Science figures of merit

Bruce Macintosh
Wes Traub
Dmitry Savransky
w. Tom Greene, Jeremy Kasdin, Olivier Guyon (SDT)

ACW 3.5
4 December 2013

Context

• Initial science requirements set based on ambitious science goals
 – spectra of 6 planets
 – discovery of 4+ small planets
 – HZ zodiacal dust

• Science portion of coronagraph downselect matrix was defined as pass/no pass and only corresponding to baseline levels

• Performance had to be evaluated against 1.6 mas jitter
 – “Opportunity” line could account for future performance
Context continued

- Single round of coronagraph simulations -> no opportunity to optimize designs
- Uncertainty about final levels of jitter, speckle suppression
- 550 nm models scaling to longer wavelengths is uncertain
Updated strategy

• Identify must-pass ‘threshold’ requirements that are minimum necessary to justify mission and associated with conservative 1.6 mas performance

• Second level of ‘baseline’ requirements provide additional discrimination but are not must-pass

• Opportunity level for most optimistic performance cases
Other context points

• Simulations on known-Doppler understate number of detectable planets due to limited Doppler completeness

• Models available at 1.6, 0.8, 0.2 mas. Used 0.2 for optimistic; due to finite star effects 0.2 is probably similar 0.5

• Coronagraph and missions-strategy optimization will increase number of detected planets

• **These are not the final science yield predictions – just a stepping stone for the ACWG process**

• SDT will provide more robust numbers in final report
Threshold (must-pass) requirements

1. (Threshold) The coronagraph will operate from 430 to 980 nm in >10% bandpasses. The imager will provide at least five 10% filters at roughly 450, 550, 650, 800, 950 nm and to image separately or simultaneously in two polarization channels. The spectrograph will provide R~70 from 600 to 950 nm in at least 10% coverage per setting. The imager will have a FOV of 3”x3” (with no requirement on the coronagraph OWA) and sampling 50% better than Nyquist at 450 nm. The ifs will be Nyquist sampled at 600 nm and have a FOV of at least half the coronagraph OWA.
Threshold (must-pass) requirements

2. The AFTA coronagraph will be capable of detecting a disk of 100x our solar system’s zodiacal level at SNR=5 per resolution element at 2 AU separation around a star 8 pc away at 450 and 800 nm

 – In Traub models (see next page) this is a contrast of 6.4e-9 per resolution element; assuming x10 suppression of the speckle halo that requires 1.3e-8 raw contrast at 0.25 arcseconds
Threshold (must-pass) requirements

3. The AFTA coronagraph will be capable of a integrated depth of search of >10 for planets of 15 RE<R<4RE in a 6-month single-visit survey at 550 nm

– This corresponds to an ability to detect in broadband short-wavelength imaging ~2 doppler planets
Baseline requirements

4. The AFTA coronagraph will be capable of obtaining SNR=10 R=70 550 nm spectra of >=4 known RV planets in a 60 day campaign,
 - observed in optimal geometry, albedo = 0.2
 - Downscoped from 800 nm, though that remains a strong goal – models better at 550 nm and small number statistics improved (last-minute change made without giving Wes time to update his slides)
 - Evaluated for 0.2 mas jitter / x 30 suppression
 - Final SDT modeling will use different jitter / wavelength / etc. parameters
 - If we were to evaluate at 1.6 mas jitter, score becomes very small
Opportunity (maximum performance)

5. AFTA coronagraph will be capable of detecting a disk of 10x our solar system’s zodiacal level at SNR=5 per resolution element at 1 AU at 450 nm at 8 pc

– In Traub calculation (see next page) this is a contrast of 3e-9 per resolution element; assuming x10 suppression of the speckle halo that requires 6e-9 raw contrast at 0.13 arcseconds
Opportunity (maximum performance)

6. AFTA coronagraph will be capable of an integrated depth of search of >2 for planets of $R<4RE$ in a 6-month single-visit survey at 550 nm.

- For a Fressen et al. planet-radius extrapolated out to ~ 1 AU this would result in discovery and photometric characterization of ~ 2-4 planets of <4 RE.
SFOM for AFTA coronagraph: calculation results

Wes Traub
Jet Propulsion Laboratory, California Institute of Technology

Bruce Macintosh
Lawrence Livermore National Laboratory

ACW 3.5
4 December 2013

RV Planets, shown at maximum elongation

RV planets (max elong)
- ▲ V = 1–6
- ○ V = 6–8
- ★ V = 8–9
signal (elec) = $n_{pl} \times t$ \hspace{1cm} \text{(within the FWHM of the planet image)}

noise (elec) = $\left[n_{total} \times t + (f_{pp} \times n_{rawspeckle} \times t)^2 \right]^{1/2}$

$n_{total}(elec/s) = \left[n_{pl} + n_{zodi} + n_{rawspeckle} + D_{c} \times m_{pix} + CIC \times m_{pix}/t_{frame} \right] \times ENF^2 + (N_{R}/G)^2 \times m_{pix}/t_{frame}$

signal/noise = SNR_0

\[
t (sec) = \frac{SNR_0^2 \times n_{total} (e/s)}{n_{pl}^2 - (SNR_0 \times f_{pp} \times n_{rawspeckle})^2}
\]
zodi & EKB model brightness

AFTA, zodi, EKB 10 pc

100*zodi

10*zodi

1*zodi

100*EKB

10 au

1 au

angle (arcsec)
Shaped Pupil Coronagraph

SPC, RV detections, 550 nm
8 planets, 50 days

- raw speckles/1.6mas
- floor/1.6mas/10x
- raw speckles/0.2mas
- floor/0.2mas/30x
PIAA Coronagraph

PIAA, RV detections, 550 nm
31 planets, 41 days

- raw speckles/1.6mas
- floor/1.6mas/10x
- raw speckles/0.2mas
- floor/0.2mas/30x
Hybrid Lyot Coronagraph

HLC, RV detections, 550 nm
15 planets, 42 days

- raw speckles/1.6mas
- floor/1.6mas/10x
- raw speckles/0.2mas
- floor/0.2mas/30x

contrast

angle (arcsec)
Vector Vortex Coronagraph

VVC, RV detections, 550 nm
0 planets, 60 days

- raw speckles/1.6mas
- floor/1.6mas/10x
- raw speckles/0.2mas
- floor/0.2mas/30x
Visibel Nuller Coronagraph 2

VNC2, RV detections, 550 nm
30 planets, 50 days

- raw speckles/1.6mas
- floor/1.6mas/10x
- raw speckles/0.2mas
- floor/0.2mas/30x
RV planet detection in 1 band, example

Detection yield:
- 550 nm band (10% wide)
- $\text{SNR} = 5$
- $\text{albedo} = 0.40$
- 0.2 mas jitter
- 30 times reduction factor
- 60 day campaign:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Planets</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>spc</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>piaa</td>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td>hlc</td>
<td>15</td>
<td>42</td>
</tr>
<tr>
<td>vvc</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>vnc2</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>
Photometric characterization: detection in 3 bands, example

Detection yield:
450, 550, & 650 nm bands (10% wide)
SNR = 5
albedo = 0.40
0.2 mas jitter
30 times reduction factor
60 day campaign:

<table>
<thead>
<tr>
<th>Code</th>
<th>Planets in 3 bands</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>spc</td>
<td>7</td>
<td>53</td>
</tr>
<tr>
<td>piaa</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>hlc</td>
<td>12</td>
<td>66</td>
</tr>
<tr>
<td>vvc</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>vnc2</td>
<td>27</td>
<td>74</td>
</tr>
</tbody>
</table>
Spectra, 800 nm band, resolution = 70
Spectral characterization

Characterization yield:
800 nm band (resolution = 70)
SNR = 10
albedo = 0.20
0.2 mas jitter
30 times reduction factor
60 day campaign:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>spc</td>
<td>1 planet spectrum at 800nm</td>
<td>1 day</td>
</tr>
<tr>
<td>piaa</td>
<td>3 planet spectra at 800nm</td>
<td>19 days</td>
</tr>
<tr>
<td>hlc</td>
<td>2 planet spectra at 800nm</td>
<td>12 days</td>
</tr>
<tr>
<td>vvc</td>
<td>0 planet spectra at 800nm</td>
<td>- days</td>
</tr>
<tr>
<td>vnc2</td>
<td>13 planet spectra at 800nm</td>
<td>54 days</td>
</tr>
</tbody>
</table>
Backup charts follow
Exoplanet yield calculation: target count rate example

\[n_{\text{star}} = 10^{p-0.4mV} \times BW \times A \times \eta \times f_{\text{psf}} = 2.89 \times 10^6 \quad \text{(elec/s)} \]

\[n_{\text{pl}} = n_{\text{star}} \times C_{\text{pl}} = 1.16 \times 10^{-2} \quad \text{(elec/s)} \]

I count the electrons that fall within the FWHM boundary of the PSF. For AFTA, without a coronagraph, the width is FWHM = 0.96λ/D = 0.045 arcsec at 550 nm.

The fraction of collected photons in the FWHM is \(f = 0.35 \).

Both values are from John Krist. Both values will be different for each coronagraph.
zodi count rate example

\[m_V(\text{local zodi}) = 22.1 \text{ mag/arcsec}^2 \]
\[\Omega_{\text{tel}} = (\pi/4) \times (\text{FWHM})^2 \]
\[n(\text{local zodi}) = \Omega_{\text{tel}} \times 10^{p-0.4m_V} \times BW \times A \times \eta \quad \text{(elec/s)} \]
\[n_{\text{zodi}} = 2 \times n(\text{local zodi}) = 1.15 \times 10^{-2} \quad \text{(elec/s)} \]

\[n_{\text{spec}} = 0.010 \quad \text{(elec/s)} \]
\[m_{\text{pix}} = (\pi/4) \times (2.5)^2 = 4.9 \quad \text{(pixels)} \]
\[n_{\text{min}} = n_{\text{spec}} \times f_{\text{pp}} \quad \text{(elec/s)} \]
detector count rate example

\[n_{\text{total}} = \left[n_{\text{pl}} + n_{\text{zodi}} + n_{\text{spec}} \times (1 + f_{\text{pp}}) + D_c \times m_{\text{pix}} + \text{ClC} \times m_{\text{pix}} / t_{\text{frame}} \right] \times \text{ENF}^2 \]

\[+ (N_R/G)^2 \times m_{\text{pix}} / t_{\text{frame}} \quad \text{elec/s} \]

<table>
<thead>
<tr>
<th>parameter</th>
<th>units</th>
<th>CCD typical value</th>
<th>EMCCD typical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_{\text{pl}})</td>
<td>elec/sec</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>(n_{\text{zodi}})</td>
<td>elec/sec</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>(n_{\text{spec}})</td>
<td>elec/sec</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>(m_{\text{pix}})</td>
<td>pixels</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>(D_c)</td>
<td>elec/(pixel sec)</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>(N_R)</td>
<td>RMS elec/(pixel frame)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(t_{\text{frame}})</td>
<td>sec</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>ClC</td>
<td>elec/(pixel frame)</td>
<td>0</td>
<td>0.001</td>
</tr>
<tr>
<td>ENF</td>
<td></td>
<td>1</td>
<td>1.414</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>(t)</td>
<td>sec</td>
<td>33,000</td>
<td>14,000</td>
</tr>
</tbody>
</table>
cumulative detections vs time example

- 30° phase angle
- 50° phase angle
- 70° phase angle
- 90° phase angle
- 110° phase angle
- 130° phase angle
- 150° phase angle

44% of orbit

~20 detections/month (in this example)
ExoCat (2347 stars within 30 pc, 53 parameters)

<table>
<thead>
<tr>
<th>HIP</th>
<th>HD</th>
<th>GL/GJ</th>
<th>GL/LTT</th>
<th>COMMON</th>
<th>WDS</th>
<th>sep(")</th>
<th>dM(mag)</th>
<th>NPLA NETS</th>
<th>RAhms</th>
<th>DEdms</th>
<th>RA(ICRS)</th>
<th>DE(ICRS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>224789</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>00 00 40.39</td>
<td>-69 40 32.9</td>
</tr>
<tr>
<td>169</td>
<td>224953</td>
<td>GJ 1294A</td>
<td>LTT 9859</td>
<td>____</td>
<td>00021-6817</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>00 02 08.41</td>
<td>-68 16 48.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>224930</td>
<td>GL 914A</td>
<td>LHS 101</td>
<td>____</td>
<td>00022+2705</td>
<td>0.8</td>
<td>3.07</td>
<td>____</td>
<td>00 02 09.65</td>
<td>+27 05 04.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>263</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>00 03 19.02</td>
<td>+04 41 13.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>00047+3416</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>00 04 40.15</td>
<td>+34 16 17.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>225261</td>
<td>G 130-40</td>
<td>LTT 10010</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>____</td>
<td>00 04 56.08</td>
<td>+23 16 10.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Catalog is all Hipparcos stars within 30 pc, corrected for errors. Star parameters are current best estimates.

Authorship: Maggie Turnbull, Geoff Bryden, Maggie Thompson, Brian Mason.
RV Cat (436 RV planets)

<table>
<thead>
<tr>
<th>row</th>
<th>NAME</th>
<th>MASS (Jup)</th>
<th>RADIUS (Earth)</th>
<th>ALBEDO</th>
<th>PERIOD (days)</th>
<th>SMA (AU)</th>
<th>ECC</th>
<th>s (arcsec)</th>
<th>SPEC</th>
<th>VMAG (mag)</th>
<th>DIST (pc)</th>
<th>MV (mag)</th>
<th>L (suns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HD62509</td>
<td>2.9</td>
<td>13.03</td>
<td>0.1</td>
<td>589.6</td>
<td>1.69</td>
<td>0.02</td>
<td>0.163</td>
<td>K0IIIb</td>
<td>1.15</td>
<td>10.36</td>
<td>1.07</td>
<td>42.22</td>
</tr>
<tr>
<td>2</td>
<td>HD12929</td>
<td>1.8</td>
<td>12.93</td>
<td>0.1</td>
<td>380.8</td>
<td>1.2</td>
<td>0.25</td>
<td>0.059</td>
<td>K2III</td>
<td>2.00</td>
<td>20.18</td>
<td>0.47</td>
<td>87.30</td>
</tr>
<tr>
<td>3</td>
<td>HR4057</td>
<td>8.78</td>
<td>12.87</td>
<td>0.1</td>
<td>428.5</td>
<td>1.19</td>
<td>0.14</td>
<td>0.031</td>
<td>K1IIIb</td>
<td>2.12</td>
<td>38.52</td>
<td>-0.81</td>
<td>259.39</td>
</tr>
<tr>
<td>4</td>
<td>HR8974</td>
<td>1.85</td>
<td>12.93</td>
<td>0.1</td>
<td>903.3</td>
<td>2.05</td>
<td>0.05</td>
<td>0.145</td>
<td>K1IV</td>
<td>3.22</td>
<td>14.10</td>
<td>2.47</td>
<td>11.98</td>
</tr>
<tr>
<td>5</td>
<td>HD163917</td>
<td>24</td>
<td>11.66</td>
<td>0.1</td>
<td>530.3</td>
<td>1.9</td>
<td>0.13</td>
<td>0.041</td>
<td>G9III</td>
<td>3.31</td>
<td>46.21</td>
<td>-0.01</td>
<td>115.15</td>
</tr>
<tr>
<td>6</td>
<td>HD163917</td>
<td>27</td>
<td>11.42</td>
<td>0.1</td>
<td>3186</td>
<td>6.1</td>
<td>0.18</td>
<td>0.132</td>
<td>G9III</td>
<td>3.31</td>
<td>46.21</td>
<td>-0.01</td>
<td>115.15</td>
</tr>
<tr>
<td>7</td>
<td>HIP75458</td>
<td>8.82</td>
<td>12.87</td>
<td>0.1</td>
<td>510.7</td>
<td>1.28</td>
<td>0.71</td>
<td>0.041</td>
<td>K2III</td>
<td>3.31</td>
<td>31.03</td>
<td>0.85</td>
<td>62.86</td>
</tr>
<tr>
<td>8</td>
<td>HD28305</td>
<td>7.6</td>
<td>12.96</td>
<td>0.1</td>
<td>594.9</td>
<td>1.93</td>
<td>0.15</td>
<td>0.043</td>
<td>K0III</td>
<td>3.53</td>
<td>44.96</td>
<td>0.27</td>
<td>90.50</td>
</tr>
<tr>
<td>9</td>
<td>HD22049</td>
<td>1.55</td>
<td>12.91</td>
<td>0.45</td>
<td>2502</td>
<td>3.39</td>
<td>0.70</td>
<td>1.054</td>
<td>K2V</td>
<td>3.73</td>
<td>3.22</td>
<td>6.19</td>
<td>0.34</td>
</tr>
<tr>
<td>10</td>
<td>7CMa</td>
<td>2.6</td>
<td>13.00</td>
<td>0.26</td>
<td>763</td>
<td>1.9</td>
<td>0.14</td>
<td>0.096</td>
<td>K1III</td>
<td>3.95</td>
<td>19.75</td>
<td>2.47</td>
<td>12.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>row</th>
<th>NAME</th>
<th>MASS (Jup)</th>
<th>RADIUS (Earth)</th>
<th>ALBEDO</th>
<th>PERIOD (days)</th>
<th>SMA (AU)</th>
<th>ECC</th>
<th>s (arcsec)</th>
<th>SPEC</th>
<th>VMAG (mag)</th>
<th>DIST (pc)</th>
<th>MV (mag)</th>
<th>L (suns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>433</td>
<td>HIP57050</td>
<td>0.298</td>
<td>12.15</td>
<td>0.32</td>
<td>41.4</td>
<td>0.16</td>
<td>0.31</td>
<td>0.014</td>
<td>M4</td>
<td>11.88</td>
<td>11.10</td>
<td>11.65</td>
<td>0.005</td>
</tr>
<tr>
<td>434</td>
<td>GJ317</td>
<td>1.8</td>
<td>12.93</td>
<td>0.27</td>
<td>691.8</td>
<td>1.15</td>
<td>0.11</td>
<td>0.075</td>
<td>M3.5</td>
<td>11.98</td>
<td>15.31</td>
<td>11.05</td>
<td>0.01</td>
</tr>
<tr>
<td>435</td>
<td>GJ317</td>
<td>2</td>
<td>12.95</td>
<td>0.2</td>
<td>10000</td>
<td>30</td>
<td>0.81</td>
<td>1.959</td>
<td>M3.5</td>
<td>11.98</td>
<td>15.31</td>
<td>11.05</td>
<td>0.01</td>
</tr>
<tr>
<td>436</td>
<td>Gl179</td>
<td>0.82</td>
<td>12.81</td>
<td>0.2</td>
<td>2288</td>
<td>2.41</td>
<td>0.21</td>
<td>0.196</td>
<td>M3.5</td>
<td>12.02</td>
<td>12.29</td>
<td>11.57</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Author is Dmitry Savransky.
<table>
<thead>
<tr>
<th>Req</th>
<th>HLC</th>
<th>VVC</th>
<th>SP</th>
<th>PIAA</th>
<th>VNC2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.6 / x10</td>
<td>0.2 / x30</td>
<td>1.6 / x10</td>
<td>0.2 / x30</td>
<td>1.6 / x10</td>
</tr>
<tr>
<td>1:</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Wavelength 430-980 nm 10% bandpass; pol.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td>5e-9 @ 0.27</td>
<td></td>
<td>5e-8 @ 0.5”</td>
<td></td>
<td>5e-9 @ 0.27</td>
</tr>
<tr>
<td></td>
<td>Outer disk: 100 zodi at 2 AU = 6e-9 at 0.25” @ 550 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td>11.5</td>
<td>14.5</td>
<td>0.04</td>
<td>10.0</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>Depth > 10 (thresh: >10) for 4-14 RE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b:</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>550 nm photometry of doppler planets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Req: Requirement
- HLC: High Light Collection
- VVC: Very Very Collection
- SP: Standard Performance
- PIAA: Performance Improvement Area
- VNC2: Very New Collection 2
Performance against baseline and opportunity reqs

<table>
<thead>
<tr>
<th>Req</th>
<th>HLC</th>
<th>VVC</th>
<th>SP</th>
<th>PIAA</th>
<th>VNC2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.6 / x10</td>
<td>0.2 / x30</td>
<td>1.6 / x10</td>
<td>0.2 / x30</td>
<td>1.6 / x10</td>
</tr>
<tr>
<td>4: Spectrum of Doppler planets at 550nm, 2 months</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5. HZdisk: 10 zodi at 1 AU =raw 1e-8 at 0.13’’ @ 450 nm</td>
<td>1e-8</td>
<td>>1e-7</td>
<td>1e-7</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6. Depth > 2 for <4 RE</td>
<td>0.0</td>
<td>3.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Some conclusions

• Coronagraph design has to be iterative with telescope and wavefront control – work in this area should begin immediately
 – Optimized cases may perform better to much better
 – We have to understand the physics!
 – Need a well-integrated modeling team

• For SDT report, much more coronagraph and science modeling modeling is needed, in DRM-like ways

• Science is still exciting but range of possible outcomes is broad