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H,/O, Primary and Regenerative Fuel Cells

* Primary Fuel Cell (H,/O, — electricity)
* Electrolyzer (electricity— H,/O,)

* Applications

— Mobile Power sources

 Automobiles, Lunar Rovers, Lunar Landers, Unmanned
Aircraft

— Large scale energy storage
« Renewable Energy Storage, Lunar Surface Systems

— “Back-up” Power and Battery Recharging
« Remote Cell Phone Towers, Materials Handling Equipment



Challenges
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Specific Technology Focus at JPL

Application

Technical Focus

Automobiles

Reducing precious metal loading to 0.2
mg/cm?

Increasing the durability of catalysts to
5000 hours

Lunar Systems

Improving Efficiency PEM H,/O, fuel cell
Advanced Oxygen Evolution Catalysts
for PEM water electrolysis

Electrolysis Stacks capable of balanced
pressure operation 2000 psi




PEM Fuel Cell for Lunar Lander (Altair),
Lunar Surface Mobility systems, and Lunar
Habitats.
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Advantages of PEM fuel cells over state-
of-art alkaline fuel cells include :
lower mass and volume
*enhanced safety
‘longer life, > 5000 hours
sincreased flexibility for load handling
simproved reliability




Approach

« Fabrication of Nafion-Based MEAs
— JPL in-house methods
— Procured from two other Vendors
— Evaluate membranes of various thicknesses and EW

MEA performance characterization
— Operating conditions
— Membrane types and thicknesses
— Backing papers
— Catalyst loading

JPL MEA scale up results

JPL and vendor MEA comparison



JPL MEA Performance Characterization
Effect of Temperature
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 Performance increase of 20 , 54 and 77 mV at 40,
400 , and 800 mA/cm?

« Improvement largely due to ionic resistance of
membrane



Internal Resistance
Effect of Temperature
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— Nafion conductivity increases with temperature
« HFR increases with current density

— point of increase pushed to higher current density with
increase in temperature



Water Transport Processes in an MEA

Electro-osmotic
Drag with H,O*

Anode > Cathode

Back Diffusion

Felix Buchi and Gunther Scherer, J. Electrochem. Soc.,148 A183 (2001).

M. Eikerling, Yu. I. Kharkats, A.A. Kornysheve and Yu. M. Volfkovich, J.
Electrochem.Soc., 145 2684 (1998).



Membrane Thickness and Resistance
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*Thinner membranes exhibit low constant resistance over wide range of

current density

current density, mA/cm?



One-Dimensional Analysis of Water Transport

v 1s the electrosmotic coefficient,

Anode C, Membrane

1, 4 1s the current density,

F 1s the Faraday constant,

Dw 1s the diffusion coefficient of
water

_______ éé\CathOde Cw is the concentration at the
C, S cathode end of the membrane

O. 1S the thickness of the

mem

membrane electrolyte. ,

Back-diffusion Limited current

yl k"D, {C,(I)-C ()} / D C F
d Onen (1) S 7.




Verification of Analysis
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D, determined to be 2x 10-°> cm? s-1 at 30°C ; consistent
with literature data*

*Thomas A. Zawodzinski, Jr., Thomas E. Springer, John Davey, Roger Jestel, Cruz Lopez,
Judith Valeria, and Shimshon Gottesfeld, J. Electrochem. Soc., Vol. 140,1993 p.1981.



JPL MEA Performance Characterization
Nafion 1035, 212CS & 115 JPL MEAs
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« Performance increases as membrane thickness decreases
« Performance increases as equivalent weight decreases



Nafion 1035 JPL

Comparison of 4 mg/cm? and 8 mg/cm?
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Double coat (8 mg/cm?2) shows slightly better performance over single coat( 4 mg/cm?)
at low current densities. The higher loading does seem to reduce performance at

higher current densities.
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Polarization Characteristics of -
212CS JPL MEA
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Mass transfer effects not seen at high current densities
Thinner membrane allows faster back-diffusion to anode



Nafion 212CS based MEA
Scale-up Experiments

1.20

1.00

" e,
l‘....
.‘.‘l‘l‘l
‘I‘l.l‘l‘l‘
l‘lill-l-tltlnul
Eoa

cell voltage, Yolt
—
(=3}
—

040
020
* 25 cm2 = 100 cm*2
0.00 T T T T T T T T T
0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00 500.00

current density, mAfcm~2

* Results on 25 cm? and 100 cm? active area demonstrates
scalability of MEA manufacturing process loss in performance



JPL and Vendor MEA Performance Comparison
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 JPL MEA ~ .88 V at 200 mA/cm?
e Vendor MEAs ~ .82-.84 at 200 mA/cm?2



JPL and Vendor MEA
Performance Comparison

MEA Type Processing Gas Diffusion Layer
Catalyst coated
N115 JPL Paint / Hot Press Toray 060 / Hot

Pressed and bonded

N115 Vendor 1

Screen Print / Cold
Press ?

Uncatalyzed carbon
cloth / Felt; not
bonded

N115 Vendor 2

Transfer / Hot
Press?

Carbon coated Toray
060; Non-bonded




SEM cross-sections of JPL & Vendor MEAs

Vendor 1 JPL Vendor 2
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JPL process results in about 10-15% reduction in membrane thickness



JPL and Vendor MEA Performance Comparison

0.01
0,005 Nafion 115 MEAs 70 °C, 2.5 atm H,/O,
: l A
A 5&— Vendor 1
€ 0.008 NG
< a AR AT
000077, A A A A A S ATANTNA o
N o ® o o% o0 AW e ve N
T MRS 7 % * Vendor 2 -
X 0006 el
+= 0.005 Fry 0, ot
® - dﬂqﬁﬂ:@nﬂw A
8 0.004 - JPL
c
S
% 0.003
n
¢ 0.002
0.001 -
0

0 200 400 600 800 1000 1200 1400 1600 1800
current density, mA/cm2

« JPL MEA ~ 5 milliohms,
 Vendor 1 ~6.5 milliohms,
* Vendor 2 ~ 7 milliohms



Schematic of Water Electrolysis

Polymer Electrolyte Membrane

4H* + 4e — 2H,

hydrogen

(cathode) -

4e

DC Power Input



Iridium-doped Ruthenium Oxide Catalyst Performance
Versus Commercially Available Materials
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* The iridium-doped ruthenium oxide catalyst performed better than the individual constituents



Short-Term Durability Tests
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« Stability testing exhibit the same performance trends as polarization experiments
* Ir-doped ruthenium oxide catalyst as stable as iridium oxide



Advances in Electrolysis MEAs at JPL
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*JPL’s Iridium-doped Ruthenium oxide catalyst exhibits higher performance

compared to commercial and vendor-supplied materials.

*With the performance of 1.45V at 200 mA/cm? these JPL MEAs have the potential of

meeting the full success criteria



Status of the Performance of Advanced MEAs from JPL
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Demonstrated Performance exceeds minimum success criteria for MEAs
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