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A central paradox

 Water and energy variables parsimoniously
explain global patterns of terrestrial
vegetation

* Most ecosystems respond to nutrient

additions, suggesting nutrients as a primary
constraint

* Does water/energy or nutrient availability
better explain terrestrial vegetation patterns
and productivity?
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Fic. 8. Relationships between spatial changes in variables, illustrated by plotting mean deviates for two variables against
one another. Across: NPP vs. nitrogen mineralization, NPP against annual evapotranspiration, and nitrogen mineralization
against annual evapotranspiration. Vertically, top to bottom: BGC, Century, and TEM.
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Steady state to
transient:
nutrients are key
controls

Productivity will
change at the rate
of the slowest-
adjusting variable

(this is a pointer to Ben’s talk).
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Biological N fixation tracks water
and energy availability
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Figure 1. Conservative, central, and upper-bound data-based and modeled estimates of terrestrial biological
nitrogen fixation by ecosystem plotted versus modeled ecosystem ET,

abundant in some parts and/or successional stages of all
ecosystems, we believe that it is extremely unlikely that this
value represents a realistic average spatial and temporal
coverage. The contribution suggested by the conservative and
central data-based estimates (100 Tg N yr' and 195 Tg N yr,
°°°°°° +ively} are much more reasonable values, and since our

central value is based on an average of explicitly reported
coverages of N fixers, our best estimate of potential N fixation
in natural ecosystems globally is 195 Tg N yr™, or an average
of ~15 kg N yr" for each hectare of the Earth’s land surface.
Our failure to include an error term on this central value reflects
the fact that we are unaware of an appropriate statistical
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Figure 3. Annual global net
primary productivity (NPP)
simulated by BIOME-BGE
in climate space represented
by mean annual tempera-
ture and water balance coef-
ficient. Each data point rep-
resents one 0.5° X 0.5° grid
cell.
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Extending Churkina and Running: Glob
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Global nutrient limitation in terrestrial vegetation

Hutrient Limitation
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Theory for nutrient limited
adjustment rate

The rate of change of carbon depends on the rate of
change in available nutrients (not total but related).

What controls available nitrogen (nutrients)?

First, the fraction of total nutrient that is available:
this fraction may change as water and energy
availability change: fN_,.;
Second, the total amount of nutrient, noting water
and energy affect inputs and losses: Ny

dfN,/dt =F(N,,.;) where F, inputs and losses all
depend on energy and water, anf F is the fractional
availability of a total nutrient




Coupled carbon-nutrient modeling

* Critical to simulate nutrient cycles
(mineralization, immobilization, uptake).

* But, equally important to simulate budgets
(inputs, losses, mineral phases).

 The motivation for modeling budgets has
often been climate, air or water quality issues,
but emerging as important for the carbon
cycle.




Evidence for dynamic adjustment
of total and available nutrients.

* When productivity decreases, N losses increase.

 When plant uptake declines, precipitation of P into
insoluble mineral forms increases.

* Long-term changes in nutrient budgets correlate with
carbon stocks (eg, Hawai’i) and nutrient partitioning,
resource use efficiency.

* Microbial communities respond to changes in the
relative availability of energy and nutrients, affecting
the active/total partitioning.




Modeling nutrient inputs and
losses

A game changer for modeling...

Process-level modeling of A and R requires
modest site- and landscape-specific processes.

Process modeling of local nutrient budgets
requires detailed soil physics and local
hydrology.

Scale becomes a major issue, with
dependence on soil pores, wetlands,
hillslopes, even herbivores.




Approaches

e Simple (Schimel et al 1997) parameterization
of inputs and losses and environmental
functions.

* Complex models of each flux process as in
DayCent or DNDC...

* Different biomes and regions have different
dominant processes (BNF vs deposition, fire
versus leaching).




Example
control

functions:

complex but these
are the easy part
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Figure 3. Effect of (a) soil water-filled pore space, (b) soil temperature, and (c) soil pH on nitrification.
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Figure 5. Comparison of simulated versus measured soil water-filled pore space (WFPS) for all the sites (a) during
the growing season and (b) during the winter months. (c) Daily comparison of simulated and observed WFPS for
the sandy loam site during 1992.
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Figure 9. Comparison of observed and simulated daily N,O fluxes for the native sandy loam site. Error bars
represent standard deviations of measurement repetitions (n=4); standard deviations were not available for all
measurements.



* N budgets are controlled by different factors in
different environments (leaching, fire, trace
gases, BNF, deposition), most of which remain
incomplete in global models

* Diagnosis is needed to determine a “minimal”

model for coupled C-nutrient cycles in the

climate system to determine the nutrient-

limited rate of carbon change.
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