Adaptive Subsampling of Temporal
Image Sequences

David R. Thompson

Now at Jet Propulsion Laboratory. California
Institute of Technology

David.r.thompson@jpl.nasa.gov

David Wettergreen

Carnegie Mellon Robotics Institute

Rebecca Castano

Jet Propulsion Laboratory, California
Institute of Technology

Images courtesy NASA / Caltech JPL / Carnegie Mellon
University. This work performed with Carnegie Mellon
University, supported by a JPL Strategic University Partnership
Grant. Additional support from NASA ASTEP NNGO-4GB66G
"Science on the Fly"

This presentation Copyright 2009 California Institute of
Technology. US Government Support Acknowledged.

NASA / Caltech / JPL / Instrument Software and Science Data Systems




Agenda

- Moftivation: autonomous
science forrobotic
exploration

- Previous work in subsampling
Image sequences

- A new approach with
Gaussian Processes

- Field Trials
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Why subsample image sequencese

Single-cycle fraverse distance

10m 102m 103 m 104 m

single-site multiple-site over-the-horizon
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The perception gap

Geomorphology
Sedimentology
Mineralogy

Astrobiology

Texture descriptors
Spectra
Object detection
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Information optimal subsampling

Find subset that provides the most information
about the science content of unrefurned images

Mutual Information Criterion
Gaussian process model
Closed-form analytical expression

Does not require that the robot know the hidden
science contentl
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A Gaussian Process Primer

Bayesian Nonparametric Regression
f(x):R"— IR

Posterior probability of observations is @
multivariate Gaussian

Entries of covariance matrix are given by a
covariance function:

( ) = { Iy (i‘ﬁmfﬂjk)z}
R\Xiy Xj) = 1+ Y exp _EZ wﬁ

k=1
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Mutual Information Objective

Maximize mutual information between returned and
unretfurned data.

I(sy;so |sp,0) = h(so |sp,0) + h(sy | sp,0) — h(s | sL,0)
2me™|k(Xp, Xo| 2me™ ™| k( Xy, Xy)|
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Mutual Information Objective

- Maximize mutual information between returned and
unretfurned data.

I(sy;so |sp,0) = h(so |sp,0) + h(sy | sp,0) — h(s | sL,0)
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- Stationary covariance function: mutual information objective is
independent of images’ contents!

Use explorer’s observations as latent inputs, and learn how they
correlate with changes in science content.
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Synthetic example observing only
location
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Synthetic example observing location
and one noisy feature
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Synthetic example observing location

and one clean feature

- = Ground truth labels
—— Image content descriptor X»
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Gaussian process model

Training Test
] Environment Environment
. Visible to _ _
[ | remote agent Time. robot's
" and operator X X X, ’
N - v " observations
O Visible to !
operator Hidden
) content
. Mo direct
observation
Labels

1. Learn 6 from training data
2. Predict how new images differ in science content based on
their separation in observable features
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Amboy Crater

|  Remnant :
| platform unit

[Hatheway '79]

Platform unit
with numerous
depressions
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Texton image features

- Discrete classification of each pixel into texture
classes learned from a universal training set

- Here, PCA-project class histogram to a scalar




Example

----------- [mage descriptor
———  Smwoothed descriptor
- === Ground truth (not to scale)
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Performance by image budget (lower

s beftter)
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Performance by trial (lower is beftter)
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Effect of varying image budgets

® ©Osize 4 subset
A A size 6 subset
----- Image descriptor

—— Smoothed descriptor
— — Ground truth (not to scale)
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Conclusions: Information-theoreftic
formulation of selective image refurn

- Information-theory formulation of selective
Image return

Principled
Intuitive, reasonable results
Can leverage training data

- Stationary GPs
Elegant solution for Mutual Information Objective

Must describe content of interest as real-valued
scalar (for now)
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Thanks!
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University, supported by a JPL Strategic
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