connecting edges. As an example, a simple (2, 4) regular
protograph and the “copy-and-permute” operation are illustrated in Fig. 1. Each component protograph of a
larger code can be treated by an independent decoding circuit. Therefore, this construction facilitates parallel
hardware implementation and enables a high speed decoder realization. Moreover, the AR4JA design also ensures
that the code’s minimum distance grows linearly with the block size.3, 6 The result is a family of codes that
exhibit very low error floors.

Decoding of binary LDPC codes iteratively refines the symbol reliabilities expressed in LLRs until all parity
checks are satisfied or a iteration limit is reached. An accurate computation of the LLRs is therefore key to
optimizing decoder performance and the derivation of the LLRs depend on the particular modulation scheme.

3. LDPC CODED-MODULATION

For binary coded-modulation schemes, channel symbols are demodulated by calculating the LLRs of the bits
that comprise a modulation symbol. A bit-wise LLR is the log ratio of the probability that a bit is 0 to the
probability that a bit is 1 conditioned on the channel observations. On the binary AWGN channel with BPSK
and QPSK transmissions, the LLR for each channel symbol is simply the channel observation scaled by 2A/σ2,
from here on referred to as the scaling factor. The signal amplitude is A and the AWGN noise variance is σ2. In
this Section, we provide demapping function that transforms the received in-phase and quadrature samples into
bit-wise LLRs for each bandwidth efficient modulation.

3.1 8-Phase Shift Keying (PSK)

In 8-PSK modulation, we consider a constellation with Gray code mapping where each neighboring 8-PSK symbol
on the modulation circle differs by one bit in the bit-to-symbol mapping. Therefore, the 8-PSK constellation sym-
bol in a counter clockwise direction would map to the bits

[

000, 001, 011, 010, 110, 111, 101, 100
]

.
We derive the bit LLR for each of the three bits representing the modulation phases. Let the received in-phase
and quadrature signal samples at the output of the matched filter after the AWGN channel be represented as:

I = A · cosφ + nI (1)

Q = A · sinφ + nQ. (2)

The modulation phase φ can be represented by φ (b2, b1, b0) which shows the dependency on the three bits b2, b1,
and b0, where b2 is the MSB and b0 is the LSB. The phase φ takes on the following values:

φ =
(2i + 1)π

8
, i = 0, 1, · · · , 7. (3)

Let λj represent the LLR for bit bj , j = 0, 1, 2, then we apply the Euclidean distance metric in the LLR
computation to arrive at

λj = ln

∑

b2,b1,b0:bj=0
exp

(

−1

2σ2

(

(I − A · cosφ (b2,b1b0))
2
+ (Q − A · sin φ (b2,b1b0))

2
))

∑

b2,b1,b0:bj=1
exp

(

−1

2σ2

(

(I − A · cosφ (b2,b1b0))
2
+ (Q − A · sin φ (b2,b1b0))

2

))
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Figure 2. Low-complexity LLR approximation for 8-PSK.

= ln

∑

b2,b1,b0:bj=0
exp

(

A
σ2 (I · cosφ (b2,b1b0) + Q · cosφ (b2,b1b0))

)

∑

b2,b1,b0:bj=1
exp

(

A
σ2 (I · cosφ (b2,b1b0) + Q · cosφ (b2,b1b0))

) . (4)

Note that in (4) the maximum term in the summation generally dominates over other terms in the summation.
Therefore, equation (4) can be closely approximated by

λj =
A

σ2

(

max
b2,b1,b0:bj=0

{I · cosφ (b2,b1b0) + Q · cosφ (b2,b1b0)} − max
b2,b1,b0:bj=1

{I · cosφ (b2,b1b0) + Q · cosφ (b2,b1b0)}
)

.

(5)
We shall refer to this simplified LLR computation as “approximation method 1.”

We can further reduce the approximation of the LLR for the Gray code mapping to a simpler expression
without the log or even the max operation. Take a look at Fig. 2. The boundary for the MSB being a bit 0 or
a bit 1 lies on the horizontal axis. That is, if the quadrature component of the received symbol is greater than
zero, it is likely that the transmitted symbol is one of the four symbols in the top half circle with the MSB 0. The
LLR for the MSB here should be greater than zero like the quadrature component. Otherwise, the quadrature
component of the received symbol is less than zero. The transmitted symbol is likely one of the four symbols
in the bottom half circle with the MSB 1. The LLR for the MSB here should be less than zero again like the
quadrature component. The confidence of the LLR is also proportional to the scaling factor given by the ratio of
the signal amplitude to the noise variance A/σ2. The middle bit has a similar derivation. Except in this case, the
middle bit 0 or 1 boundary is the vertical axis. If the in-phase component is greater than zero, then the middle
bit is likely a 0 and the LLR should be positive. Otherwise, the middle bit is likely a 1 and the LLR should be
negative. The observation for the LSB is a little different. If the magnitude of the in-phase component is larger
than the magnitude of the quadrature component (indicated by the two horizontal pies), the LSB is likely a 0
and the LLR should be positive. Otherwise, the quadrature component is larger than the in-phase component
(indicated by the vertical pies), the LSB is likely a 1 and the LLR should be negative. In all cases, the LLR is
proportional to the scaling factor A/σ2. More specifically we have

λ2 = α
A

σ2
Q (6)

λ1 = α
A

σ2
I (7)

λ0 = β
A

σ2
(|I| − |Q|) . (8)

The constants α and β are numbers selected through simulations. Our results show that the best performance
is obtained when α = 1/

√
2 and β = 1/

√
2 respectively. We shall refer to this simplified LLR computation as

“approximation method 2.” We will compare the performance of the three expressions in Section 5.



Figure 3. 16-APSK modulation with Gray mapping. The ratio of the radii is selected to maximize the Capacity of the
coded-modulation for each code rate.

3.2 16-Amplitude Phase Shift Keying (APSK)

If a higher spectral efficiency is desired, a larger Constellation can be used. Consider a 16-APSK modulation
with Gray code mapping as shown in Fig. 3. The symbols are spread across two concentric circles with two radii
R2 and R1. The ratio of the radii can be selected to maximize the coded-modulation capacity. The table in Fig.
3 gives the proper ratio of R2/R1 for some commonly used code rates.

For each channel observation the in-phase and quadrature components are defined as

I = Ab · cosφ + nI (9)

Q = Ab · sin φ + nQ (10)

where Ab is either R1 or R2. To derive the bit-wise LLR for 16-APSK, we again use the Euclidean distance
metric. We have to however, take into account that there are two possible amplitudes for the modulated symbols.
Let λj represent the LLR for bit bj, j = 0, 1, 2, 3, we have

λj = ln

∑

b3,b2,b1,b0:bj=0
exp

(

−1

2σ2

(

(I − Ab · cosφ (b2,b1b0))
2

+ (Q − Ab · sin φ (b2,b1b0))
2
))

∑

b3,b2,b1,b0:bj=1
exp

(

−1

2σ2

(

(I − Ab · cosφ (b2,b1b0))
2

+ (Q − Ab · sin φ (b2,b1b0))
2
))

= ln

∑

b3,b2,b1,b0:bj=0
exp

(

Ab

σ2

(

I · cosφ (b2,b1b0) + Q · cosφ (b2,b1b0) − Ab

2

))

∑

b3,b2,b1,b0:bj=1
exp

(

Ab

σ2

(

I · cosφ (b2,b1b0) + Q · cosφ (b2,b1b0) − Ab

2

)) . (11)

Here Ab is either R1 or R2 depending on the position of the modulation symbol represented by [b3, b2, b1, b0].
Like before, the maximum term in the summation generally dominates over other terms in the summation. And
equation (11) can be closely approximated by

λj =
Ab

σ2

(

max
b3,b2,b1,b0:bj=0

{I · cosφ (b2,b1b0) + Q · cosφ (b2,b1b0)} − max
b3,b2,b1,b0:bj=1

{I · cosφ (b2,b1b0) + Q · cosφ (b2,b1b0)}
)

.

(12)

3.3 16-Quadrature Amplitude Modulation (QAM)

We can label a 16-QAM constellation using Gray code mapping by treating each dimension separately as illus-
trated in Fig. 4. The distance between any two adjacent symbols in the in-phase or the quadrature direction
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Figure 4. 16-QAM with Gray code mapping.

is 2a and therefore, the minimum distance of the 16-QAM constellation is d = 2a. The average power of the
16-QAM constellation is

p =
1

4

(

a2 + a2
)

+
1

2

(

(3a)
2

+ a2

)

+
1

4

(

(3a)
2

+ (3a)
2
)

= 10a2. (13)

Thus, the minimum distance as a function of transmitted power is d =
√

4p
10

and with unit power, d = 2/
√

10.

We can again apply the Euclidean distance metric in the exact computation of the symbol LLRs for 16-QAM
similar to (11) where Ab = a

√
2, a

√
10, or 3a

√
2 depending on the constellation point. We could also estimate the

LLR expression using again a reasoning similar to one applied in deriving the 8-PSK approximation 2 expression
without the need to compute exponential of large numbers. For each of the bit positions, we can compute the
16-QAM LLR as

λ0 = αI (14)

λ1 = β (d − |I|) (15)

λ2 = αQ (16)

λ3 = β (d − |Q|) (17)

where α and β are again chosen empirically from simulation results and should be a function of the average
power of the constellation and the AWGN noise variance.

4. INDEPENDENT RAYLEIGH FADING CHANNEL

To model independent Rayleigh fading, we take our complex signal Ae−jφ and multiply it with a random Rayleigh
distributed variable ρ generated by summing together two independent Standard Normal random variables. More
specifically,

ρ =

√

x2

1
+ x2

2

2
(18)
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Figure 5. System mode for bandwidth efficient LDPC coded-modulation.

where x1, x2 ∼ η (0, 1) are Gaussian random variables with zero mean and unit variance. The variance of ρ is
normalized to

E
[

ρ2
]

=
1

2

(

E
[

x2

1

]

+ E
[

x2

2

])

= 1. (19)

Therefore, we do not have to re-normalize the SNR for our simulation results in the Rayleigh fading case. The
in-phase and quadrature channel observations become

I = Aρ · cosφ + nI (20)

Q = Aρ · sinφ + nQ. (21)

At the receiver, we assume perfect channel state information and thus, perfect knowledge of ρ for each symbol
out of the matched filer. To compute the symbol LLRs in the presence of independent Rayleigh fading, we simply
apply the knowledge of ρ in the same expressions derived earlier. In the 8-PSK case, we substitute Aρ for A in
equations (4) - (8). In the 16-APSK case, we substitute Abρ for Ab in equations (11) and (12). In the 16-QAM
case, we multiply the observations I and Q by ρ to get λ0 = αρI and λ2 = αρQ. We also multiply d by ρ to get
λ1 = ρ (ρd − |I|) and λ3 = ρ (ρd − |Q|). An illustration of our system model is given in Fig. 5.

5. PERFORMANCE

We catalog the simulated performance of various coded-modulation techniques discussed in this paper. We also
measure the penalty for the low-complexity LLR approximations presented earlier in Section 3.1.

5.1 AR4JA (1280,1024) LDPC Coded-Modulation with 8-PSK

5.1.1 AWGN Channel

We compare the performances of LLR computations using the exact expression, approximation 1, and approxi-
mation 2 for AR4JA (1280,1024) LDPC coded-modulation with 8-PSK on the additive white Gaussian channel
(AWGN) in Fig. 6(a). Again the exact expression is given by (4), approximation 1 is given by (5), and approxi-
mation 2 is given by (6) - (8). Looking at the zoomed-in plot of Fig. 6(b), we see that the “max” approximation
(or approximation 1) does not incur any additional penalty on the coded-modulation performance. The approxi-
mation 1 curve is nearly identical to the curve obtained with the exact LLR expression with variation rooted only
in the monte-carlo nature of the generated random noise. The penalty of approximation 2 is less than 0.1 dB in
signal-to-noise (SNR) ratio. By giving up this small coding gain, we can avoid the need to take the maximum
of various arguments or compute the exponential of large numbers. The complexity reduction of approximation
2 is evident even in our experiments since we are able to simulate to a lower error rate using approximation 2
than using approximation 1 or the exact LLR computation as seen in Fig. 6(a).

5.1.2 Independent Rayleigh Fading Channel

We repeat the simulations on the independent Rayleigh fading channel. Since we observed that LLR computation
using approximation 1 generated a result nearly identical to the exact LLR computation in Section 5.1.1, we
only collect results using approximation 1 and approximation 2 for the Rayleigh scenario. The curves are given
in Fig. 7(a). Notice again that the penalty of approximation 2 to approximation 1 is only 0.1 dB and the savings
in computation makes approximation 2 an attractive alternative to computing the exact LLR. We compare the
performance of this code-modulation combination on the independent Rayleigh channel to that measured on the
AWGN channel in Fig. 7(b) and observe an SNR gap of about 5 dB. The uncoded 8-PSK capacity gap between
AWGN and Rayleigh is around 4 dB so our coded-modulation gap is about 1 dB larger.
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Figure 6. (a) AR4JA (1280,1024) LDPC coded-modulation with 8-PSK on AWGN (b) Zoomed-in
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using a longer block code

5.2 AR4JA (5120,4096) LDPC Coded-Modulation with 8-PSK

5.2.1 AWGN Channel

We provide the performance of the AR4JA (5120,4096) coded-modulation with 8-PSK in Fig. 8(a) and compare
the result with the shorter AR4JA (1280,1024) code in Fig. 8(b). First, the error rate performance measured using
the approximations for this longer LDPC code agrees with the penalty of the short code. That is, approximation
1 produced a result nearly identical to computing the exact LLR while approximation 2 only incurred an extra
0.1 dB SNR gap. If latency is not an issue, a longer code can be used to obtain an additional coding gain.
Latency is typically dominated by the time required to collect a codeword length of bits. Therefore, latency
should not be a concern on Mbps high data rate links where the buffering delay even for the AR4JA (5120,4096)
code is only on the order of usecs especially when an extra 3/4 dB of coding gain can be had by simply using
a longer code in the same family. Also note that the longer LDPC code offers a sharper waterfall region where
the error rate falls faster with increasing SNR values as seen in Fig. 8(b).

5.2.2 Independent Rayleigh Fading Channel

We repeat the simulations of the AR4JA (5120,4096) coded-modulation with 8-PSK on the independent Rayleigh
fading channel and plot the results in Fig. 9(a). We do not compute the LLRs exactly and only apply the
approximations to save simulation time. As before, approximation 2 only leads to a 0.1 dB penalty when
compared to approximation 1. We compare the Rayleigh performance to the AWGN performance and observe a
4.5 dB SNR gap as illustrated in Fig. 9(b).

5.3 AR4JA (5120,4096) LDPC Coded-Modulation with 16-APSK

We plot the performance of extremely bandwidth efficient LDPC coded modulation with the AR4JA (5120,4096)
LDPC code and 16-APSK in Fig. 10(a). We can only apply approximation 1 here since approximation 2 is derived
only for Gray mapped 8-PSK. The gap between the AWGN channel and the independent Rayleigh fading channel
is about 4.2 dB. We compare various combinations of bandwidth efficient LDPC coded-modulations in Fig. 10(b).
As a benchmark, we also included the simulated performance of the C2 LDPC code. The C2 code is a quasi-cyclic
LDPC code with a base parameter (8176,7156).5 So at a code rate of 7/8th, the code offers a better bandwidth
efficiency than the rate 4/5th AR4JA (5120,4096) code but at reduced coding gain (about 3/4 dB less). The C2
code is also 60% longer in length and therefore incurs this additional latency.

If both bandwidth and power are important, an effective coded-modulation combination would be 16-APSK
with AR4JA (5120,4096) LDPC code since this scheme offers a spectral efficiency of 3.2 bits/sec/Hz at a required
operating SNR that is even less than the 8-PSK C2 combination with a spectral efficiency of 2.625 bits/sec/Hz.
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6. SUMMARY

In this work we presented various LDPC coded-modulation schemes for bandwidth efficient communications with
a focus on the JPL family of AR4JA LDPC codes that is designed with minimum distance that grows linearly
with block length. We demonstrated through simulation that the structured AR4JA codes can be combined with
higher-order modulations to achieve a good balance between power and spectral efficiency and in most cases the
combined coded-modulation would operate within 1 dB of Capacity. We also gave low-complexity expressions
to compute the soft symbol reliabilities for input to the LDPC decoders. These approximations reduces the
computation requirement and allows these coded-modulations schemes to be used in practice. We cataloged the
performance of many practical bandwidth efficient coded-modulation combinations for reference.
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