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Active Hybrid Mirrors (AHM)

Active Hybrid Mirrors (AHM) is this 
new paradigm  for making affordable 
meter class large optics
– A combination of precision replication 

and active control

AHM’s are the combination of  three 
distinct technologies
– Facesheet: Nanolaminate foil (LLNL)
– Substrate/Figure Control: Precision  

actuation  integrated in silicon carbide (NG/
Xinetics, Inc)

– Wave Front Sensing and Control:Phase 
Retrieval Camera   and WFC algorithms 
(JPL) 

AHM Hybrid Mirrors 
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Precision Replicated 
Nanolaminate Mirrors 

Nanolaminates Material Development
– Nanolaminate materials are multi-layer metallic foils 

grown by sputter deposition with atomic-scale control
– Very thin, lightweight, flexible but stiff structures with low 

scatter, optically precise surface finish
– Current material systems have tailorable low thermal 

expansion and low residual thermal stress to match AHM 
SiC substrates thermal expansion

– Fabrication time is independent of diameter, typically 3 to 
4 days dependent on thickness

Current Nanolaminate Mirror Production 
Capability at LLNL
– 1.2 m Very Large Optical Coating  (VLOC) nanolaminate 

processing facility 
• Four 1.4 m long magnetron sputtering guns
• Mandrel table linear motion and rotation computer 

controlled to provide uniform deposition
– Precision Cleaning Facility capable of cleaning 1.5 m 

master mandrels to semiconductor cleanliness levels

VLOC 

TEM cross section of  a 

ZrC/Si nanolaminate 
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Advanced Silicon Carbide Substrates

AHM utilizes state of the art silicon 
carbide for advanced structures and 
elecrostrictive actuators
– Nano-structured silicon carbide 

structures that are ultra-lightweight, 
have exceptional dimensional stability 
and consistent high structural properties

– High Stability PMN electrostrictive 
actuators that provide nanometer level 
of control authority

– Robotic bonding of Hybrid Mirrors that 
ensure high quality, reproducible 
bonding processes that are scalable to 
meter class optics

Robotic Bonding 
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ATLAS Deployment 

SM Focus Sweep 

Segment Search 
(if needed) 

Segment Focusing 

SHC Coarse Phasing 

DFS Coarse Phasing 

PRC Fine Phasing 

Multifield Fine Phasing 

Wavefront Maintenance w/ 

Extended Scene SHC 

First light, 
showing segment 
images 

Segment images 
following segment-
image array 

Segment images 
following SHC mirror 
figure correction 

PSF following 
coarse phasing 

Diffraction 
limited PSF 

Segment ID 

WF Initialization & Updates 

Challenges 

• Large initial WF error 
 after segment deployment 

• Small final WF required for 

system performance 

Solutions 
• Initialization: Use a suite of WFSC 

algorithms to bring down WF error 

• Maintenance: Use Laser Metrology 

and low-BW WF sensing to keep WF 

error in spec  

• Updates: Repeat WFSC periodically 
to limit Laser Metrology error growth 

WF Sensing and Control
Chart borrowed from JWST – Scott Acton/Ball

WF Maintenance 
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Coarse Phasing: Dispersed Fringe Sensing

Wavelength variation along the spectrum modulates fixed 
path differences between segments to create interference 
fringes:
– Bright peak where  is coherent with L
– Dark null where  is out of phase with L

Period of fringe gives absolute piston displacement
Slope of dark bands gives the sign 

Dispersed-Fringe Sensing (DFS) uses a dispersive element (a 
grism) in an imaging camera to spread spot images into 
linear spectra

  I
ncre
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s 

Dark Bands 

x

L  

L 

Spectrum 

Dispersed-Fringe Sensing enables the absolute 
phasing of the segments to within 1 wave 

DFS uses segment 
steering to select segment 
combinations for control
“Dispersed Hartmann 
Sensing” (DHS) is DFS 
with prisms that select 
edge patches only
– JWST approach
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Wavefront Sensing and Control

AHM uses WFS&C technologies developed by JPL 
for NASA and other agencies
– Applied on JWST/NGST testbeds and pathfinder 

optics, Spitzer/SIRTF, TPF/High Contrast Imaging 
Testbed, Palomar Observatory Hale Telescope, and 
many others

Proven JPL technologies also support follow-on 
segmented mirror telescopes 
– Segmented Mirror WF Control

– Shack-Hartmann WF Sensing

– Phase Retrieval WF Sensing

– Precision Metrology

– Integrated Modeling

WF Reconstructed from PRC Images 

Double-pass WF = 83 nm (RMS) 

Equivalent single-pass WFE = 42 nm (RMS) 

Defocussed PRC Images 

Typical Double-Pass In-Focus PSF 

AHM testbed results validate  WFS&C algorithms,
software and integrated modeling technology
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Example: Fine-Phasing 36-Hex PM
Images used for WF sensing 

– 5 waves defocus 

+ 5 waves defocus 

– 2 waves defocus 

+ 2 waves defocus 

In-Focus image 

WF estimate 

WFE=480 nm RMS 

In-Focus image 

WF estimate 

WFE= 35 nm RMS 

Fine Phasing uses MGS Phase Retrieval to 
estimate WF
WF control is applied using segment RB and 
RoC actuators

Post-control WF 
meets 150 nm 
objective



National Aeronautics and Space 
Administration
Jet Propulsion Laboratory
California Institute of Technology

 9

A Laser Distance Gauge

At the conceptual level, a Laser Distance Gauge (LDG) is a “yardstick,” with 
“inchmarks” provided by the interference fringes of the laser beam
– Changes in the distance d between the Beam Launcher (BL) and the Corner Cube 

(CC) are measured as phase shifts between input and output beams
• Intrinsic accuracy is better than 1 nm
• We “count fringes” to track large changes in d 
• A 2-color mode provides a large “absolute mode”

We can keep the BL and CC the same distance apart, by position feedback control 
of the BL and/or CC to keep d constant
– LDG runs at high BW (nominally 1 kHz)

A SIM Mission-derived technology application funded by JPL R&TD 

Hollow corner cube 
defines one end of the 

measured distance 

Corner cube defines 
the other end of the 

measured distance Beam Launcher Assy. 

d
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This 2-D example illustrates use of LDG measurements to 
estimate rotational as well as translational DOFs between bodies

1. Nominal geometry. There are 3 relative DOFs – x and z translation, and 
rotation

2. Changes in LDG measurements due to a z translation:

3. Changes in LDG measurements due to an x translation:

4. Changes in LDG measurements due to a  rotation:

The measurement in matrix form

A simple state estimator
x = C-1

Feedback control based on the    measurements can keep the 
truss aligned

A 2-Dimensional LT Example
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The Full 3-Dimensional Laser Truss

The same approach is extended for the full 3-D LT

– 6 LDGs per segment measure all relative RB DOFs 
in the entire OTA

• All PM segments, the SM, FF, TM and OBA

– The IRS is attached to the OBA, providing 
measurements of 6 more absolute DOFs wrt inertial 
space

Same measurement equation: 

– Sensitivities computed from model kinematics

Measurement is invertible:                 is full rank

Optical State Estimator uses a Kalman Filter to estimate the RB state 

– Balances measurement vs. prior knowledge for optimal estimate
– Predicts WF and Boresight from state estimate

Feedback control using RB actuators and optimal control laws keeps performance in 
spec

– Integrated model will be used to evaluate performance

= Cx

x = C 1


