Gravity Tractoring with Local Mass Augmentation

October 1, 2013

Tim McElrath
Gravity Tractoring Basics

- Gravity tractoring is the only deflection method that does not require any physical contact
 - Avoids any need to despin asteroid

- For gravity tractoring, the spacecraft weight equals the average thrust that can be applied to the system (asteroid + spacecraft)
 - Spacecraft SEP thrust levels of 1-2 N can be achieved for spacecraft dry masses in the ~2-4T range
 - Spacecraft weight at asteroids with radii less than 500m is <<1 N
 - *Traditional gravity tractoring is relatively propellant efficient, but takes a long time*

- When operating at an average altitude of one radius:
 - $W = G \frac{m \rho \pi r}{3}$, where m is the spacecraft mass (assuming spherical asteroid)
 - *Mass increase is the only way to increase weight*

- Significant mass can only be added after arrival at the asteroid
 - Launch capability and transit time limit initial spacecraft mass
 - Adding mass requires physical contact, but only for a short period of time
Mass Augmentation Methods

• Several methods may be possible
 – Focus of presentation is not on selecting a particular method
 – Two methods are discussed to show general feasibility

• Grab a boulder:
 – Uses something like the baseline ARRM capture system
 – May be able to verify that boulder is loose by roll tracks on surface

• Brush-wheel sampler ("BWS", pictured)
 – Proposed for previous sample return missions
 – Collects loose regolith from surface as asteroid rotates under collector

• For either method, assume up to 1000T can be obtained
Gravity Tractoring Ops

- Spacecraft center-of-mass should be as close to asteroid as possible
 - Thrusters want to be far away due to cant angle losses
- Using collected mass makes this easier
- Thrusting typically performed in downtrack direction
 - Produces period change that generates secular downtrack trend

![Diagram showing the concept of gravity tracting operations with a spacecraft and asteroid, illustrating the downtrack position with respect to Earth over time.](https://example.com/diagram.png)
2000 SG344 Example

- 2000 SG344 is in a very Earth-like orbit
 - Could return 3000 to 7000 T in ~2028
 - Estimated asteroid mass range is 10,000 to 300,000 T

- Make some mid-range assumptions to see what might be possible
 - 50,000 T asteroid mass, 15m radius, $\rho = 2.5$
 - 1000 T s/c mass, at 55m radius, $W = 1.1N$
 - 1.9 mm/sec/day of acceleration
 - For $I_{sp} = 3000s$, 1 m/s costs 2.4 T of Xe (with worst-case 45 deg cant angle)

- Starting in 2021, 1.25 m/s produces a quasi-stable near-Earth orbit for 35 years
 - Original orbit in red, modified orbit in green
 - Position at initial Earth encounter in 2028 changed by ~650,000 km
Apophis Example

- Apophis has Earth flyby “keyholes” in 2029 and 2061 that would lead to impacts in 2036 and 2068
 - First impact opportunity does not appear to be very likely

- Apophis mean diameter is 325m (~10X SG344 example)

- Gravity tractoring with only 350T at full thrust can be done at ~900m
 - Acceleration for 1.5N is ~3 μm/s/day
 - Downtrack displacement rate after 1 rev of thrusting is ~90 km/rev
 - 3 years of thrusting (5T of Xe) followed by 10 years of coasting produces ~2700 km of displacement
 - Thousands of km of displacement starts to be enough to prevent a direct impact (i.e., not impact via a keyhole)

- **Mass augmented gravity tractoring can make a difference even for something as big as Apophis**
Conclusion

- Mass augmentation makes gravity tractoring an attractive method for moving asteroids
 - Uses all of the spacecraft thrust capacity (limited only by cant angle)
 - Works on asteroids as large as Apophis
 - Avoids any need to despine asteroid

- Methods of obtaining mass at the asteroid require more study
 - Feasible methods appear to exist
 - BWS may work at a variety of asteroid types

- 2000 SG344 can be kept near the Earth for a long time
 - Would be a possible target for future missions
 - Human missions
 - ISRU missions