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The complex flight and ground systems for NASA human space exploration are designed, 
built,  operated  and  managed  as  separate  programs  and  projects.    However,  each  system 
relies on one or more of the other systems in order to accomplish specific mission objectives, 
creating  a  complex,  tightly  coupled  architecture.    Thus,  there  is  a  fundamental  need  to 
understand how each system interacts with the other.  To determine if a model-based system 
engineering  approach  could  be  utilized  to  assist  with  understanding  the  complex  system 
interactions, the NASA Engineering and Safety Center (NESC) sponsored a task to develop 
an approach for performing cross-system behavior modeling. This paper presents the results 
of  applying  Model  Based  Systems  Engineering  (MBSE)  principles  using  the  System 
Modeling Language (SysML) to define cross-system behaviors and how they map to cross-
system software interfaces documented in system-level Interface Control Documents (ICDs).  

I. Introduction 

 
uman space exploration is embarking on a new journey to explore the universe beyond low Earth orbit.  The 
new  flight  systems  in  development  to  accomplish  this  significant  task  are  the  Space  Launch  System  (SLS) 

heavy-lift rocket and the Multi-Purpose Crew Vehicle (MPCV) deep space capsule. The ground systems supporting 
these  flight  vehicles  are  under  development  by  KSC’s  Ground  Systems  Development  &  Operations  (GSDO) 
program  and  JSC’s  Mission  Systems  (MS)  program.  The  Exploration  Systems  Independent  Modeling  and 
Simulation has currently achieved the modeling of a subset of the physical system of Space Launch System (SLS), 
Multipurpose Crew Vehicle (MPCV), and Ground Systems Development and Operations (GSDO). 
System interface definition and analysis are critical systems engineering activities. As a result of limitations in 

the traditional practice of these activities, problems surface quite often during integration.   Modeling the complex 
cross-system behaviors has the potential to increase the effectiveness of interface definition.  We show how SysML, 
semantically enhanced using ontologies,  provides  a  set  of  layered  abstractions  that  allow  for  more  accurate 
definition of complex software and avionics interactions.  
The  specific  systems  engineering  questions  that  we  have  been  addressed  by  model-based  systems  engineering 

approach presented in this paper are:  
 (1) What are the required software functional interfaces and expected behaviors, which need to be engineered 

and documented within IRDs (Interface Requirements Document) and software ICDs?  
(2) What system reference and ontology (e.g. explicit specification) is necessary to enable the rigorous design 

and implementation of cross-system interface capabilities?  
The resulting SysML model captures the existing interface content and expectations that feed information back 

to engineers so that they may more clearly understand the implications of design decisions. The paper focuses on the 
part  of  the  model  that  captures  critical  detail  of  the  system  interfaces  in  nominal  and  off-nominal  functional 
behaviors. The model contains  multi-system, multi-layered architecture descriptions and engineering analyses.  
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This  paper  also  describes  how  the  IRD/ICDs  may  be  automatically  generated  from  the  SysML  model.  The 
generated  documents  are  not  intended  to  replace  the  official  documents,  but  to  be used  to  prove  the  utility  of  the 
model  as  a  single  source  for  several  engineering  products,  including  architecture  descriptions,  requirements 
specifications, IRDs, ICDs, etc.  
Finally, the paper presents lessons learned and conclusions from applying the MBSE approach to capture system 

interface behavior, and how this approach has added important value to on-going systems engineering processes.  
The  main  contributions  presented  in  this  paper  include:  (1)  generic  modeling  of  interfaces  for logical  and 

physical  interfaces,  (2)  modeling  automated  engineering  analyses,  and  (3)  automated  generation  of  interface 
specifications. 
The  results  presented  in  the  paper  include:    (1)  a  generic  interface  modeling  pattern  (2)  our  approach  of 

automating  the  engineering  analyses  (3)  automating  the  production  of  systems  engineering  documentation, 
specifically ICDs, (4) a methodical process to follow in using MBSE analyses in conjunction with the traditional SE, 
and  (5) lessons learned and future work. 

 

II. Systems Engineering Problem Description 

This  section  describes  the  main  systems  engineering  problems  that  the  modeling  effort  has  specifically 
addressed. 

A. Describing and Documenting Systems Interfaces 
 
Interface  definition  is  critical  aspect  of  systems  engineering.  Traditionally  in  systems  engineering  the  system 

interfaces are described in various documents including interface control documents (ICD), interface requirements 
documents (IRD), and interface design description (IDD). 
Ideally the interface requirements are written in an interface requirement document (IRD), based on which the 

subsequent  ICD  will  be  developed.    The  IRD  specifies  the  needed  interactions  between  systems  at  a  generic, 
implementation neutral level. The ICD completes the description of the interface with implementation detail design.  
The ICDs describe the system’s interfaces as well as any rules for connecting with them. 
The purpose of an ICD is to clearly communicate all possible input and output from a system and may describe 

the system interfaces to the lowest physical elements (circuits, voltage, watts, etc.). The level of detail included in 
any ICD is dependent upon the requirements of the stakeholders to successfully deliver on project requirements. 
An  ICD  should  only  describe  the  interface  itself  and  not  any  characteristics  of  the  systems  using  it.    An  ICD 

should  also  not  include  anything  about  the  meaning  or  intended  use  of  the  data.  Any  features,  functions,  or  logic 
supporting the system interface should be outlined within separate design and/or specification documents. Defining 
an ICD in this way allows other teams to develop connecting systems without concern of how the data is treated by 
the other system. This allows development teams to work without the requirement of knowing the business logic or 
technical  aspects  behind  the  system  and  allows  for  modularity  that  leads  to  easy  maintenance  and  extensibility  of 
systems. 
In practice, there is not always a clear cut between the IRDs and the ICDs. Moreover, there might not always be 

an IRD for each ICD. In some cases it might be completely missing, with its role played by the ICD 
The  highest  level  of  abstraction  for  defining  the  software  interfaces  has  been  considered  the  interactions  as 

specified  by  the  interface  requirements  in  the  IRD.  At  that  level,  the  interactions  are  usually  described  by 
specifying: (1) the producers and the receivers of data, (2) what kind of information is exchanged, (3)  restrictions on 
the  way  the  data  is  transmitted  (volume,  rate,  security,  etc.).  The  lower  levels  of  the  interface  specification  may 
include: the protocols used, the network connections, and the actual physical media (wire, radio, etc.). 
It is very important to have both the interface requirements and the design of the interface in the same model, so 

that  the  fulfillment  of  the  requirements  can  be  traced  (explicitly  or  by  automatic  procedures  based  on  standard 
representations). 
The  model  can  support  automated  (or  semi-automated)  analyses  such  as:    (1)  requirements  allocation,  (2) 

missing requirements, (3) assessment of the logical and physical configuration paths, and (4) margin analysis. 
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B. Software Architecture Specifications 
 
Software architecting involves the design of a system from multiple viewpoints including the physical view, the 

data model, and the behavioral view. Given the complexity of the interconnected communication systems, all these 
viewpoints  are  useful  and  necessary  for  capturing  design  decisions,  and  represent  system  functionality,  physical 
construction, and information structure.  Some of these viewpoints are currently captured in the existing software 
documentations (some  of  them  in  models),  but  this  information is  difficult to  communicate,  integrate,  and  assess 
since a unifying approach is still missing. 
An  architectural  description  is  a  specification  of  a  system  that  represents  the  problem  space  and  the  solution 

space  using  models.    An  architectural  framework  serves  as  a  template  for  architecture  descriptions  by  specifying 
stakeholders,  the  architecture  descriptions,  and  the  viewpoints  used  to  specify  the  architecture.  The  models  are 
expressed  using  some  particular  modeling  language.  The  modeling  language  inherently  influences  the  chosen 
concepts, and the style of the design.  

C. System Modeling   
 
Currently,  SLS,  MPCV,  and  GSDO  programs  are  modeling  each  system  independently,  with  emphasis  on 

communication links and the Exploration Flight Test 1 (EFT-1) End-to-End Data Architecture System. Addressing 
internal  interfaces  only  could  lead  to  potential  gaps  in  Interface  Control  Document (ICD)  content,  that  can  be 
alleviated  via  a  clearer  understanding  of  the  cross-system  behaviors  and  how  they  map  to  baseline  ICDs.  The 
approach  for  cross-program  model  integration  in  support  of  a  real  technical  integration  challenge  needs  to  be 
demonstrated. 
Additionally, the behavior of the critical MPCV-SLS launch and ascent phases needs more understanding and 

may benefit from a more rigorous approach. 
 

III. Modeling Approach 

The  model  captures  the  cross-system  behaviors  and  how  they  map  to  cross-system  software  interfaces  as 
documented in various traditional systems engineering artifacts.  The two most important questions that the model 
addresses are:  (1) what are the required functional interfaces and expected behaviors,  (2) what system reference 
and ontology  is necessary to enable the rigorous design and implementation of cross-system interface capabilities? 
Selecting SysML15 as the general-purpose modeling language, enhanced with specific ontological additions, we 

made firm commitments to a pattern-based, and semantically enhanced modeling approach. Providing rigor to the 
system engineering process  and automated engineering analyses have been considered two of the most important 
achievements of the effort.   
The selected modeling tool, MagicDraw13 is the institutionally supported modeling tool of choice. 
The modeling effort has leveraged previous modeling efforts, including: 
• Exploration  Flight  Test  114 (EFT-1)  and  Exploration  Mission  18 (EM-1)  end-to-end  architecture  models 
based on the IEEE 1471 standard6 and DoDAF3 architecture description standards  

• 1JPL ontologies2 and interface patterns recommendations11  
• Model-based description of artifacts (documents) for automated generation2  
The  modeling  effort has  included  various  modeling  activities  and  interactions  with  the  stakeholders:  (1) 

capturing  the  software  interface  specifications  provided  in  various  documents  including  IRDs  and  ICDs, 
presentations, (2) verbal  and  electronic  communications  with  stakeholders,  (3)  modeling  the  interfaces,  (4) 
communicating various artifacts produced using the model , and (5) refining the models via reviews. 
The objective of the modeling effort  has been centered on supporting the MS-SLS software ICD development. 

The model has been built on generic architecture principles, using and extending an end-to end system of systems 
architectural framework.   The  resulting  model  provides  architecture  descriptions  of  the  software  interfaces  at 
different levels of abstractions and their behaviors.  We also have been extending ontological capabilities of the core 
SysML language to include additional concepts specific to interface modeling, and related engineering analyses.  
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IV. Modeling Interfaces 

In very general terms, an interface is a shared boundary or connection between two distinct objects, devices, or 
systems through which flows of material or flows of information is passed.  The connection can be either physical as 
for instance a cable,  or an information exchange.  
In  a  complex  system  with  many  interactions,  it  is  useful  to model the interactions  in  a  more  rigorous  and 

efficient way. A modeling pattern captures  the key aspects of a modeling technique that make it useful for creating 
reusable models.  If the pattern is expressed in a formal way, repeatable procedures can be defined, and the model 
can be automatically analyzed for consistency and for validity.  
The systems engineering of the interfaces is no different from any other parts of the system. The capabilities are 

analyzed  to  define  the requirements,  and  the  design  iteratively shapes  the  future  system  according  to  the 
requirements.  Modeling can support the systems engineering during the lifecycle of the project, starting from the 
formulation  phases  through  the  implementation. The  models  will  evolve  from  high  level  descriptions to  very 
detailed representations of the delivered artifacts. It is very important that the successive generations of the model be 
kept consistent. Using the same modeling  patterns and standard formal representations offer the necessary premises 
for enforcing model consistency and correctness. 
The modeling of the interfaces, as any other parts of the system, has to cover two complementary aspects: what 

the  interface  is  composed  of and how  the  interface  behaves.    The composition is  represented  in  terms  of 
components,  their  properties  and  connections  among  the  components.  A  functional  architecture  provides  the 
support for describing the behavior of the interacting components. These two aspects are complementary and their 
modeling  is usually  achieved  in  parallel, through  iterations from  the  top-level,  abstract  descriptions, and    as  the 
design matures, adding more implementation details. 

A. Interface modeling pattern 
 
This pattern covers the compositional aspects of the interactions between the components of  a system. Launch 

vehicle, spacecraft,  telecommunications, flight software or mission operations are examples of such components. In 
a  very  general  sense, the  interaction  between  two  components  may be  described  by  what  is  known  about  the 
components  outside  their  inner  characteristics  (i.e.  what  they  intend  to  share). The  interaction  itself may be 
described by static characteristics (such as duration, volume of the exchanged material or information, etc.), or by 
the  way  the  interaction  is  unfolding  in  time  (the sequence  of  exchanges,  the  deformation  of  the  surface,  or  the 
interaction protocols).  This section covers the static aspects of the interactions. 
 
 As shown in Figure 1, the interface pattern defines the concept of Interface as a container for the characteristics 

of  a Component that  describe  some  aspect  of  the  interaction  (or  connection)  with  another Component.   The 
characteristics  can  be  mechanical,  electrical,  data,  or  of another  nature.   A Junction completes  the  pattern  by 
explicitly adjoining two Interfaces participating in the same interaction. The fact that these concepts are related is 
expressed by the “joins” relation. 
 
 

This  definition  is  very  general,  but  may be  specialized  for   particular  cases.  The  rules that apply at  the  very 
generic level, may be used at all the subsequent specialized layers. If the models are constructed using this pattern, 
they  are  “correct  by  construction”.    This  approach  has  a  substantial  role  in  reducing  the  model  complexity,  by 
reducing  the  number  of  variations  in  representing  interactions,  and  providing  support  for uniform,  possibly 
automated model validation and verification. 

Figure 1 Interface Pattern 
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To  set  the  interactions  in  their  modeling  context,    specific  relations  are  defined  between Interfaces and 

Components and   Requirements,  as  shown  in  Figure  2:  a Component    presents an Interface,  and  a Requirement 
specifies the Interface.  More rules may be specified at this generic level: “An Interface has to be specified by at  
least one Requirement”, or “An Interface has to be presented by one Component”.  
The interfaces can be defined at different levels of abstraction, with mappings between them. It is considered a 

good general modeling practice to represent different levels of abstraction separately, to better address their specific 
issues, as depicted in Figure 3. This is a way of reducing complexity, by separating representations, concerns, and 
allowing  targeted  analyses. One  practical  reason  to  do  so  is  to  avoid  the  premature  commitment  to  a  particular 
implementation approach. A junction at a higher level of abstraction (e.g. an interface for transmitting telemetry) is 
represented by an actual physical object (e.g., a physical cable) at a lower level of abstraction.  

 

 
A view of the model using this pattern may look like the layered representation in Figure 4.  The view hides (on 

Figure 2 Interfaces in relation with other concepts 

Figure 3 Using the interface pattern – notional example 

Figure 4  Layered representation for interfaces - example 
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purpose) the  underlying  modeling  mechanisms  that  are  implied  by  using  a particular  modeling  language  and a 
particular modeling tool. 
 
This  ontological  definition of  the  interface  concept is  implementation  independent.  This  pattern  may be 

implemented using various modeling languages and  tools.  The SysML implementation developed by JPL uses a 
combination of Interface Blocks, Association Blocks, Ports, Flow Properties, and stereotypes to unambiguously map 
the  generic concepts  to  concrete  SysML  modeling  structures. The  ontological  concepts  and  relationships (such  as 
those shown in Figure 2) are implemented as SysML stereotypes. In the SysML tool that we use, a profile defines 
the stereotypes. If the profile is not available, the implementation of the pattern may be still be done manually using 
ad-hoc modeling techniques. or in a semi-automatic way. We followed both approaches, as there were some existing 
application-specific profiles8,14 and experimented with the generic implementations12 . 
In  a  complex  system  with  many  interactions,  it  is  useful  to  describe  the  interactions  in  a  more  rigorous  and 

efficient  way.  Using  the  interface  pattern  and  defining  the  interfaces  at  various  levels  of  abstraction  offers  the 
benefits of standardization, re-usability and automated analysis. By having all the abstraction levels present in the 
same model the fulfillment of requirements can be traced explicitly or by automatic procedures.  
Modeling examples will be provided in the following sections.  
 

B. Modeling software interfaces 
 
The highest level of abstraction for defining the software interfaces is specified by the interface requirements in 

the IRD.  At this level, the interactions are usually described by specifying: (1) the producers and the receivers of 
data, (2) what kind of information is exchanged, (3) some restrictions on the manner the data is transmitted (volume, 
rate, security, etc.).  
The lower levels of the interface specification may include: the protocols used, the network connections, and the 

actual physical media (wire, radio, etc.). These implementation level specifications are usually found in the ICDs, 
and in further details in the interface design documents.  
The various abstraction levels need to be consistent throughout the model. One way of ensuring consistency is to 

assert  relationships  between  layers  as  shown  in  Figure  5.    Asserting  means  that  the  relationships  are  explicitly 
declared  in  the  model  and  not  inferred  by  implementation  specific model  analysis  tools,  which  is  another  way  to 
ensure consistency.  

 

 
Figure 5 Layered software interface example 

Although our primary focus has been the SLS-MS software interface,  modeling other interfaces as well has been 
necessary to complete the complex interactions involved. An interaction path may not always be direct, sometimes 
data  exchanges  are  intermediated  by  other  system  components.  An  end-to-end  approach  is  beneficial  for 
understanding all the interface aspects and helps to identify gaps in the design as described by individual ICDs. 
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Using this pattern we modeled the software interfaces between various systems including SLS-MS, MPCV-SLS, 
SLS-GSDO, etc.(see Figure 6). 

 
 

 
This approach  provides  many  advantages  including:  (1)  support  for  modeling various interfaces between 

systems,  (2) explicit  specification  of interface  compatibility, (3)  support  for  layered  abstractions,  and  most 
importantly (4) support of automated analyses for consistency.  

C. Modeling functions and behaviors 
 
An interface description is not complete without a coherent representation of  its behavior in response to events, 

or conditions that arise within the environment. 
In  general,  functional  analysis  is  performed  to  understand  the  behavior  by  examining,  specifying,  and 

decomposing the top-level functions derived from functional requirement specifications.  Performance requirements 
may  be  used  to  establish  measures  of  effectiveness  and  performance  for  the  lower  level  functional  elements. 
Elements of the functional architecture are allocated to the performing structural elements described by the structural 
architecture, to ensure that complete and traceable architecture descriptions are developed. 
Based  on  the  results  of  the  functional  decomposition,  a  model  of  the  functional behaviors  can  be  constructed, 

showing  how  the  system  behaves  by  identifying  the  functional  sequences,  data  items,  and  control  mechanisms 
necessary to perform the function.  
Two  representations  of  the  functional  architecture  are  necessary  to  completely  express  the  functional  design 

solution: the functional hierarchy and the behavioral model. Some other representations may be added to support the 
analysis  and  specification  of  the  functional  solution:  functional  timeline,  resource  utilization  profile,  and 
requirement allocation representations. 
A function may represent a task that cannot be easily understood or implemented. By decomposing a complex 

function  into several  more  manageable  functions, the  design  solutions  can  become easier to  communicate  and 
implement. The functional  decomposition identifies  the  steps (not  necessarily  sequential) by  which  a  complex 
function  will  be  performed.  Often  there  are  many  decomposition  alternatives  that  can  be  analyzed  separately  for 

Figure 6 Multiple interfaces defined for many-to-many information exchanges - notional 
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performance  or  other  architectural  characteristics.  As  the  alternatives  represent  simpler  tasks,  they  can  be  more 
efficiently analyzed. 
 
Functional Hierarchy: 
The  functional  hierarchy  conveys  the  transformation  of the  interface specifications  into  the functions that  the 

interface   must  perform.  It also provides  traceability  of  the    requirements  to  the  initial    product  design 
configurations. Figure  8  shows  an  example  of  a  functional  hierarchy  for a commanding  interface between  two 
systems.  

 

 
 
 
The functional hierarchy provides some quantitative indications of the  interface complexity: (a) the number of 

levels  of  decomposition,  (b)  the  breadth  of  each  level  of decomposition,  and (c)  the  number  of  fundamental 
functional  elements  (functional  units)  from  which  the  structural  design  is  to  be  derived. A  functional  element 
becomes fundamental if it can be explicitly related to an element in the derived structural design. For instance the 
functional decomposition shown in Figure 8 offers  that there should be at least two structural components that will 
accomplish the commanding functionality: one component sending the commands and additional information, and 
he other receiving it.  
The number of levels of decomposition will not be consistent throughout the functional hierarchy and might not 

be relevant  as the  decomposition  can generally be  further elaborated.  The  number  of  layers  involved  with  the 
decomposition  of  a  primary  function  is nevertheless  a  better indication ((from  all  mentioned  above) of  the 
complexity. The breadth of the level of decomposition indicates complexity, especially during system  integration, 
since the integration might occur horizontally in the hierarchy. The number of functional units may be used as an  
initial estimation of the scope of the system  unit design.  
 
Behavioral Model: 
 
The behavioral model provides information that supports the specification of functional components and units.  

It is a precise representation of the behavior in a notation that eliminates ambiguity. The behavior model may be a 

static  or  a  dynamic  model  of  the  software  execution that identifies  the  responses  to  potential  data 
transformation,  operator  errors,  and  hardware  malfunctions.  The  behavior  model  enables  design  alternatives  to  be 
evaluated and resolved.  

Figure 7 Functional decomposition example 
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Figure  9  presents  an  example  of  a  behavioral model  for two  interacting systems (Launch  Vehicle,  and 
Spacecraft) displaying notional commanding behavior. The diagram shows the functions performed by the system 
components  (send  command,  receive  commend,  etc.),  the  sequence  of  the  execution  (left-right,  top-down 
convention)  and  the  direction  of  command  exchange.  The  comments  in  red  indicate  the  fact  that  there  are  two 
missing requirements for a necessary exchange. By convention, the columns (called swimlanes in SysML)  represent 
the fact that the components shown on top perform the functions shown in its column.  
In essence, the behavioral model contains descriptions of: (a) the sequence of functions that must be performed 

(functional  flow),  (b)  data  flow  among  functions  or across functional  interfaces  (data  flow),  (c) control  logic  that 
determines the execution flow among conditional functional sequences (control flow), and (d) resources necessary to 
accomplish each function (resource utilization). 
A  behavioral  model  is executable if  the  specified  behavior  can  be  executed  or  simulated  by  an  automated 

execution  procedure.  Model  execution  may  be  used  to  explore  possible  behaviors  of  the  system, and validate  the 
behavioral specification of the system.  An executable behavior model can be utilized to support design trade-offs.  

D. Mapping behaviors to structure 
Modeling  interfaces  according  to  the  interface  pattern  provides  a  static  description  of  the  interfaces.  The 

Figure 8 Behavior model example 

Figure 9 Interface pattern used consistently with the functional behavior 
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behavioral  aspects  are  captured  in  the  functional  architecture.  The  two  aspects  of  the  modeled  interfaces  must  be 
consistent.  
SysML enables an implicit allocation of the functions to  components, e.g., by representing them in component-

specific ”swimlanes” on a SysML activity diagram (see Figure 9).  
The interface pattern allows a more precise mapping between the two  complementary aspects of the interface. 

The  representation  of  the  structural  connection  and  the  functional  control  transition  representation    are  implicitly 
equivalent by using the same Junction to denote ( “type” them in SysML terms) them. (Figure 9) 

V. Modeling Engineering Analyses 

Managing  and  tracking  requirements,  evaluating  alternatives  and performing trade  studies,  doing  functional 
analysis - each implies some sort of analysis. Any analysis involves, in principle, some aspects of the systems that 
are being analyzed  and  produces  results  used  to  explain  why and  how  the design solution has  been  chosen. 
Traditionally,  systems  engineers perform and  represent  all  the  necessary  analyses,  sometimes  straddling  different 
domains (electrical, thermal, etc.) using various tools and representations.    
 

 

 
 
One of the main purposes of modeling is to create the support for more accurate and reliable, possibly automated 

analyses of the domain being modeled. In an effort to precisely and unambiguously express the analysis process, the 
analyses can be formally defined and their relationships with the other parts of the model explicitly represented. For 
complex problems, manually creating and tracking such analysis models requires time and may become a source of 
errors.  
The  analysis  profile12 provides  a  modeling  technique  for  identifying  various  kinds  of  analyses  and  their 

relationships with other parts of the model. An analysis may embody an analytical result, a reference to a procedural 
specification, or a pointer to a result. Conceptually, an analysis provides an explanatory justification between two or 
more elements of the model. The Analysis analyzes some elements of the model and explains other model elements. 
(see Figure 13 and Figure 23). 
Some  examples  of  analyses  include:  requirements  analysis,  trade  studies,  performance  calculations,  mass 

calculations,  etc.  The  analyses  need  to  be  explicitly  identified  and  represented  in  the  model,  so  that  one  can 
determine why the analysis was necessary, what are its objects, what are the results, etc. Explicit relationships may 
be established in the model so that the analyses and their objects are identifiable in the model.  
To support automated analyses the model must obey certain rules which are explicitly encoded in the model (as 

illustrated  by  the  examples  in  the  following  sections).    A  partial  list  of  the  analyses  represented  in  the  model  is 
presented  in Figure  12.  In  the  remainder  of  this  section,  four  specific  types  of  analysis  performed  on  the 

Figure 10 Analyses definitions – report from the model 
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SLS/MPCV/MS/GSDO  systems  will  be  discussed  in  more  detail:  (A)  Requirements  Allocation  Analysis,  (B) 
Configuration Analysis, (C) Functional Allocation Analysis and (D) Data Exchanges Allocation Analysis. 

A. Requirements Analysis  
 
Requirements allocation 
The purpose of the requirement allocation analysis is to determine if all requirements have been  allocated to one 

or more elements of the design space. In modeling terms, allocation means mapping source requirements to either 
derived  requirements  or  other  model  elements  that  satisfy  the  requirements.    The  mapping  is  represented  in  the 
model  by  specialized  relationships  such  as satisfy if  mapping  to  a  component  or derive if  mapping  to  another 
requirement.  

 
 
As an example of requirement-to-requirement traceability, the requirements  defined in the IRD can be traced to 

their  derived  ICD  requirements  (Figure  14).  The  table  shown  in  Figure  14  represents  a fragment  of  a report 
generated form the model, more specifically using the “SLS-MS IRD-ICD Derive Table” shown in Figure 13.  
The rules that can be checked include: (1) except for top level requirements, every requirement must refine at 

least one other requirement, (2) the requirement refinement graph must not contain cycles, etc. 

 

Figure 11 Analysis of ICD/IRD requirements - model elements 

Figure 14  ICD requirements traced to IRD requirements example 
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Requirements can by allocated to system components as well. This allocation is also referred  as “requirements 

allocation to structure”. The rules that can be checked in this case include:((1) all requirements must be allocated to 
components, and (2) all components must be specified by one or more requirements. In some cases the allocation 
implies one step (directly from a requirement to a component, for instance), but often times the allocation implies a 
chain  of  relationships  if  the  model  representations  are  more  complex  (involving  component  decompositions  for 
instance). 
Automatic  procedures  may check  the  rules  and  produce  reports.  Some  modeling  tools,  MagicDraw  included 

offer built-in procedures for extracting the list of components satisfied by the requirements. More elaborated reports 
as  shown  in  Figures  15  and  16 can  be obtained by  using  specialized 2reporting  tools. For  informational  purposes 
additional information can be added,  such as  the “Data exchange type”. 
 

 
Requirement  Satisfied by Data exchange type 
MS shall receive telemetry from S/C MS-S/C TLM port TLM 
S/C shall send telemetry to MS S/C-MS TLM port TLM 

 

Figure 15 Requirements satisfied by  the interface (port) report. 

 
 
 
Design Element 
 

Data 
exchange 
type 

Satisfied requirement(s) 

Spacecraft-Ground FTS port FTS 
Indication 

. S/C shall receive FTS spare from Ground 

. S/C shall receive FTS spare from Ground 

. S/C shall receive FTS arm from Ground 
Spacecraft-Ground notification port Notification . S/C shall send ascent target command to Ground 

 

Figure 16 Design elements satisfying requirements report. 

 
As a synopsis of the requirements allocation a convenient representation of the results   a dependency matrix is 

shown in Figure 17. The rows show the system components grouped by system, and the columns show the satisfied 
requirements. 

 

 
 

Figure 12 Requirements allocation analysis results synopsis – table representation 
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Interface requirements pairs analysis 
In the special case of the interface requirements, another useful requirements analysis can indicate the producer-

consumer pairs of requirements. This analysis requires the precise identification of the respective requirements as 
producers or consumers in the model (for instance using stereotypes) and checking their matching accordingly.  
 
 

 
A  report  produced  as  a  result  of  this  type  of  analysis  is  shown  in  Figure  18. The  Producer-Receiver  interface 

requirements has identified a missing requirement. 
 

B. Configuration Analysis  
The  purpose  of  this  analysis  is  to  determine  the  end-to-end  configuration  of  the  control  paths  and  their 

characteristics. As described in section IV Modeling Interfaces, the underlying modeling structure includes several 
layers  of  abstraction  in  representing  the control  paths  between  systems (Figure 19). The  main  motivation  for this 
approach  is  to  separate  the  implementation  level  from  other  specification  levels.   The  highest  interface  layer 
specifies  very  high  level  characteristics  of  the  data  exchange:  the  type  of  the  data- CMD,  and  what  are  the 
restrictions  in  terms  of  the  confidentiality,  integrity,  data  rate,  etc.    Usually  this  level  is  provided  by  the  IRD 
specifications,  but  may  be  provided  by  other  source  such  as  ICD,  or  verbal  communications.  Determining  what 
exactly  is  necessary    at  this  level,  and  at  any  other  level  for  that  matter  is  a  modeling  choice,  depending  on  the 
modeling purposes as well as the modeling paradigm. 
 

 
 

Figure 13  Producer-Receiver requirements analysis report fragment 

Figure 19 Mapping software interface layers  
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The lower levels of specifying the software interface may include  descriptions of the data packaging, network 
connection characteristics,  physical media, etc.  To ensure the model consistency, these layers must be related to 
each other  by  specific  relationships,  so  that  they  can  be  unambiguously  identified  and  the    associated  numerical 
characteristics correctly interpreted and calculated.  

By  analyzing  the  asserted  mappings  between  layers  we  have    provided  snapshots  of  various  connection  paths 
with their characteristics as for instance the network connections characteristics  (Figures 20, 21) 
The properties characterizing the data exchanges may vary depending upon the system layer being modeled.  
At the very high level, it may be sufficient to enumerate very general properties such as the type of the data 

(command  or  telemetry,  etc.)  required  to  be  exchanged,  but  more  detail  is  required  as  data exchanges  across 

specific software components must be specified within the model.  
 
 
Quantitative analyses can provide calculated values for critical paths or nodes. The calculations may be 

represented in the model as parametrics and calculated using specialized external engines or procedures, or 
external engines can be invoked directly.  

A notional example of reporting numerical characteristics  of the  RF link between spacecraft and ground  is 
presented in Figure 22.  

C. Functional Allocation Analysis (Allocation of Behavior to Structure) 
 
In our model the structural modeling elements are separated from the behavior model elements. This segregation 

has  the  desired  effect  of  allowing  for  separate  design  experiments  that  match  different  structures  to  some  given 
functionality.  The structure is decomposed in certain ways, the behavior is decomposed independently, and a loose 
coupling is provided between the two.  
The  purpose  of  this  kind  of  analysis  is  to  determine  whether  the  functions  have  been  allocated  to  the  system 

components.      The  rules  that  the  model  has  to  obey  include:  (1)  Each  function  is  specified  by  one  or  more 

Figure 22 Link options analysis example. 

Figure 20 Network connection analysis example 

Figure 21 Physical connections analysis example. 
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requirements, (2) each function is performed by exactly one component, and (3) each component is bound by at least 
one requirement. 
The  results  of  this  analysis  include:    (1)  All  components  that  perform  a  function,  organized  by  functions 

accomplished,  (2)  all  functions  that  are  not  accomplished  by  any  component,  and  (3)  all  components  that  are  not 
performing any functions, etc.  
An example of a report generated as a result of this type of analysis is shown in Figure 24.  The behaviors are 

represented using SysML activity diagrams. The table shows the allocation of the Behavior (represented as activities 
to system components (the partition on the activity diagram). The activities can be decomposed into more primitive 
elementary  activities.  The  composite  activity  is  represented  as  the  Owner.  The  allocation  is  in  fact  implicitly 
represented by the swimlanes in the activity diagram (see Figure 9 for an illustration). 
 

D. Data Exchanges Allocation Analysis (Allocation of Flow to Structure) 
 
This  kind  of  analysis  refers  to allocating  the  structural  representation  of  transfers  of  energy,  mass,  and/or 

information  to  the  functional  representation  of  them.  In  our  model  such  allocations  are  established  between  the 
connectors  representing  data  exchanges  between  system  components and  the  data  transfers  (input/output)  of  the 
functions allocated to these components.  
 

 
Interface Behavior Component Function 
S/C to Ground CMD Receive CMD Spacecraft Provide Telemetry 
Ground to S/C TLM Package TLM Spacecraft Provide Telemetry 
Ground to S/C TLM Send TLM Spacecraft Provide Telemetry 

 
 
 

The results of the analyses presented in Section V have been published as  reports in  PDF or Excel format. The 
results have been actively used in the process of elaborating the MS-SLS software ICD.  

VI. Generating Documents and Reports 

 
Traditionally,  documents  have  been  used  as  the  authoritative  source  of  information  for  requirements, 

architecture, plans, analyses, trade studies, etc. These documents are the main conveyers of this information, and are 
used to  communicate  and  obtain  consensus. Besides  textual  content,  they  might  contain  charts,  drawings, and 
numerical results from various analyses. Content between documents might be related, which is often the case, but 
the  connections  are  hard  to  establish, often  they  are  implicit  and  known  only  by  their  producers.  If  something 
changes, then the change needs to be manually propagated across the document set. 

Figure 23  Allocation of behavior to structure report example 
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The key assumption made by the MBSE approach is that the information models describing the system are much 

better at  describing  systems than  only  documents.  The  word  “only”  is  key  here.  There  will  always  be  a  mix  of 
models and documents, some things might be better conveyed in documents, while some others are naturally better 
conveyed  in models.  One  of  the greatest  expectations  of  MBSE  is the  possibility  of generating  documents  from 
information in various models. 
The information conveyed by a document can also be rigorously modeled.  The system model and the document 

model can be mapped or transformed to one another. The transformation is usually implemented as one-way, from 
the  system  model  to  the  document  model. Different  documents and  reports  can  be  modeled  independently  and 
generated  from  the  same  system  model  by  the  same  automated  procedure.  This  technique  ensures  creating  a 
complete set of consistent documents and other various reports at any time. 
JPL  has  developed 2,9methods  and tools  that integrate  the  system  modeling  and  the  document  production. A 

necessary step is to develop  models for the required documents.  Such models can be seen as templates for a class 
of documents such as ICD, IRD, or architecture description documents (ADDs).  A basic structure for a document, 
including sections, paragraphs, figures, etc. forms the backbone, while the actual content can be extracted from the 
system model. SysML is a graphical language, so many of the graphics in the document may be directly extracted 
from the system model, while text might or might be not  included in the system model. For instance, if the model 
elements  have  associated  textual  descriptions,  then  those  can  be  literally  transferred  to  the  generated  document.  
Some  other  document  elements  may  be  part  of  the  document  model  itself.    Automated  procedures implement the 
transformation between these two models. 
Using this technique we have generated the MS-SLS ICD and a number of analysis reports including a report 

describing the analyses that have been done for this project. 

VII. Lessons Learned 

 
Communication with the stakeholders is critical. 

Embed the SE knowledge in the model and use the model to generate design descriptions, analyze results, etc. to be 
used in the program documents, and ultimately automatically generate these documents from the model. Do this on a 
regular and frequent basis to communicate with the stakeholders 
 
Product oriented modeling 
The  SE  engineering  activities  ultimately  result  in  engineering  products.  Identify  the  products  required  by  the 

stakeholders, prioritize them, and organize the model so that it can produce them in a format as close as possible to 

Figure 24 Automated document and other artifacts generation 
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the desired format, at the right time. Such products can be anything from a table, an excel spreadsheet, a PowerPoint 
presentation, to a full-fledged ICD. 
 
MBSE doesn't replace established SE processes. 
The  modeling  activities  must  be  integrated  with  the  more  established  SE  processes. Therefore  Modeling  of 

interfaces  should  be  conducted  simultaneously  with  the  development  of  the  interface  product  rather  than  as  an 
afterthought.  The SE knowledge is crucial for developing the systems engineered model. 
Over  time,  some  of  the  traditional  SE  practices  will  be  absorbed  into  the  model-based  practices,  as  systems 

engineering teams become more comfortable with these approaches. 
 
SE Rules implemented in MBSE 
MBSE  facilitates  enforcement  of  certain  rules  and  constraints  which  helps  engineers  identify  incomplete 

interfaces of analyzed functions, e.g. command responses. 
 
Graphics are a powerful communications medium. 
The  graphical  representations  produced  based  on  the  model  not  only  pave the  way  for  analyses  (partially 

automated) but more importantly, they help with the understanding of the modeling by the stakeholders. When the 
systems  engineers  start  using  these  graphics, it saves their time  for  more  difficult  analysis  work.  The  graphical 
representations  were  the  first  to  be  accepted  and  included  in  the  SLS-MS  ICD.  The PowerPoint  presentations 
automatically generated from the model formed the core of otherwise ad-hoc presentation packages. 
  

VIII. Conclusions and Future work 

Through this project, JPL has been applying its institutional capability in MBSE to demonstrate the advantages 
of  the  model-based  approach  to  systems  engineering  in  general,  and  in  particular  for  developing  cross-systems 
interfaces  in  more  rigorous  ways.  The  model-based  approach,  including  interface  patterns  and  behaviors, allows 
engineers  to  methodically  conduct  analyses  which  complement  traditional  systems  engineering  approaches.  The 
SysML  model  serves  as  a  centralized  source  of  systems  engineering  products,  and  informs  cross-system 
development. We used ontologies for modeling systems, their interfaces, behaviors, analyses and documents. Using 
formal  ontologies provides  the  basis  for  standardizing,  automating  and  reducing  the  complexity  of  the  problem 
space, including software complexity. 
Future work will  extend the current capabilities presented in this paper, in particular the functional aspects and 

the behavioral modeling approach, and will address more areas of the exploration systems.  

Appendix – Modeling Using Semantically Enhanced Systems Engineering Profiles 

SysML has been created as a general-purpose modeling computer language for systems engineering. Its heritage 
is  UML16 as the core language, with extensions to more specifically address the systems engineering domain. The 
newly  added  vocabulary  contains  terminology  used  in  systems  engineering  such  as  Requirements,  and  linguistic 
support for describing engineering analyses such as parametrics. In essence, SySML is an object-oriented  modeling 
computer language,  as much as UML is, with a systems engineering flavor.  Thinking about SysML in the context 
of  systems  engineering,  as  well  as  a  language,  there  are  a  few  points  that  can  be  made:  (1) General-purpose 
modeling  languages  such  as  UML/SysML  are  based  on  generic  abstractions  for  specification,  analysis,  design, 
validation  and  verification  of  a  broad  range  of  systems.   At times, the generality of  these  languages  can produce 
ambiguity.  For instance, a SysML Block may represent a system, or a document, or a function, depending on what 
the  modeler  intends to  express. (2) The  semantics  of  the  SysML  language  is  only  narratively  specified  in  the 
specifications document [SysML specs]. Interpreting the modeling constructs, and verifying the well-formedness of 
the models is left for the tool providers to implement, without a standard formal language description. (3)There are 
information modeling languages that have been designed using formal descriptions of the valid language constructs. 
Based on these formal descriptions, checking the correctness of the used language can be also formally defined. In 
this  context,  formal  means  using  some artificially  created language,  such  as  logic  axioms,  operators  and  rules  of 
inference, and not natural language narrative.  In a more restricted sense, formal may mean – a language that can be 
understood by computers. 
JPL  has  considered  the  following  approach10:  (1)  extending  SysML  with  vocabulary  for  concepts  and 

relationships  meaningful  to  systems  engineering, (2)  mapping  the  SysML  models  to  an  implementation-neutral 
language (OWL) with formal semantics that allows for automated checking of language well-formedness (filling the 
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lack of SysML formal semantics), as well as domain correctness checking (due to the systems engineering meanings 
of otherwise too general model constructions.  
UML/SysML  provides  a  mechanism  for  extending  the  core  language  with  vocabulary  that  contains  familiar 

systems engineering terms from the domain of interest.  The collection of new terms is called profile.  Defining a 
consistent  terminology  with  well-defined  meaning  is  the  first  step  to  help  integrate  multiple  systems  engineering 
languages  and  tools.  The  terminology  with  its  formal  representation  is  also  called  ontology.    In  addition,  formal 
rules for constructing the models allow for automated procedures to check design properties such as consistency and 
conformance to specifications. 
In  essence, ontology  specifies  a  vocabulary  representing  concepts  from  the  domain  of  interest.  Concepts  can 

have  given  relationships to  each  other.  Concepts  can  have  properties  (e.g.  mass).  Ontologies  can  have  associated 
rules that define the well-formedness of the model constructs (i.e. the “sentences” constructed with the vocabulary). 

 
JPL  has  extended  the  core  set  of  SysML  terminology  with  terms  representing  concepts  from  space  systems 

engineering. The language constructs are supported by formally defined mechanisms that ensure the correctness of 
the models. These mechanisms have also been developed within JPL.  

 

Figure 26 Ontology hierarchy 
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Specializing the language for a given domain of system engineering, or for a specific application domain allows 

for more clear formulation and unambiguous communication of models. 
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