A Multi-Sensor Water Vapor Climatology

Eric J. Fetzer, Evan F. Fishbein, Brian H. Kahn, Bjorn Lambrigtsen, Joao Teixeira, Bill Read and Brian D. Wilson

Jet Propulsion Laboratory, California Institute of Technology

Sounding Science Workshop
Caltech, May 7, 2009

Copyright 2009 California Institute of Technology. Government sponsorship acknowledged.
A Multi-Sensor Water Vapor Climate Data Record
Using Cloud Classification
Eric J. Fetzer, Evan F. Fishbein, Brian D. Wilson, Joao Teixeira, Brian H. Kahn, Bjorn H. Lambrighten, William G. Read and Tim Barnett

Contents
1 Science, Technical, and Management ... 1-1
 1.1 Introduction .. 1-1
 1.2 Objectives and Expected Significance ... 1-2
 1.2.1 Objectives ... 1-2
 1.2.2 Expected Significance ... 1-3
 1.3 Technical Approach and Methodology ... 1-3
 1.3.1 Cloud Classification .. 1-3
 1.3.2 Effects of Clouds on Water Vapor Sampling from Space 1-3
 1.3.3 Using Cloud Classes to Monitor Long-Term Variability of Water Vapor 1-5
 1.3.4 Creating Water Vapor Climatologies by Cloud Classes 1-5
 1.3.5 Water Vapor Data Sets from Operational Weather Sounders 1-7
 1.3.6 Correcting Sampling and Characterizing Diurnal Variability 1-8
 1.3.7 Upper Tropospheric RH from UARS/MLS and Aura/MLS 1-9
 1.3.8 Three Science Topics .. 1-9
 1.3.9 SciFlt Implementation ... 1-10
 1.4 Relevance to NASA Programs and ESDWG participation 1-10
 1.5 Work Plan ... 1-11
 1.5.1 Statement of Work .. 1-11
 1.5.2 Key Milestones ... 1-11
 1.5.3 Management Structure .. 1-12
 1.5.4 Contributions of Principal Investigator and Key Personnel 1-12
 1.5.5 Collaborators/Consultants ... 1-12
2 Acronyms, References and Citations .. 2-1
 2.1 Acronyms .. 2-1
 2.2 References and Citations ... 2-2
3 Facilities and Equipment .. 3-1
 3.1 Jet Propulsion Laboratory ... 3-1
What

- Create a merged, reconciled record of water vapor from all sensors, but relating clouds and water vapor.

- We are coordinating with the NVAP project.
 - *We will provide a ‘seamless’ record between earlier sensors (TOVS, SSM/I) and A-Train.*
 - *Our Grand Goal:* Extend back into the disco-era TOVS data.
Some Questions

- Can we simultaneously monitor water vapor and changes in its viewing conditions (due to clouds in the IR, precip in the MW), over years to decades?

- How do moist thermodynamics vary with cloud state?
 - *Climate model physics is regime dependent.*

- Is the relationship between cloud state and water vapor universal?

- How dominant are effects in the radiatively important middle and upper troposphere?

- How precise and accurate should earlier sounders be to separate trends in water vapor by cloud state?
 - *Assuming cloud state can be well characterized by ISCCP or similar observations.*
Percent Differences in Mean Water Vapor Climatologies

AIRS can be drier OR wetter than AMSR-E because of cloud-induced sampling effects

25 Dec 2002 to 15 Jan 2003

AIRS climatology is wetter than AMSR-E in stratus regions

Small difference in tropics !!!

AIRS climatology is drier than AMSR-E at high latitudes
What the AMSR-E comparison suggested.

- At high latitudes, AIRS is biased dry because clouds imply more water vapor.

- For extensive low clouds, AIRS samples wet because clouds imply less water vapor.

- In the tropics, AIRS sampling is unbiased
 - *Because wet, cloudy scenes are infrequent?*
 - *Because clouds imply neither dry nor wet?*
1. Atmospheric Infrared Sounder (AIRS) water vapor profiles.
2. CloudSat cloud classes overlie AIRS near nadir.
Relate Cloud State and Water Vapor Tropics 15S-15N, Oceans Only

Combining CloudSat cloud classes and AIRS water vapor observations.

- Traditional
 - space time summaries from single instrument.
- Our approach
 - summaries of AIRS water vapor based on CloudSat cloud classes.

Why only the tropics?

- Water vapor feedbacks strongest there.
- The following CloudSat groupings easily account for most AIRS scenes in the deep tropics:
 - Shallow convection (three classes).
 - Deep convection (five classes).
 - Few unclassified scenes remain.
Color fill = CloudSat Class (Sassen and Wang, 2008, GRL)

Western Equatorial Pacific

Black lines: AIRS ‘best’ retrieval altitude
X: no AIRS tropospheric profiling.
Relating AIRS retrieval performance to CloudSat cloud class and fraction
January 2007, 15S-15N, Ocean only

No Fill:
percent of AIRS scenes of that CloudSat cloud type & fraction.

Fill:
percent of AIRS scenes with retrieval to surface.
1) Shallow Clouds

40% of all scenes

Yields are ~80%.

2) Deep Clouds

17% of all scenes

Yields are ~2 to 63%.

3) Clear & Mixed; ~43% of scenes; Yield is 68%.
AIRS Mean Water Vapor by Classes
January 2007, 15S-15N, Ocean only

1) Shallow Clouds

2) Deep Clouds

3) Clear & Mixed
Moving to E. Pacific Cool Pool

St+Sc+Cu CP.Ocean
Freq = 5.7 %
Yield = 76.5 %
Global yield = 4.4 %

4: St CP.Ocean
Freq = 0.0 %
Yield = unde!
Yield = unde!

5: Sc CP.Ocean
Freq = 51.0 %
Yield = 80.8 %
Global yield = 41.2 %

6: Cu CP.Ocean
Freq = 2.4 %
Yield = 69.6 %
Global yield = 1.7 %

Ci+St+Ac+DC+Ns CP.Ocean
Freq = 0.8 %
Yield = 26.2 %
Global yield = 0.2 %

1: Ci CP.Ocean
Freq = 1.2 %
Yield = 82.8 %
Global yield = 1.0 %

2: As CP.Ocean
Freq = 0.3 %
Yield = 62.5 %
Global yield = 0.2 %

3: Ac CP.Ocean
Freq = 1.7 %
Yield = 34.5 %
Global yield = 0.6 %

7: DC CP.Ocean
Freq = 0.8 %
Yield = 7.0 %
Global yield = 0.1 %

8: Ns CP.Ocean
Freq = 1.0 %
Yield = 3.8 %
Global yield = 0.0 %

Clear + Mixed CP.Ocean
Freq = 34.9 %
Yield = 80.3 %
Global yield = 28.0 %

Clear CP.Ocean
Freq = 100 %
Yield = 77 %
W. Pacific Warm Pool

St+Sc+Cu WP.Ocean
Freq = 4.0 %
Yield = 76.6 %
Global yield = 3.0 %

Ci+As+Ac+DC+Ns WP.Ocean
Freq = 7.7 %
Yield = 19.2 %
Global yield = 1.6 %

7: DC WP.Ocean
Freq = 0.3 %
Yield = 5.0 %
Global yield = 0.0 %

8: Ns WP.Ocean
Freq = 3.8 %
Yield = 0.4 %
Global yield = 0.0 %

Clear + Mixed WP.Ocean
Freq = 47.0 %
Yield = 53.4 %
Global yield = 25.1 %

1: Ci WP.Ocean
Freq = 12.8 %
Yield = 52.2 %
Global yield = 8.7 %

2: As WP.Ocean
Freq = 1.2 %
Yield = 26.2 %
Global yield = 0.3 %

3: Ac WP.Ocean
Freq = 1.9 %
Yield = 39.5 %
Global yield = 0.8 %

6: Cu WP.Ocean
Freq = 1.7 %
Yield = 65.0 %
Global yield = 1.1 %

5: Sc WP.Ocean
Freq = 19.6 %
Yield = 83.2 %
Global yield = 16.3 %

All
Freq = 100 %
Yield = 54 %
High yields in the E. Pacific due to prevalence of shallow, broken clouds. Low yields in W. Pacific due to prevalence of deep, thick clouds.
No Universal Water Vapor Profile by Cloud State

Mean AIRS water vapor profiles for CloudSat Stratocumulus class, relative to the tropical mean

E. Pacific Cool Pool

W. Pacific Warm Pool
Answering Today’s Questions

• Can we simultaneously monitor water vapor and changes in its viewing conditions (imposed by clouds in the IR)?
 – *Yes, with deep convection most challenging in the tropics.*

• How do moist thermodynamics vary with cloud state?
 – *Water vapor varies up to 200% between states.*

• Is the relationship between cloud state and water vapor universal?
 – *No. Example: shallow convection in the Warm Pool has a wetter free troposphere than shallow convection in the Cool Pool.*
 • Surface humidity is trivially universal: roughly constant.
Answering Some Questions (cont’d)

• How dominant are effects in the radiatively important middle and upper troposphere?
 – *Most of the water vapor variations between cloud states occur in the middle and upper troposphere.*

• How precise and accurate do earlier sounders need to be to separate trends in water vapor by cloud state? Assuming cloud state can be well characterized by ISCCP or similar observations.
 – *Don’t know, yet, but distinguishing deep and shallow convection may require ~25% biases.*
Next Steps

- Analyze entire CloudSat record matched to AIRS.
 - Look at T, RH, etc.
- Match CloudSat to Microwave Limb Sounder & AMSR-E.

These data will become publicly available through our MEaSUREs project via the Goddard DAAC.