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ABSTRACT 

Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, 
visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when 
the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques 
for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and 
simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual 
targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, 
where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to 
be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-
plane camera. Finally, the tracking system has been extended to a multi-target scenario.   
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1. INTRODUCTION 
Object identification and tracking has many uses, both military, space, and civilian. To successfully track a distant 
object, three tasks are required: initial target identification, target recognition and error rejection, and target tracking. In 
the final tracking step, the time evolution of the target positions are monitored, and a model of the target movement is 
generated. This allows the target position to be filtered and smoothed, allows future positions to be predicted in the event 
of target occlusion, and allows the 3-D dynamical properties of the object to be estimated. 

Generally a Kalman Filter (KF) is used as part of the tracking algorithm. KFs employ a dynamical model of the target 
motion which constrains the output estimate to obey the modeled dynamics. When combined with observations of the 
target, even observations corrupted by noise, the results are often accurate target positions. However, if the observations 
of the target are corrupted by large observer motions, either the KF will fail to track the target or the estimated target 
dynamics will be inaccurate. 

For illustrative purposes, a single tracking scenario will be explored in which large observer motion is present. A single 
camera has been mounted on a buoy or periscope which is observing a set of moving boats. Due to the wave action 
acting on the camera, large interframe motions are present which are several times larger than the observable target 
motion. It is assumed that some relevant target detection method is available which will locate the targets within a given 
video frame. However, the number of targets is not known a priori, and the system must be tolerant of both false 
positives and false negatives from the detection system. Ultimately, the goal is to discern the real targets from the clutter, 
and predict the future location of those targets in a global reference frame. 

This paper presents a method of dealing with these large observer motions by first estimating the motion of the observer. 
This allows the observer motion to be decoupled from the target observations, and effective estimates made of the global 
target dynamics. Section 2 describes the automatic image mosaicking process used to stabilize the input video stream 
before attempting to track the targets, while Section 3 describes the specifics of the KF tracking system. The system is 
then extended to track multiple targets using a Baysian framework in Section 4. Finally, the major results are presented 
in Section 5. 
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Fig 1. A time-lapse sequence of frames from the original video stream illustrating the large observer motion relative to the 

target motion. Samples are spaced 125 frames apart. 

2. VIDEO STABILIZATION 
In the scenario under consideration, a camera is monitoring the progress of several boats as they move across the water. 
As the camera itself is water-based, attached to a buoy or periscope, the waves have a noticeable effect on the image 
stream. Figure 1 shows a time-lapsed sequence of the video. As seen the camera bobs noticeably up and down during the 
video, even while the boat targets appear stationary during the first 1000 frames. 

2.1 Observer Motion with Kalman Filters 

A KF is generally used as part of most tracking algorithms [4]. The standard KF state and measurement equations are 
shown in Equations 1 - 4. When the measurements, 

k
z , are corrupted by large, unknown observer motions, then the 

observation noise model, 
k

v , must be set large enough to account for these measurement deviations. This results in the 

measurement variance, 
k

R , being large in comparison to the process noise variance, 
k

Q . 
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In the prediction and update equations listed in Equations 5 - 11, the measurement variance will tend to dominate the 
residual covariance calculated in Equation 8. This leads to a small gain matrix, 

k
K , in Equation 9, and finally to small 

state estimate correction factors in Equations 10 and 11. As a consequence, the tracking performance will be poor, 
requiring a long time to converge to the target, if at all. 
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2.2 Image Mosaicking 

Image processing techniques exist that can help solve the observer motion problem. In particular, image mosaicking or 
image registration can align two or more images of the same scene taken from different view points. These images are 
quite common today, such as in large panoramic photographs or satellite terrain images. Often this is done as an 
interactive process in which a human specifies matching points in both images [1], or provides a close initial starting 
position which can be locally optimized by the computer [2].  

For the purposes of target tracking, an automated system is needed. However, due to the temporal adjacency of the 
images to be registered, it may be assumed that large frame to frame motion is unlikely. Consequently, the final, 
registered position of the previous frame should serve as a reasonable initial estimate for the current frame in lieu of 
human input. This initial position estimate can then be fine-tuned to generate the final registered position of the current 
frame. Shum and Szeliski2 describe a least squares approach to generate the image registration parameters, which is 
summarized below for convenience. 

First, it is assumed that the source camera may be approximated with the projective pinhole model, and that planar 
homographies may be used to describe the relationship between the images of the same scene [2]. Thus, if the camera 
underwent the unknown planar homographic transformation, )(mM  , described by Equation 12, then Image 2 could be 
transformed into Image 1, as shown in Equation 13. 
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However, in the presence of object motion and noise, Equation 13 will not be a true equality. Instead, a non-zero error 
term will be present. The total squared error can be calculated as a function of the current choice of parameter vector, m , 
described by Equation 14 [3]. 

 ( )∑ ′′−=
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The selection of the parameter vector, m , may be solved iteratively. If the incremental changes of m  are small, then 
each new version of 

2
I ′  may be approximated using a first order Taylor expansion, as in Equation 15, where 

i
uI )(

2
′′∇   

is the standard image gradient of the ith warped version of Image 2. 
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To find the optimal m  in a least squares sense, differentiate Equation 14 and set it equal to zero. After substituting 
Equation 15 into the result, we get Equation 17. Augmenting this equation with variable step size, as described by 
Levenberg-Marquardt,3 results in Equation 18, which is a set of linear equations that can be solved for m∆ . 

 mi JuIA 
 ⋅′′∇= )(2  (16) 
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 (17) 

 ( ) ( ))()()( 21 uIuIAmAAdiagAA TTT ′′−=∆⋅+⋅ λ  (18) 

The definition of )(mM  in Equation 12 is the most general case of homographic transformations. However, the stability 
of the solution may be improved by constraining the camera motion to a specific motion model. The simplest motion 
model only allows for planar translations. Another possibility, which has been employed in this example, is to allow the 
camera to rotate about each of the three coordinate axes. The homographic transformation corresponding to these motion 
models are shown in Equations 19 and 20 respectively, where f is the camera focal length, which is assumed to be fixed 
and known.  
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After iteratively solving for )(mM  , the new image, 
2

I ′ , will have been transformed into the same coordinate system of 

Image 1. As can be seen, this approach attempts to find the best match based on pixel intensity values. Consequently 
drastic lighting changes, such as those caused by auto-adjusting aperture cameras, negatively impacts the alignment 
procedure. In order to mitigate these effects, a histogram match is performed on Image 2 as a preprocessing step. This 
causes the histogram of Image 2 to match, as closely as possible, the histogram of Image 1. In practice this reduces the 
visual impact of lighting changes, greatly enhancing the performance of the mosaicking system. 

Additionally, using a purely incremental approach, in which the current frame is always compared to the previous frame, 
the image stability after just a few hundred frames is larger than acceptable. Small matching errors that occur between 
frames are propagated through the whole video sequence. Instead, a key frame system was implemented in which 
successive frames are compared to a single key frame. In this way estimation errors are not propagated between 
successive frames, but only between key frames. By selecting a key frame every 10 frames, the cumulated error can be 
reduced by an order of magnitude, while still maintaining a visually relevant source of comparison.  

The images shown in Figure 2 show that after 1000 video frames the corrected image is within a few pixels of the 
correct location, despite a total displacement of over 200 pixels during this sequence. 



 
 

 
 

 
Fig 2. A time-lapse sequence of stabilized frames from the original video stream. Despite the large observer motions, the 

tracking target remains in a fixed location within each frame. Samples are spaced 125 frames apart. 

3. TRACKING SYSTEM 
The most common approach in the target tracking literature is to employ a Kalman Filter (KF) to estimate the position or 
state of the target from a series of measurements [4-9]. First, a dynamic model is created describing the motion of the 
target. This is often as simple as the solid mechanics equations relating position, velocity, and acceleration, but can be a 
more detailed model incorporating movement constraints. Next, a relationship is established between the state variables, 
such as the target position and velocity, and the measurements taken. For computer vision-based tracking, this means 
transforming the object position in 3-D world coordinates into an image pixel position, a non-linear mapping. Thus, the 
KF will estimate the current state of an object, and even predict the future state, from indirect target measurements, 
given an appropriate model. 

Classic KFs only operate on linear systems [4]. However, many extensions exist to allow the filter to apply to non-linear 
systems. The simplest of these is the Extended Kalman Filter which merely linearizes the system using a Jacobian 
calculation around the current operating point [5,6]. However, depending on the nature of the non-linear system, this 
could potentially yield an unstable system. Other methods, such as the Unscented Kalman Filter and Sigma-Point 
Kalman Filter, attempt to overcome this limitation by taking a sample of data points in the neighborhood of the operating 
point and to create an estimate of the system properties. This naturally increases the computation complexity of the 
system [8]. 

To model the boat motion for the KF, the standard solid mechanics motion formulation, or constant acceleration model, 
was employed. The target is modeled as a mass in world coordinates. State update equations are generated which relate 
the values of position, velocity, and acceleration at the next time step to the state values at the current time step. It is 
termed the “constant acceleration” model because the system is assumed to be undriven, thus the acceleration will 
remain constant. This model is then augmented with a process noise vector, which is responsible for observed deviations 
from constant acceleration. Equation 21 shows the complete state update model, including the acceleration noise source. 
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Fig 3. Illustration of the camera geometry relative to the water surface and boat targets. 

Next, a measurement model must be generated which relates current state values to observable measurements. With the 
motion of the camera known, the target locations provided by the external object identification system can be 
transformed into a stationary reference frame, effectively removing the effects of the camera motion from the provided 
target locations. Using the pinhole camera perspective model [10] and the constraint that boats can only move on a 
plane, the surface of the water, a nonlinear mathematical model can be generated that relates the 3-D world coordinates 
of a boat into the expected camera pixel coordinates. Figure 3 illustrates the geometrical configuration of the camera and 
environment. The water surface is located in the YX −  plane. Objects within the horizontal and vertical Field Of View 
(FOV) will be mapped onto the camera image plane, denoted the vu −  plane. 

max
u  and 

max
v  refer to the image 

resolution, often 640 × 480. It is reasonable to assume that certain geometrical properties about the installation 
configuration, such as the initial height above the water surface, h , and the nominal tilt angle, α , are known. The final 
measurement equations are presented in Equations 22 and 23. 
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Since the measurement function is nonlinear, an extension to the KF must be implemented. Initial testing with an 
Extended Kalman Filter (EKF) exposed instabilities [8]. Since EKFs propagate the mean and covariance of the system 
through a first-order approximation of the true system, large errors in the posterior mean and covariance can accumulate, 
which are potential causes for unstable behavior. An alternative to the EKF uses the unscented transformation to provide 
better posterior estimates of the mean and covariance [5]. The unscented transform takes a small set of carefully selected 
samples, referred to as sigma points, and propagates them through the true nonlinear system. In this way the true mean 
and covariance may be calculated from the sigma points, accurate up to third order for any nonlinearity. Once the 
Unscented Kalman Filter (UKF) was implemented the previous stability issues were eliminated. 



 
 

 
 

 
Fig 4. Similar video frames showing (a) missing target locations and (b) false alarms from the Target Identification System. 

4. MULTI-TARGET TRACK MANAGEMENT 
Each KF is able to track only a single target through time. However, multiple targets are present in the video sequence, 
which appear at different times within the video. Additionally, the provided target location data is not perfect; the real 
targets are not identified in every frame, and not every identified target is real, as illustrated in Figure 4. Thus, a multi-
target track management system is needed which can assign measurements to the correct existing track, dynamically 
create new tracks when needed, and delete tracks which are stale or caused by noise. 

For proper measurement assignment, a metric function has been created which relates the probability of a given 
measurement being produced by a specific track, using the error covariance from the KF prediction, shown in Equation 
24. The first two terms of this equation evaluate the probability that an observation at position Q could be produced by a 
track with current position P  and covariance σ , where P  and σ  are generated from the KF. The final term acts as to 
regulate the spatial support of a track, preferring tracks with smaller variances. When fully evaluated, this produces a 
utility matrix of size track count×measurement count. The combinatorial assignment problem of maximizing the total 
utility can be solved with a simple “greedy” algorithm [9]. During each iteration, the matrix element with the largest 
utility score is assigned to the corresponding track. That row and column is then removed from the profit matrix before 
the next iteration. This proceeds until all of the measurements have been assigned or there are no longer any strictly 
positive elements remaining in the matrix. Once completed, any remaining measurements are assumed to belong to new 
tracks. 
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With the system automatically assigning new measurements to existing tracks a likelihood measurement must be 
generated which can distinguish between the tracks that are populated solely from noise points, and those tracks which 
represent actual targets. This has been modeled with a Hidden Markov Model (HMM), in which the hidden state is the 
existence of a legitimate target and the observation is the existence of an assigned target point during the current time 
step. From the measurements and estimates of the conditional probabilities, the HMM generates the probability of each 
track containing a real target. By setting a reasonable threshold, 80% confidence in this example, the boat tracks can be 
successfully isolated from all the noise measurements.  



 
 

 
 

5. RESULTS 
The tracking performance of the UKF system was first tested against a simulated boat system, in which the current 
position of the boat was modeled with a sinusoidal trajectory in both x  and y . This trajectory was projected into image 
coordinates and corrupted by a noise signal. The resulting signal was used as the observations for the tracking system.  

 
Fig 5. Plot of ground truth , back projected noisy measurements, and UKF predictions  for a simulated boat. 

The tracking system position estimates were then plotted against the ground truth values, as well as the back projected 
world position of the unfiltered, noisy observations. The results for the x  and y axes are shown in Figure 5. As is 
clearly visible, the filtered prediction far outperforms the raw, unfiltered measurements. 

Next a set of hand-generated boat positions was created based on the uncompensated video to test the system on the real 
video. The homographic transformations for each frame were used to project the boat position measurement into a 
stabilized coordinate frame. The stabilized boat positions were then sent to the UKF as measurements. As the true boat 
positions relative to the submarine are not known, the UKF predictions are compared to the ground truth data set in 
image coordinates. The results can be seen in Figure 6. 

 
Fig 6. Plot of ground truth (red), noisy measurements (green), and UKF predictions (blue) for the ground truth data set, 

gathered from the live video sequence. These plots are in screen coordinates, as the world coordinates were unknown. 



 
 

 
 

 

 
Fig 7. Plot of ground truth (red), noisy measurements (green), and UKF predictions (blue) for the real data set obtained from 

an external target recognition system. This data contains false positives and missing data. The multitarget track 
management system must first assign each measurement to a given track, then determine which tracks are legitimate 
targets. 

Finally, the data generated by the external target recognition system was sent through the complete system. The supplied 
coordinates were again transformed into a stabilized coordinate system. Then, the multi-target track management system 
generated new tracks as necessary, assigning measurements to existing tracks when possible. The results are shown in 
Figure 7. Ultimately 42 unique tracks were generated, but only three of these tracks were found to contain actual targets. 
The left boat is captured as a single continuous track, while the right boat ended up being split into two different tracks. 
Around frame 500, there was an extended period where the target recognition system failed to capture the right-most 
boat. During this time, the tracking on this target was lost, forcing the creation of a new track when it reappeared 100 
frames later. 

In all of the trials and plots presented here, the UKF update interval was set to 10 frames, i.e. the UKF iteratively 
predicted the target position 10 frames into the future, with the corresponding increase in estimation error, before a 
measurement was provided and the update phase executed. 

6. CONCLUSIONS 
The image mosaicking code was programmed in MATLAB and run off line to produce a vector of incremental 
homographic transformation matrices. The mosaicking process is an iterative, gradient descent method. Consequently, 
the exact computation time could not be predicted. Although single frame processing times were approximately 20 
seconds, some frames converged as quickly as 6 seconds. These times were produced on a dual core Intel Centrino 
2GHz processor using non-optimized code. As seen in Figure 2, the compensated video remains qualitatively close to the 
correct position, even after 1000 frames. 

Currently, no quantitative analysis has been performed on the quality of resulting warped images with regard to stability. 
Qualitatively, the offsets generated by this process seem to slightly underestimate the true motion. As a result, the 
stabilized video still exhibits some motion. This remaining motion seems to have an amplitude of a few pixels, versus 30 
pixels or more in the uncompensated video. Future works should include effort to optimize the mosaicking code, in an 
effort to get real-time performance. Additionally, the failure modes of the mosaicking system should be analyzed so that 
better, more stable video can be realized. 

With the homographic transformation precalculated, the UKF tracking system and multi-target track management can 
run at greater than 30 fps. The UKF appears to provide good tracking performance over this data set, but more in depth 



 
 

 
 

analysis is required to quantify the tracking performance. Additional investigations into the use of a more descriptive 
target motion model might also yield increased tracking performance. 

Finally, the multi-target track management system models the target likelihood as a Hidden Markov Model. However, 
this may not be the best model to describe the likelihood that a given track contains a boat. Further investigations into 
other modeling techniques, specifically those which utilize more history, should be conducted.  

ACKNOWLEDGMENTS 

This work was supported in part by the Georgia Space Grant Consortium, sponsored by the National Aeronautics and 
Space Administration, and research was performed at the Jet Propulsion Laboratory, a division of the California Institute 
of Technology under a contract with the National Aeronautics and Space Administration..  

REFERENCES 

[1] Zitov, B. and Flusser, J., “Image registration methods: a survey,” Image and Vision Computing 21(11), 977–1000 
(2003). 

[2] Shum, H. and Szeliski, R., “Panoramic Image Mosaics,” Microsoft Research, MSR-TR-97 23 (1997). 
[3] Marquardt, D., “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math 11(2), 

431–441 (1963). 
[4] Kalman, R., “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering 82(1), 35–

45 (1960). 
[5] Wan, E. and Van Der Merwe, R., “The unscented Kalman filter for nonlinear estimation,” in [Adaptive Systems for 

Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000], 153–158 (2000). 
[6] Busse, F., How, J., Simpson, M., and Center, N., “Demonstration of Adaptive Extended Kalman Filter for Low 

Earth Orbit Formation Estimation Using CDGPS,” measurements 5, 2 (2003). 
[7] Chin, L., “Application of neural networks aided target tracking,” in [Neural Networks, 1996., IEEE International 

Conference on], 3 (1996). 
[8] LaViola Jr, J., “A comparison of unscented and extended Kalman filtering for estimating quaternion motion,” in 

[American Control Conference, 2003. Proceedings of the 2003], 3 (2003). 
[9] Ye, M., Shapiro, L., and Haralick, R., “Aerial Point Target Detection and Tracking: a Motion-Based Bayesian 

Approach Technical Report,” Intellgent Systems Laboratory Deparament of Electrical Engineering University of 
Washington Seattle, WA, 98195-2500 (Sept. 2001). 

[10] Hartley, R. and Zisserman, A., [Multiple View Geometry in Computer Vision], Cambridge University Press (2003). 


	Visual target tracking in the presence of unknown observer motion
	Stephen Williamsa and Thomas Lub1
	Abstract
	Keywords: Visual Tracking, Multi-target Tracking, Kalman Filter, Image Mosaic
	1. INTRODUCTION
	2. VIDEO STABILIZATION
	2.1 Observer Motion with Kalman Filters
	2.2 Image Mosaicking

	3. TRACKING SYSTEM
	4. MULTI-TARGET TRACK MANAGEMENT
	5. RESULTS
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	References

