s

SPu

A Combinatorial Test Suite
Generator for Gray-Box
Testing

Anthony Barrett
Daniel Dvorak

July 20, 2009 SMC-IT 2009 1/28

e RSE

Generic Problem

As NASA missions become ever more complex and subsystems
become ever more complicated, testing for correctness
becomes progressively more difficult. Exhaustive testing is
usually impractical, so how does one select a smaller set of
test cases that is effective at finding/analyzing bugs?

This problem often addressed by performing Monte Carlo tests and
analyzing the results. Unfortunately, this approach does not
provide any coverage guarantees, does not provide any help in
actually analyzing the results, and limits testing to small regions of
the option space.

July 20, 2009 SMC-IT 2009 2/28

pu

(=]

Example: CEV Launch Pad
Abort Simulation

« Simulated Scenario
— Initiate (abort & control motors ignite)
— Abort motor burnout
— Canard deploy & CM reorient
— LAS jettison
— Drogue deploy
— Main parachute deploy
— Retro fire
— Touchdown

« Each simulation starts with
the setting of 84 floating
point parameters. Image from Apollo

July 20, 2009 SMC-IT 2009

s

ez

3/28

SPu

Outline

« Combinatorial testing

» Comparison with random testing
* Gray-box testing
 Components of a test model

* Testgen algorithm

* Experiments

» Conclusions

July 20, 2009 SMC-IT 2009

s

i

4/28

@ RE
Combinatorial Testing

1
a
]

« The Challenge

— Exhaustive testing is usually impractical, so how
do you select a smaller set of test cases that is
effective at finding bugs?

* A solution

— Generate test cases automatically in a way that
exercises Interactions among the many test
factors

* |t only takes 216 tests to exercise all pairwise
iInteractions among 20 ten-valued parameters

July 20, 2009 SMC-IT 2009

I%g_/!I—HH |

o °E

Relisbio

S0
Pairwise Testing Example
Pairwise Interactions Test Suite
A 3 Test Factor: A B C
00 -10-07=00 Tfraqt1. 0|o]o
01 -/0-1|-01 |- _
10-11-0l-10 est 2: 011
1 1 -11 - 11-1 1 |[Test3: 1101
Test 4: 11110

Only 4 tests to cover all pairwise interactions as
opposed to 8 tests for exhaustive testing

July 20, 2009 SMC-IT 2009 6/28

s

SPu

Underlying Premise

* The simplest bugs in a program are generally
triggered by a single input parameter

* The next simplest bugs are triggered by an
Interaction between two input parameters

* Progressively more obscure bugs involve interactions
between more parameters

— These are both progressively rarer and harder to test for

* Exhaustive testing involves testing all possible
combinations of all inputs.

— This blows up exponentially with the number of inputs
July 20, 2009 SMC-IT 2009 7/28

e RSE

Does it work?

« Anecdotal evidence has suggested that this small
number of tests 1s enough to catch most coding

CITOIS

— D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, “The Combinatorial Design
Approach to Automatic Test Generation.” IEEE Software, 13(5):83-87. 1996.

— 1. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and A. Iannino,
“Applying design of experiments to software testing.” Proc. 19th International
Conference on Software Engineering (ICSE *97). 1997.

— K. Burr and W. Young, “Combinatorial Test Techniques: Table-Based Automation,
Test Generation, and Test Coverage.” Proc. International Conference on Software
Testing, Analysis, and Review (STAR), San Diego, CA, October, 1998.

— D. R. Wallace and D. R. Kuhn, “Failure Modes in Medical Device Software: an
Analysis of 15 Years of Recall Data.” International Journal of Reliability, Quality
and Safety Engineering, 8(4):351-371. 2001.

July 20, 2009 SMC-IT 2009 8/28

e

-~ Comparison with Random
Testing

s

i

» Pairwise Testing Approach

— Build minimal set test cases to cover all
pairwise interaction of values from each

set.

July 20, 2009

T,={low,
T, = {low,
T5;={low,

SMC-IT 2009

..., high,}
..., high,}
..., high}

9/28

e

-~ Comparison with Random
Testing

s

i

 Random Testing Approach

— Build test cases by randomly selecting
values from each set.

July 20, 2009

T,={low,
T, = {low,
T5;={low,

SMC-IT 2009

..., high,}
..., high,}
..., high}

10/28

e

i

s

JPL Issues With Random
Approach

 How many tests are enough??

— Typically just perform tests until some time
limit is reached, resulting in large numbers
of tests

* What kind of guarantee does this
provide?
— At best a probabilistic guarantee...

July 20, 2009 SMC-IT 2009 11/28

e

s

i

-~ Probability of Finding Some
Pairwise Problem

« For 20 ten-valued parameters (10%°)
— When is random testing good enough?

g
/

0.5 -

0

=]

1000
Number of Tests
July 20, 2009 SMC-IT 2009 12/28

e

E

i

= Probability of Finding Any
Pairwise Problem

« For 20 ten-valued parameters (102°)
— Not quite if you want a guarantee

/“"'
#

I
R—

0 500 1000 1500
Number of Tests

July 20, 2009 SMC-IT 2009 13/28

e

s

i

SPu

Performance Issues

* While it takes 216 tests to cover
pairwise interactions among 20 ten-
valued parameters, it takes:

— 1000 tests to cover all 3-way interactions of
just 3 ten-valued parameters.

— 10000 tests to cover all 4-way interactions
of just 4 ten-valued parameters.

* The number of tests gets exponentially
large for higher combinatorial tests.

July 20, 2009 SMC-IT 2009 14/28

e

;
|
i

o Targeted Interaction Testing

» Pairwise testing is too limiting.
— Blindly using it is not a best practice.

* There is no replacement for a cognizant
test engineer.

— The objective of combinatorial test suite
generation is to take a set of test space
coverage requirements and compute a
conforming test suite containing as few
tests as possible.

July 20, 2009 SMC-IT 2009 15/28

e

s

i

SPu

Gray-Box Testing

» Black Box Testing

— Build a test suite with no knowledge of
system internals

 e.g. Monte Carlo and Pairwise testing

» Gray Box Testing

— Build a test suite given partial knowledge of
system internals

* Requires mechanisms to tune test generation

July 20, 2009 SMC-IT 2009 16/28

e

i

s

P Testgen Modeling
Language Features

« Explicitly include particular combinations
« Explicitly exclude particular combinations

* Require different #-factor combinatorial
coverage of specific subsets of factors

* Nest factors by tying the applicability of
one factor to the setting of another

July 20, 2009 SMC-IT 2009 17/28

e

;
|
i

SPu

Testgen Model Features

* |nput Factors

— [T, ... T,] — K enumerated sets denoting possible
levels for k factors

— Pairwise Example
* [{0,1}{0,1} {0,1}]
e Output Tests
— M — a set of k-element test vectors

— Pairwise Example
- [0,0,0], [0,1,1], [1,0,1], [1,1,0]

July 20, 2009 SMC-IT 2009 18/28

e

s

i

SPu

Testgen Model Features

» Nested factors denote factor
interactions
— NEST C {(N(1),c(i),1) | 1 = N(1) <1 =k and c(1)
& Ty)s» where N(i) and c(i) denote that the i™
factor applies only when the N(i)® factor is
level c(1).
« e.g. Can only test it" factor if the earlier
N(i) factor is not an illegal value.

July 20, 2009 SMC-IT 2009 19/28

e

s

i

SPu

Testgen Model Features

e Seed Test Cases
— SEEDS C (T, U {**"})x..x(T, U {**’}),
conforming to NEST and denoting specific
combinations that must occur in returned tests.
— Pairwise example

« SEEDS = {[0,0,0]} -- all generated test suites
will have this vector.

July 20, 2009 SMC-IT 2009 20/28

e

;
|
i

SPu

Testgen Model Features

 Excluded combinations

— EXCLUDE C (T, U {**’})x..x(T, U {**’}),
consistent with elements of SEEDS and
denoting specific combinations that cannot
occur 1n returned tests.

— e.g. an illegal combination of SEEDS and
EXCLUDE

e [1023**2**7*%x=x=x3 %% SEEDS
o [#(2** % %%k xx %% %% %] € EXCLUDE

July 20, 2009 SMC-IT 2009 21/28

e

;
|
i

SPu

Testgen Model Features

* Mixed Strength Coverage

— COMBOS C {(m:t;..t) [n = j & 1st)<..<t= k}
denoting the required n-way combinations for
specific subsets of # or more factors.

—e.g. {(2:1 2 3)} gives us pairwise of first three

of six factors

July 20, 2009 SMC-IT 2009 22/28

e RSE

o Testgen algorithm

Testgen([T,...T,], SEEDS, NEST, EXCLUDE, COMBOS)
1. M < SEEDS.
2. Fori<1 to k do:

3. @ < {combinations that end with T, conforming with COMBOS,
NEST, and EXCLUDE};

If 7 is not empty then

Grow tests in M to cover elements of

Add tests to M to cover leftover elements of
. For each test m € M do:
Fori < 1 to k do:

If m|i] =“*’ then

10. Randomly set m[i] to a value from T,
(conforming with EXCLUDE and NEST).

11. Return the test suite M.

I N =

July 20, 2009 SMC-IT 2009 23/28

SPu

;
|
i

Growing existing tests

To grow tests in M to cover elements of x,

1. For each ¢ € T, in random order do:

2. Findm &M where m[i] € {**°, ¢} & letm[i] < ¢
(conforming with EXCLUDE and NEST).

3. Remove elements from s that are covered by tests.

4. For each test m € M 1if &, not empty do:

5. Ifm[i] = “* then

6. Set m[i] to a level covering the most elements of m,
(conforming with EXCLUDE);
7. Remove covered elements from

July 20, 2009 SMC-IT 2009 24/28

;
|
i

SPu

Adding new tests

To add tests to M to cover leftover elements of &,
1. For each P left in &t; do:

2. Tryto set ‘*’ entries of some m € M to cover P
(avoiding EXCLUDE);

3. If P still uncovered add a new test to M for P.

July 20, 2009 SMC-IT 2009 25/28

e

SPu

i

s

Experiments

» Cannot compare with other algorithms
in the field due to none having the same
modeling capabillities.

 Also, testgen is much faster, facilitating
the handling of over 1000 factors.

— Solved pairwise problem of 1000 3-level
factors in 22 seconds with 48 tests

July 20, 2009 SMC-IT 2009 26/28

e

SPu

Experiments

s

i

« Pairwise quality is comparable with existing

algorithms.
Problem IPO AETG PICT Testgen
34 9 11 9 9
313 17 17 18 19
415317229 34 35 37 35
41339235 26 25 27 29
2100 15 12 15 15
1020 212 193 210 212

July 20, 2009

SMC-IT 2009

27/28

s

SPu

Conclusions

* While random testing is simpler,
combinatorial testing provides coverage
guarantees

« Simple pairwise testing suffers the same
limitations as any other black-box approach

« Testgen facilitates tuning test suite generation
to take advantage of gray-box information.

* The Testgen algorithm is fast enough to
enable the exploration/comparison of multiple
test-suite specification models

July 20, 2009 SMC-IT 2009 28/28

e

i

s

SPu

Copyright

* Copyright 2009 California Institute of
Technology. Government sponsorship
acknowledged.

July 20, 2009 SMC-IT 2009 29/28

