Fault Protection Design and Testing For the Cassini Spacecraft in a “Mixed” Thruster Configuration

August 19, 2013
David Bates

Jet Propulsion Laboratory,
California Institute of Technology
Cassini Reaction Control System Background

- Cassini has two independent branches of monopropellant hydrazine Reaction Control System (RCS) Thrusters
 - Prime and Offline Backup, essentially collocated
 - Used for 3 axis control and translation velocity changes
Cassini Reaction Control System History

- In October of 2008, swapped to B-branch thrusters because of degradation in two of the A-branch thrusters

- Corresponding Latch Valves, catbed heaters, and driver electronics all swapped to B-branch
Problem With AACS Fault Protection in “Mixed Mode”

• If B-branch thrusters degrade, may need to go to mixed branch mode
 – Use some A-branch thrusters with some from B-branch
 – Cassini attitude control flight software is capable of supporting mixed branch configuration
 • Ground operators designate which set of thrusters, catbed heaters, and driver electronics on the two branches are prime
• The original FP logic did not handle mixed branch thoroughly
Problem With AACS Fault Protection in “Mixed Mode”

- Cassini FP includes thruster leak detection error monitors which use the Euler equations to monitor for excessive thruster commanding (ETC).
 - Compares expected angular momentum accumulation with estimates of commanded RCS and Reaction Wheel Assembly (RWA) control quantities.
 - Response to ETC error is a number of corrective actions that swap hardware and call safing
 - Based on tier count that increments each time ETC is detected
 - On the sixth tier count, swap to backup thruster branch and close appropriate latch valve
 - Does not swap thruster branches a second time
 - Does not stop backup thruster branch leak
 - Original design was single fault tolerant
Design of Mixed Branch Fault Protection

- Three main design options considered to protect against leaking thruster in mixed branch configuration

 - Design FP to close both upstream latch valves and transition to RWA based safe mode
 - Mitigates widest variety of thruster failures
 - Requires large design changes and testing
 » Detumble, sun search, find stars, turn to safe attitude was designed and thoroughly tested using RCS control

 - Design FP to diagnose which thruster is leaking, and swap to opposite branch
 - Allows for RCS safing recovery
 - Requires complex logical additions to the code

 - Design FP to swap thruster branches twice, if needed
 - Simplest option to code and test
 - Uses more hydrazine before leak is mitigated
Mixed Branch RCS Fault Protection Testing

- Extensive amount of testing on multiple platforms performed for every update to the Attitude and Articulation Control Subsystem Flight Software

 - Verify proper design and implementation of the update under multiple configurations and scenarios
 - New test cases designed to target the mixed branch FP changes
 - A or B-branch RCS thrusters stuck open or closed
 - Latch valve and drive electronics failures
 - RWA faults
 - Attitude determination functional failures
 - Etc
Interesting Test Results

- Test results showed successful mixed branch fault protection design and implementation

- A few extreme scenarios revealed unexpected results

 - Phantom momentum induces false ETC fault trip

 - A known mismatch between the FSW modeled RWA momentum and the actual momentum can occur when the RWA system is unexpectedly powered off
Interesting Test Results

- A few extreme scenarios revealed unexpected results

 • Interfering Fault Responses

 - Object oriented FP design allows multiple response scripts to be active at same time

 - In a few test cases involving stuck closed thrusters, the excessive attitude error monitor interfered with the ETC tier count, so the thruster swap occurred later than expected

 » Both monitors were overwriting the tier counter

 » Requires extensive code changes to fix

 » Stuck close thrusters don’t leak hydrazine, so risk deemed acceptable

 • Safety Net Fault Responses

 - Routines that react when lower level fault protection is unable to mitigate faults

 - Excessive hardware swapping occurs prior to fault mitigation

 - Handful of test cases had extraneous hardware swaps, but fault was eventually mitigated
Conclusion

- Successful design, implementation and testing of the update to Cassini mixed RCS branch AACS Fault Protection Flight Software was a huge team success

- Lessons learned
 - Design software to fully make use of hardware redundancy
 - FSW handled mixed branch in nominal operations, not in fault scenarios
 - Maintain strict adherence to object-oriented paradigm
 - Phantom momentum
 - One FSW object powered off reaction wheels without telling other objects
 - Fault monitor counter interference
 - Two fault monitor objects overwrote the same counter
 - Test environments should have scripting capability
 - Test cases can be easily modified, evaluated, re-run, and compared against previous versions of FSW