FSW is TWO systems, not one

FSW Architecture and Design Principles

The FSW that we know is indispensable
to spacecraft operations is a real-time
system. It drives the hardware of a
robotic vehicle and its instruments.

As missions become more capable, a
second system emerges. It's a non-
real-time system that manages data.



The second system

FSW Architecture and Design Principles

The software we usually think of when
we say “flight software” is the real-time,
safety-critical, interrupt-driven
foreground system.

The other part of “flight software” —
which we typically don’t recognize as
being different in nature — is the non-
real-time, discretionary, time-sharing
background system.



Where It lives

FSW Architecture and Design Principles

Scheduling theory tells us that the real-
time tasks should use no more than

about 60% of CPU time in order to
ensure they don’t miss deadlines.

The remaining 40% of CPU — “idle time”
—isn’t really idle: it's time available for
interruptible tasks, the second system.

That second system should include
everything that is not truly real-time.

Yo/ BN



Second system overview

FSW Architecture and Design Principles

All tasks run at the same priority, the

lowest priority supported by the O/S.
Possibly multiple background subsystems.
To the real-time FSW they all look like “idle”.

Tasks have no deadlines.

Locking one another out for prolonged
periods is okay, so long as everybody gets a
chance to run eventually.

Each task must release CPU on finishing a
unit of work — usually blocks on something. o)




Through the looking glass

FSW Architecture and Design Principles

The foreground and background
systems of a spacecraft's FSW share
many qualities that distinguish them —
both — from workstation or PC software.

But in some ways the character of the
background system is the exact inverse
of the character of the real-time FSW.

And the two can coexist in perfect
compatibility. It's been demonstrated.

Yo/ BN



What they have in common...
...Is most of the flight project cultural
values:

Project schedule can’t be jeopardized.
Module coupling must be minimized.

No dynamic system memory allocation.
Make maximum use of available resources.
Contain and, as possible, tolerate faults.
Test as you'll fly, fly as you tested.

Formal, controlled development process.

Yo/ BN



Where they differ

What is optimized

Determinism
Portability

Mutual exclusion
Data sharing
Message passing
Memory management

Monday, September 12th, 2011 DES

FSW Architecture and Design Principles



Context

FSW Architecture and Design Principles

The MSL architecture is clearly an
excellent approach to the design of an
FSW real-time system (but other good
approaches are possible).

Postulate: the ION architecture is a good
approach to the design of an FSW non-
real-time system (but again other good
approaches are possible).



What is optimized
The foreground system must be reliable,
else you lose the spacecraft.
Fixed scope enables minimal, mission-specific
design which enables comprehensive testing.
The background system must be efficient,
else not enough work gets done.
Minimize wasted space and cycles.

This adds complexity, so support portability:
reliability comes from extensive multi-mission

testing history. 2]



Mutual exclusion

FSW Architecture and Design Principles

Real-time FSW can't tolerate lengthy
mutual exclusions: tasks miss deadlines.

In the background system, no problem.
You can serialize an entire subsystem
on a single mutex, because there are no
deadlines.
Only one task runs at a time anyway.
Loops, function calls in critical section: okay.
Minimize cycles spent on task switching. =1



Data sharing

FSW Architecture and Design Principles

Data sharing requires mutual exclusion,
so it's no good in the foreground system.

In the background system, lengthy
mutual exclusion is okay — so shared
access to data is okay.

Which is good, because shared access
is also the fastest way multiple tasks can
operate on the same data.



Message passing
Because shared access is excluded, the
real-time system uses message passing
to enable multiple tasks to operate on
common data.

But because shared access is okay In
the background system, message
passing is not needed.
No cycles wasted in copying anything.
Signal “data ready” by giving a semaphore.

s v e



Memory management

FSW Architecture and Design Principles

Because mission scope is fixed, all
foreground FSW memory can be in fixed-
length arrays, each with margin.

But the background system gains reliability
from being multi-mission, hence portable
and evolvable.

Management of private common heap: pooled
resource, pooled margin, efficient use of space.

Automatically adapts to mission scope change.

)



How they work together

FSW Architecture and Design Principles

The foreground system never calls the
background system’s library functions —

never blocks, ignores background tasks.

Background tasks are interrupted

whenever foreground tasks need to run.

For communication between the two:
VxWorks message queues.

Non-blocking at the foreground end.
Blocking at the background end.



Happy coexistence

http://en.wikipedia.org/wiki/The Marriage..ofsHeaven and Hell

Monday, September 12th, 2011 B]=S)

FSW Architecture and Design Principles

15


http://en.wikipedia.org/wiki/The_Marriage_of_Heaven_and_Hell

	FSW is TWO systems, not one
	The second system
	Where it lives
	Second system overview
	Through the looking glass
	What they have in common…
	Where they differ
	Context
	What is optimized
	Mutual exclusion
	Data sharing
	Message passing
	Memory management
	How they work together
	Happy coexistence



