Space Mission Concept Development Using Concept Maturity Levels
(Paper 1665457)

Randii R. Wessen, Chester Borden, John Ziemer, Johnny Kwok
Jet Propulsion Laboratory, California institute of Technology

AIAA Space 2013 Conference
Absent: a Common Language for Concepts

- How mature is your concept?
CML Scale is Based on the Structure of the TRL Scale

Cocktail Napkin
Initial Feasibility
F=ma
Initial Design
Preferred Design
Point within Trade Space
Trade Space
Preliminary Design Review (PDR)
Concept Baseline
Mission Definition Review
Proposal / MCR

Step 1

System Test, Launch & Operations
System/Subsystem Development
Technology Demonstration
Technology Development
Research to Prove Feasibility
Basic Technology Research
TRL 1
TRL 2
TRL 3
TRL 4
TRL 5
TRL 6
TRL 7
TRL 8
TRL 9
CML 1
CML 2
CML 3
CML 4
CML 5
CML 6
CML 7

AIAA Space 2013 Conference
CMLs: A Powerful Communication Tool
CONCEPT MATURITY LEVELS (CML)
for NASA Competed and Assigned Projects
Early CMLs Provide the Greatest Value to Mission Architects

- Mission concept development has limited guidance prior to Phase A
- As such, CML Matrix and checklists have their largest utility during CML 1 – 4
 - At the start of Pre-Phase A, there is no NASA guidance
 - At the end of Pre-Phase A (CML 5) guidance is provided by:
 - NASA’s Announcement of Opportunity (Competed Projects)
 - NASA’s Procedural Requirements 7120.5E (Assigned Projects)
CML Matrix is the Key for Measuring Maturity

- CML Matrix contains
 - 7 Columns (CML 1 – 7)
 - 24 Rows (attributes)
 - Science rows (2)
 - Technical rows (13)
 - Management rows (5)
 - Cost row (1)
 - “Other” rows (3)
- Rows organized by the way NASA holds technical reviews
 - Science Review
 - TMCO Review
The Science Rows of the CML Matrix

<table>
<thead>
<tr>
<th>Lifecycle Phase</th>
<th>Pre-Phase A</th>
<th>Phase A</th>
<th>Early Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advance Studies</td>
<td>Concept Development</td>
<td></td>
</tr>
<tr>
<td>CML</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Name</td>
<td>Cocktail Napkin</td>
<td>Initial Feasibility</td>
<td>Trade Space</td>
</tr>
<tr>
<td>Lifecycle Gate</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Science

<table>
<thead>
<tr>
<th>Attribute</th>
<th>P4 Section</th>
<th>Science Objectives & System Requirements</th>
<th>Science Data System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.3</td>
<td>Science objectives described in one sentence</td>
<td>Identify science data drivers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science objectives described to levels that allow comparison with previous investigations and NASA science community documents</td>
<td>Science data rates and volume included in trade space analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Objectives linked to investigations and measurements; Science return as a function of cost, risk and programmatic quantified</td>
<td>Science data system sizing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Produce draft Science Traceability Matrix; Initial Level 1 requirements considered; Specifying one Baseline and one Threshold Science Investigation; Key Performance Parameters listed</td>
<td>Science data processing architecture, release and archive approach defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science Traceability Matrix (or equivalent) produced; Preliminary PLRA produced (assigned projects)</td>
<td>Science data management approach (includes Level 0, 1, 2 data products) defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proposed Level 1 requirements documented Level 2 & 3 driving requirements listed; Full and minimum success criteria defined; Baseline PLRA submitted @ SRR (assigned projects)</td>
<td>Same as for CML 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update PLRA if necessary; Preliminary Level 2 & 3 requirements listed</td>
<td></td>
</tr>
</tbody>
</table>
Checklist Derived from CML Matrix to Measure Concept Maturity

CML 3 Assessments

15 science & technical attributes
9 programmatic attributes

30-min interviews by objective assessor yield consistent assessments

Check List

AIAA Space 2013 Conference
Strengthen and Weakness of CML Checklists

Strengths:
- Provides a systematic approach for measuring a mission concept’s maturity in Pre-Phase A
- Provides study team guidance about where to allocate their limited resources for the biggest benefit
- Assessment is quick and repeatable

Weaknesses:
- Does not measure the quality of the items produced, just their level of completeness
- No attempt to weight relative value of one attribute over another
- Study teams are too optimistic as self-assessors
CML Assessment Process is Continuously Being Evaluated

- Comparing results provides the ability to “tune” the checklists
 - If a particular attribute is all "red” and “yellow,” 1) study teams need training in that area or 2) attribute should be moved one CML later
 - Results are compared with results from an all-day JPL review prior to the start of Step 1

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Criteria</th>
<th>Proposal 1</th>
<th>Proposal 2</th>
<th>Proposal 3</th>
<th>Proposal 4</th>
<th>Proposal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Objectives, Driving Requirements & Develop Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mission Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacecraft & Instrument System Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground System/Mission Operations System Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Risk Assessment & Mitigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology & Technology Readiness Levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Equipment Lists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Trades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Resource</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrading & Innovations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Plans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization, Planning, Scheduling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opt-NonAssessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How CMLs are Used at JPL to Advance Concept Design Maturity

• JPL’s A-Team (CML 1 – 3)
 – Idea generation, feasibility assessment, architecture trade space evaluation, science traceability, technology infusion, and strategic evaluation

• JPL’s Team X (CML 4)
 – Initiated in 1995 and pioneered the collaborative engineering capability within NASA
 – Conducted over 1000 studies
 – Collaborative design sessions to generate a specific mission design, spacecraft design, mission cost range and associated risks

• JPL’s Proposal Effort (CML 5 – 6)
Future Plans

• CMLs are not the entire answer to measuring concept maturity

• Other factors that can impact concept maturity are:
 – Complexity
 – Design Maturity
 – Technology Readiness

• JPL has begun work on identifying factors that are known in Pre-Phase A that can measure a concept’s complexity
 – Initial results indicate that a concept’s complexity level can be used to predict future cost growth
Conclusion

• CMLs are catching on at:
 – JPL
 – NASA Planetary Science Directorate
 • (based on application during Planetary Science Decadal Survey)

• Many uses
 – communication tool
 – evaluating and sorting concepts
 – identifying areas that need strengthening
 – input to estimating cost uncertainty

• Will improve concept robustness prior to moving into Project Formulation
 – Most compelling science identified for a given cost class
 – Detailed trade space exploration has been performed
 – Mission concepts are complete (no omissions)