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Structure of an Earth System Model 



Elevation and Depth Structure 
Ecosystems 



Ecosystem structure and climate; 
how can we constrain models with 

observations 



A central paradox 

• Water and energy variables parsimoniously 
explain global patterns of terrestrial 
vegetation 

• Most ecosystems respond to nutrient 
additions, suggesting nutrients as a primary 
constraint 

• Does water/energy or nutrient availability 
better explain terrestrial vegetation patterns  
and productivity? 



Water, energy and nitrogen 
coupling 



Global 
steady-state 

patterns 
of carbon, 
water and 

energy 

 



Similar patterns across models: a blast from the past 

Schimel, D.S., VEMAP Participants, and B.H. Braswell. 1997. Spatial variability in 
ecosystem processes at the continental scale: models, data, and the role of 
disturbance. Ecological Monographs 67: 251-271.  

 



Steady state to 
transient: 

nutrients are key 
controls 

 
 

Productivity will 
change at the rate 

of the slowest-
adjusting variable 
(this is a pointer to Ben’s talk). 

 
 



Global primary productivity 



Biological N fixation tracks water 
and energy availability 



Mapped 
limiting factors 
from Churkina 
and Running 

(1998) 



Extending Churkina and Running: Global nutrient limitation in terrestrial vegetation 
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Global nutrient limitation in terrestrial vegetation 
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Theory for nutrient limited 
adjustment rate 

The rate of change of carbon depends on the rate of 
change in available nutrients (not total but related). 
 
What controls available nitrogen (nutrients)? 
 
First, the fraction of total nutrient that is available: 
this fraction may change as water and energy 
availability change: fNavail 
 
Second, the total amount of nutrient, noting water 
and energy affect inputs and losses: Ntotal 
 
dfNa/dt =F(Ntotal) where F, inputs and losses all 
depend on energy and water, anf F is the fractional 
availability of a total nutrient 
 
 



Coupled carbon-nutrient modeling 

• Critical to simulate nutrient cycles 
(mineralization, immobilization, uptake). 

• But, equally important to simulate budgets 
(inputs, losses, mineral phases). 

• The motivation for modeling budgets has 
often been climate, air or water quality issues, 
but emerging as important for the carbon 
cycle. 



Evidence for dynamic adjustment 
of total and available nutrients. 

• When productivity decreases, N losses increase. 
• When plant uptake declines, precipitation of P into 

insoluble mineral forms increases. 
• Long-term changes in nutrient budgets correlate with 

carbon stocks (eg, Hawai’i) and nutrient partitioning, 
resource use efficiency. 

• Microbial communities respond to changes in the 
relative availability of energy and nutrients, affecting 
the active/total partitioning. 



Modeling nutrient inputs and 
losses 

• A game changer for modeling… 
• Process-level modeling of A and R requires 

modest site- and landscape-specific processes. 
• Process modeling of local nutrient budgets 

requires detailed soil physics and local 
hydrology. 

• Scale becomes a major issue, with 
dependence on soil pores, wetlands, 
hillslopes, even herbivores. 



Approaches 

• Simple (Schimel et al 1997) parameterization 
of inputs and losses and environmental 
functions. 

• Complex models of each flux process as in 
DayCent or DNDC… 

• Different biomes and regions have different 
dominant processes (BNF vs deposition, fire 
versus leaching). 



Example 
control 

functions: 
complex but these 
are the easy part 



Modeling 
soil water 



Model evaluation 
is event-scale 

since there is no 
integral constraint. 



• N budgets are controlled by different factors in 
different environments (leaching, fire, trace 
gases, BNF, deposition), most of which remain 
incomplete in global models 

• Diagnosis is needed to determine a “minimal” 
model for coupled C-nutrient cycles in the 
climate system to determine the nutrient-
limited rate of carbon change. 
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