1“[\‘%\5& A model-based Architecture for a small flexible
| Fault Protection System

Models

Garth Watney

Jet Propulsion Laboratory,
California Institute of Technology
Flight Software and Data Systems Section

Copyright 2008 California Institute of Technology, Government Sponsorship Acknowledged

Agenda JPL

9 April 2009

Introduction
— Local Detection, Centralized Mitigation Fault Protection
— A Small Flexible Software Architecture using Statechart models

Fault Protection Architectures for Space Missions
— Cassini AACS
— Deep-Space One
— Deep Impact
A model-based Software Architecture
Implementing Models into Flight Software
Implementing State-chart models using the Quantum Framework
Space-based Interferomety Mission (SIM) Fault Protection
Light-weight Statechart Architecture
Advantages of this Architecture
Shortcomings of this Architecture
Conclusion

Introduction JPRL

« Traditional Fault Protection implementation
— Local Detection, Centralized Mitigation Fault Protection

— This work proposes a small flexible software architecture that fits within this traditional
paradigm (as apposed to an advanced goal-based system such as JPL's MDS Architecture
where fault protection is an integral part of the design and not a separate subsystem.

System Fault Protection

local recovery
Fault-to-recovery associations

aultl J
—
.fault2
X
° _

: X

v Vv

Recovery
Scripts

Recovery
Engine

I...T e

system-level recovery

v

9 April 2009 (LFP = Local Fault Protection) 3

Fault Protection Architectures for Space Missions _|p|_

« Cassini AACS (Attitude and Articulation Control
Subsystem)

— Parallel Recovery Execution that in turn drive an immense V&V
effort to identify contradicting or overlapping system interactions.
— Rule-based system:
« Symptom events - Diagnostic Rules - Activation Rules
— Manual Ada Code
» No software implementation models.
— Advantage

« Well-tested and extremely capable fault protection system capable
of responding to all conceivable anomalies

— Disadvantage
* High implementation cost
* “pile of code”

« Implementation was tightly coupled to the Cassini mission — not
malleable to change or reuse across missions

9 April 2009 4

Fault Protection Architectures for Space Missions _|p|_

« Deep Space One (DS1)
— 2 Layer Fault Protection architecture applied to single response
execution.

« Shorter (more urgent) responses could interrupt longer (less urgent)
running responses

— A Fault Protection Engine responsible for fault isolation and the
orderly execution of responses was implemented manually in C

— Statechart models were used to define all Monitors and
Responses using the Matlab Stateflow tool.

« Stateflow auto-generated C code from the models which were in-
turn transformed into C flight code

— Advantages
* One system engineer could develop Monitor and Response models
— Disadvantages
« Statechart models did not conform to the UML statechart semantics
« Stateflow tool saved models in a proprietary output
« Stateflow tool generated non flight-like C code

 Fault Protection Engine was tightly coupled to the DS1 mission —
not malleable to change or reuse across missions

— “pile of code”

9 April 2009 S

Fault Protection Architectures for Space Missions _|p|_

9 April 2009

Deep-Impact

Legacy DS1 Design
« 2 Layer Fault Protection architecture applied to single response execution.

A refactored mission-agnostic Fault Protection Engine was coded in
C++

Statechart models were used to define all Monitors and Responses
using the Matlab Stateflow tool.

» Stateflow auto-generated C code from the models which were in-turn
transformed into C++ flight code

Advantages
* One system engineer could develop Monitor and Response models
» A “reusable” Fault Protection Engine software component

Disadvantages
» Statechart models did not conform to the UML statechart semantics
» Stateflow tool saved models in a proprietary output
» Stateflow tool generated non flight-like C code

» Fault Protection Engine was still a fairly complex software component and
not malleable to changes in the behavior.

— “pile of code”

A model-based Software Architecture

JPu

* This Architecture provides an
inheritance base from which
we can build different software
applications

 Model-based Framework
Layer provides:

— A Framework for the
development of an Application
specified as a collection of
models

— A level of abstraction higher
than the real-time Operating
System

— Common real-time software
capabilities such as schedule
control, commanding and
telemetry

9 April 2009

Application Layer

Model-based Framework
Layer

RTOS Layer

CMD

SBC

QF

XEC

TLM

EVR

VxWorks

Implementing Models into Flight Software =

 UML Modeling

— Explicitly capture the intent of the
requirements

— Formally capture the behavior in a model
— Create a crisp notion of state

e State-based Framework

— Supports the UML standard
— Allows developers to think and work with
higher constructs — states, events and
tranSitionS JPL Autocoder E B Model
« Auto-coding o]
— Light-weight Java program [v
— Reads in the Model which is stored in a — | o "% B
non-proprietary data format (XML)
— Converts the input model into an internal — I
data structure — —
— Has multiple back-ends to support Python o
different project requirements Modelpm! | |
« Test harness
— Ability to run the model stand-alone — [Modelsy
module test environment

* Model checking

— Automatic generation of Verification
models

— Exhaustively explore the state-space of
the model

— Checks for various correctness properties

9 April 2009 within the model 8

Implementing State-chart models using the

Quantum Framework -lp.-
pplestor Evem‘% Small lightweight framework
intended for embedded real-
I;% time applications

f e /\ « Supports active objects
- - o — Event-driven, concurrently

executing objects
c:% c:zgé) S% — Each object embedding a
Hierarchical State Machine

— Objects do not share data —
only communicate via an

& % 23 % exchange of event instance
sl 1L Mo 2z MorTor j:: Mormior 4

= = Glaobal Pub Sub Bu ‘ I
< [} [} : u“ — A [>

Response 1 Response 3 % Response 4 Response 2

Fault Protection Engine

9 April 2009 9

Space-based Interferometry Mission (SIM) Fault

Protection JP.-

* Monitors, Responses and the Fault Protection Engine are all expressed as a
collection of interacting UML Statechart models.

« Fault Protection strategy is encapsulated in the FP Engine model.

« Underlying software architecture is a model-based architecture which
directly supports the instantiation, execution and communication of
hierarchical state-machines.

« Advantages

— All FP software components are explicitly modeled and flight code generated
directly from these models

— Our model-based software development process is not tied to a vendor’s auto-
coding or drawing tools.

— The auto-generated code is readable and understandable since the UML
statechart syntax is directly mapped to tried and tested software design patterns.

— The fault protection strategy was explicitly captured as a model enabling the
specific strategy to be malleable to changes.

« Disadvantages

— Abandoning the Matlab Stateflow resulted in system engineers not directly
specifying the monitor/response model

— Scalability problems — multiple instantiations of the same model and processing
throughput.

9 April 2009 10

Light-weight Statechart Architecture =

« Based on the SIM model-based

Architecture with the following -
modifications: ?% m@% @ 283

: M- == o ~
— State-machines can be grouped k(/‘\ﬁ\;j s <
into subsystems that communicate Ly “’fﬁ:ﬁ;“éf;/““

only at the local level

— Monitors, which are multiple
instantiations of the same state-
machine are distributed amongst
several subsystems and < S— >
eliminates the problem of them all
responding to the same global
event. Fault Protection

— FP Manager tracks and invokes -
only the active Responses which

eliminates the throughput Fesponi
problem.
* Light-weight state-machines have 1% . e S
the following restrictions: |

Response 3 ‘ Response 4

— Do not subscribe to events

— Must be encapsulated by a global
interface component

Fauilt Protection Engine

9 April 2009 11

Advantages of the Architecture =

9 April 2009

Modeling the FP Engine provides a blueprint template that can be
customized for any future mission

The FP Engine can also be extended into a general purpose
Autonomy Engine that responds to non fault events

Models in general provide a communication medium between
system and software engineers

Formal and explicit models reveal whether a software engineer has
understood the intent of the imposed requirements

Models help to nail down ambiguous or loosely worded
requirements

Executable models can be used as a prototype to demonstrate and
test early behavior

Models can be used to analyze and document the design

Models can be used to automatically generate large portions of the
flight software code

12

Shortcomings of the Architecture =

9 April 2009

The Architecture explicitly supports capturing the dynamic behavior
of a software component as a state-machine. This works very well
at the local software component level but fails to capture the
following crucial aspects:

— Component interaction at the global level
— Scheduling execution of components
— Threads of execution
Very few software defects arise from incorrect implementation at the

local level, but defects are often found from unforeseen interactions
at the global level.

— Component publishes an event without a recipient
— Component subscribes to an event without a publisher

— Component executed in a high rate group publishing events to a
component executed in a low rate group causes queue overflows

Need to explicitly model the component communication and the
execution threads.

— Analyze the global interactions of software components and remove
these type of defects at build-time or before

13

Conclusion _lpl-

 What's the goal:

— Create a software architecture that is highly flexible in its particular FP
philosophy.
— Involve system engineers in the software development process

— Explicitly and formally capture the FP Engine, Monitors and Responses
as models.

* Analyze the models
» Auto-code the flight software
« Malleable to change

 |dentified short-comings

— Global behavior is not being explicitly modeled which leads to defects in
the communication between software components

 Future work

— Explicitly model the high level architecture for component interaction
and execution scheduling.

9 April 2009 14

	� A model-based Architecture for a small flexible Fault Protection System�
	Agenda
	Introduction
	Fault Protection Architectures for Space Missions
	Fault Protection Architectures for Space Missions
	Fault Protection Architectures for Space Missions
	A model-based Software Architecture
	Implementing Models into Flight Software
	Implementing State-chart models using the Quantum Framework
	Space-based Interferometry Mission (SIM) Fault Protection
	Light-weight Statechart Architecture
	Advantages of the Architecture
	Shortcomings of the Architecture
	Conclusion

