

American Institute of Aeronautics and Astronautics

1

Modeling Complex Cross-Systems Software Interfaces using
SysML

Sanda Mandutianu1, Ron Morillo2, Kim Simpson3, Otfrid Liepack4, and Kevin Bonanne5
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91001

The complex flight and ground systems for NASA human space exploration are designed,
built, operated and managed as separate programs and projects. However, each system
relies on one or more of the other systems in order to accomplish specific mission objectives,
creating a complex, tightly coupled architecture. Thus, there is a fundamental need to
understand how each system interacts with the other. To determine if a model-based system
engineering approach could be utilized to assist with understanding the complex system
interactions, the NASA Engineering and Safety Center (NESC) sponsored a task to develop
an approach for performing cross-system behavior modeling. This paper presents the results
of applying Model Based Systems Engineering (MBSE) principles using the System
Modeling Language (SysML) to define cross-system behaviors and how they map to cross-
system software interfaces documented in system-level Interface Control Documents (ICDs).

I. Introduction

uman space exploration is embarking on a new journey to explore the universe beyond low Earth orbit. The
new flight systems in development to accomplish this significant task are the Space Launch System (SLS)

heavy-lift rocket and the Multi-Purpose Crew Vehicle (MPCV) deep space capsule. The ground systems supporting
these flight vehicles are under development by KSC’s Ground Systems Development & Operations (GSDO)
program and JSC’s Mission Systems (MS) program. The Exploration Systems Independent Modeling and
Simulation has currently achieved the modeling of a subset of the physical system of Space Launch System (SLS),
Multipurpose Crew Vehicle (MPCV), and Ground Systems Development and Operations (GSDO).
System interface definition and analysis are critical systems engineering activities. As a result of limitations in

the traditional practice of these activities, problems surface quite often during integration. Modeling the complex
cross-system behaviors has the potential to increase the effectiveness of interface definition. We show how SysML,
semantically enhanced using ontologies, provides a set of layered abstractions that allow for more accurate
definition of complex software and avionics interactions.
The specific systems engineering questions that we have been addressed by model-based systems engineering

approach presented in this paper are:
 (1) What are the required software functional interfaces and expected behaviors, which need to be engineered

and documented within IRDs (Interface Requirements Document) and software ICDs?
(2) What system reference and ontology (e.g. explicit specification) is necessary to enable the rigorous design

and implementation of cross-system interface capabilities?
The resulting SysML model captures the existing interface content and expectations that feed information back

to engineers so that they may more clearly understand the implications of design decisions. The paper focuses on the
part of the model that captures critical detail of the system interfaces in nominal and off-nominal functional
behaviors. The model contains multi-system, multi-layered architecture descriptions and engineering analyses.

1 Sr. Software Engineer, Architecture and Behaviors, 4800 Oak Grove Dr., M/S 301-285, Pasadena, CA 91109.
2 Insert Job Title, Department Name, Address/Mail Stop, and AIAA Member Grade for first author.
3 Insert Job Title, Department Name, Address/Mail Stop, and AIAA Member Grade for first author.
4 Insert Job Title, Department Name, Address/Mail Stop, and AIAA Member Grade for first author.
5 Insert Job Title, Department Name, Address/Mail Stop, and AIAA Member Grade for first author.

H

American Institute of Aeronautics and Astronautics

2

This paper also describes how the IRD/ICDs may be automatically generated from the SysML model. The
generated documents are not intended to replace the official documents, but to be used to prove the utility of the
model as a single source for several engineering products, including architecture descriptions, requirements
specifications, IRDs, ICDs, etc.
Finally, the paper presents lessons learned and conclusions from applying the MBSE approach to capture system

interface behavior, and how this approach has added important value to on-going systems engineering processes.
The main contributions presented in this paper include: (1) generic modeling of interfaces for logical and

physical interfaces, (2) modeling automated engineering analyses, and (3) automated generation of interface
specifications.
The results presented in the paper include: (1) a generic interface modeling pattern (2) our approach of

automating the engineering analyses (3) automating the production of systems engineering documentation,
specifically ICDs, (4) a methodical process to follow in using MBSE analyses in conjunction with the traditional SE,
and (5) lessons learned and future work.

II. Systems Engineering Problem Description

This section describes the main systems engineering problems that the modeling effort has specifically
addressed.

A. Describing and Documenting Systems Interfaces

Interface definition is critical aspect of systems engineering. Traditionally in systems engineering the system

interfaces are described in various documents including interface control documents (ICD), interface requirements
documents (IRD), and interface design description (IDD).
Ideally the interface requirements are written in an interface requirement document (IRD), based on which the

subsequent ICD will be developed. The IRD specifies the needed interactions between systems at a generic,
implementation neutral level. The ICD completes the description of the interface with implementation detail design.
The ICDs describe the system’s interfaces as well as any rules for connecting with them.
The purpose of an ICD is to clearly communicate all possible input and output from a system and may describe

the system interfaces to the lowest physical elements (circuits, voltage, watts, etc.). The level of detail included in
any ICD is dependent upon the requirements of the stakeholders to successfully deliver on project requirements.
An ICD should only describe the interface itself and not any characteristics of the systems using it. An ICD

should also not include anything about the meaning or intended use of the data. Any features, functions, or logic
supporting the system interface should be outlined within separate design and/or specification documents. Defining
an ICD in this way allows other teams to develop connecting systems without concern of how the data is treated by
the other system. This allows development teams to work without the requirement of knowing the business logic or
technical aspects behind the system and allows for modularity that leads to easy maintenance and extensibility of
systems.
In practice, there is not always a clear cut between the IRDs and the ICDs. Moreover, there might not always be

an IRD for each ICD. In some cases it might be completely missing, with its role played by the ICD
The highest level of abstraction for defining the software interfaces has been considered the interactions as

specified by the interface requirements in the IRD. At that level, the interactions are usually described by
specifying: (1) the producers and the receivers of data, (2) what kind of information is exchanged, (3) restrictions on
the way the data is transmitted (volume, rate, security, etc.). The lower levels of the interface specification may
include: the protocols used, the network connections, and the actual physical media (wire, radio, etc.).
It is very important to have both the interface requirements and the design of the interface in the same model, so

that the fulfillment of the requirements can be traced (explicitly or by automatic procedures based on standard
representations).
The model can support automated (or semi-automated) analyses such as: (1) requirements allocation, (2)

missing requirements, (3) assessment of the logical and physical configuration paths, and (4) margin analysis.

American Institute of Aeronautics and Astronautics

3

B. Software Architecture Specifications

Software architecting involves the design of a system from multiple viewpoints including the physical view, the

data model, and the behavioral view. Given the complexity of the interconnected communication systems, all these
viewpoints are useful and necessary for capturing design decisions, and represent system functionality, physical
construction, and information structure. Some of these viewpoints are currently captured in the existing software
documentations (some of them in models), but this information is difficult to communicate, integrate, and assess
since a unifying approach is still missing.
An architectural description is a specification of a system that represents the problem space and the solution

space using models. An architectural framework serves as a template for architecture descriptions by specifying
stakeholders, the architecture descriptions, and the viewpoints used to specify the architecture. The models are
expressed using some particular modeling language. The modeling language inherently influences the chosen
concepts, and the style of the design.

C. System Modeling

Currently, SLS, MPCV, and GSDO programs are modeling each system independently, with emphasis on

communication links and the Exploration Flight Test 1 (EFT-1) End-to-End Data Architecture System. Addressing
internal interfaces only could lead to potential gaps in Interface Control Document (ICD) content, that can be
alleviated via a clearer understanding of the cross-system behaviors and how they map to baseline ICDs. The
approach for cross-program model integration in support of a real technical integration challenge needs to be
demonstrated.
Additionally, the behavior of the critical MPCV-SLS launch and ascent phases needs more understanding and

may benefit from a more rigorous approach.

III. Modeling Approach

The model captures the cross-system behaviors and how they map to cross-system software interfaces as
documented in various traditional systems engineering artifacts. The two most important questions that the model
addresses are: (1) what are the required functional interfaces and expected behaviors, (2) what system reference
and ontology is necessary to enable the rigorous design and implementation of cross-system interface capabilities?
Selecting SysML15 as the general-purpose modeling language, enhanced with specific ontological additions, we

made firm commitments to a pattern-based, and semantically enhanced modeling approach. Providing rigor to the
system engineering process and automated engineering analyses have been considered two of the most important
achievements of the effort.
The selected modeling tool, MagicDraw13 is the institutionally supported modeling tool of choice.
The modeling effort has leveraged previous modeling efforts, including:
• Exploration Flight Test 114 (EFT-1) and Exploration Mission 18 (EM-1) end-to-end architecture models
based on the IEEE 1471 standard6 and DoDAF3 architecture description standards

• 1JPL ontologies2 and interface patterns recommendations11
• Model-based description of artifacts (documents) for automated generation2
The modeling effort has included various modeling activities and interactions with the stakeholders: (1)

capturing the software interface specifications provided in various documents including IRDs and ICDs,
presentations, (2) verbal and electronic communications with stakeholders, (3) modeling the interfaces, (4)
communicating various artifacts produced using the model , and (5) refining the models via reviews.
The objective of the modeling effort has been centered on supporting the MS-SLS software ICD development.

The model has been built on generic architecture principles, using and extending an end-to end system of systems
architectural framework. The resulting model provides architecture descriptions of the software interfaces at
different levels of abstractions and their behaviors. We also have been extending ontological capabilities of the core
SysML language to include additional concepts specific to interface modeling, and related engineering analyses.

American Institute of Aeronautics and Astronautics

4

IV. Modeling Interfaces

In very general terms, an interface is a shared boundary or connection between two distinct objects, devices, or
systems through which flows of material or flows of information is passed. The connection can be either physical as
for instance a cable, or an information exchange.
In a complex system with many interactions, it is useful to model the interactions in a more rigorous and

efficient way. A modeling pattern captures the key aspects of a modeling technique that make it useful for creating
reusable models. If the pattern is expressed in a formal way, repeatable procedures can be defined, and the model
can be automatically analyzed for consistency and for validity.
The systems engineering of the interfaces is no different from any other parts of the system. The capabilities are

analyzed to define the requirements, and the design iteratively shapes the future system according to the
requirements. Modeling can support the systems engineering during the lifecycle of the project, starting from the
formulation phases through the implementation. The models will evolve from high level descriptions to very
detailed representations of the delivered artifacts. It is very important that the successive generations of the model be
kept consistent. Using the same modeling patterns and standard formal representations offer the necessary premises
for enforcing model consistency and correctness.
The modeling of the interfaces, as any other parts of the system, has to cover two complementary aspects: what

the interface is composed of and how the interface behaves. The composition is represented in terms of
components, their properties and connections among the components. A functional architecture provides the
support for describing the behavior of the interacting components. These two aspects are complementary and their
modeling is usually achieved in parallel, through iterations from the top-level, abstract descriptions, and as the
design matures, adding more implementation details.

A. Interface modeling pattern

This pattern covers the compositional aspects of the interactions between the components of a system. Launch

vehicle, spacecraft, telecommunications, flight software or mission operations are examples of such components. In
a very general sense, the interaction between two components may be described by what is known about the
components outside their inner characteristics (i.e. what they intend to share). The interaction itself may be
described by static characteristics (such as duration, volume of the exchanged material or information, etc.), or by
the way the interaction is unfolding in time (the sequence of exchanges, the deformation of the surface, or the
interaction protocols). This section covers the static aspects of the interactions.

 As shown in Figure 1, the interface pattern defines the concept of Interface as a container for the characteristics

of a Component that describe some aspect of the interaction (or connection) with another Component. The
characteristics can be mechanical, electrical, data, or of another nature. A Junction completes the pattern by
explicitly adjoining two Interfaces participating in the same interaction. The fact that these concepts are related is
expressed by the “joins” relation.

This definition is very general, but may be specialized for particular cases. The rules that apply at the very
generic level, may be used at all the subsequent specialized layers. If the models are constructed using this pattern,
they are “correct by construction”. This approach has a substantial role in reducing the model complexity, by
reducing the number of variations in representing interactions, and providing support for uniform, possibly
automated model validation and verification.

Figure 1 Interface Pattern

American Institute of Aeronautics and Astronautics

5

To set the interactions in their modeling context, specific relations are defined between Interfaces and

Components and Requirements, as shown in Figure 2: a Component presents an Interface, and a Requirement
specifies the Interface. More rules may be specified at this generic level: “An Interface has to be specified by at
least one Requirement”, or “An Interface has to be presented by one Component”.
The interfaces can be defined at different levels of abstraction, with mappings between them. It is considered a

good general modeling practice to represent different levels of abstraction separately, to better address their specific
issues, as depicted in Figure 3. This is a way of reducing complexity, by separating representations, concerns, and
allowing targeted analyses. One practical reason to do so is to avoid the premature commitment to a particular
implementation approach. A junction at a higher level of abstraction (e.g. an interface for transmitting telemetry) is
represented by an actual physical object (e.g., a physical cable) at a lower level of abstraction.

A view of the model using this pattern may look like the layered representation in Figure 4. The view hides (on

Figure 2 Interfaces in relation with other concepts

Figure 3 Using the interface pattern – notional example

Figure 4 Layered representation for interfaces - example

American Institute of Aeronautics and Astronautics

6

purpose) the underlying modeling mechanisms that are implied by using a particular modeling language and a
particular modeling tool.

This ontological definition of the interface concept is implementation independent. This pattern may be

implemented using various modeling languages and tools. The SysML implementation developed by JPL uses a
combination of Interface Blocks, Association Blocks, Ports, Flow Properties, and stereotypes to unambiguously map
the generic concepts to concrete SysML modeling structures. The ontological concepts and relationships (such as
those shown in Figure 2) are implemented as SysML stereotypes. In the SysML tool that we use, a profile defines
the stereotypes. If the profile is not available, the implementation of the pattern may be still be done manually using
ad-hoc modeling techniques. or in a semi-automatic way. We followed both approaches, as there were some existing
application-specific profiles8,14 and experimented with the generic implementations12 .
In a complex system with many interactions, it is useful to describe the interactions in a more rigorous and

efficient way. Using the interface pattern and defining the interfaces at various levels of abstraction offers the
benefits of standardization, re-usability and automated analysis. By having all the abstraction levels present in the
same model the fulfillment of requirements can be traced explicitly or by automatic procedures.
Modeling examples will be provided in the following sections.

B. Modeling software interfaces

The highest level of abstraction for defining the software interfaces is specified by the interface requirements in

the IRD. At this level, the interactions are usually described by specifying: (1) the producers and the receivers of
data, (2) what kind of information is exchanged, (3) some restrictions on the manner the data is transmitted (volume,
rate, security, etc.).
The lower levels of the interface specification may include: the protocols used, the network connections, and the

actual physical media (wire, radio, etc.). These implementation level specifications are usually found in the ICDs,
and in further details in the interface design documents.
The various abstraction levels need to be consistent throughout the model. One way of ensuring consistency is to

assert relationships between layers as shown in Figure 5. Asserting means that the relationships are explicitly
declared in the model and not inferred by implementation specific model analysis tools, which is another way to
ensure consistency.

Figure 5 Layered software interface example

Although our primary focus has been the SLS-MS software interface, modeling other interfaces as well has been
necessary to complete the complex interactions involved. An interaction path may not always be direct, sometimes
data exchanges are intermediated by other system components. An end-to-end approach is beneficial for
understanding all the interface aspects and helps to identify gaps in the design as described by individual ICDs.

American Institute of Aeronautics and Astronautics

7

Using this pattern we modeled the software interfaces between various systems including SLS-MS, MPCV-SLS,
SLS-GSDO, etc.(see Figure 6).

This approach provides many advantages including: (1) support for modeling various interfaces between

systems, (2) explicit specification of interface compatibility, (3) support for layered abstractions, and most
importantly (4) support of automated analyses for consistency.

C. Modeling functions and behaviors

An interface description is not complete without a coherent representation of its behavior in response to events,

or conditions that arise within the environment.
In general, functional analysis is performed to understand the behavior by examining, specifying, and

decomposing the top-level functions derived from functional requirement specifications. Performance requirements
may be used to establish measures of effectiveness and performance for the lower level functional elements.
Elements of the functional architecture are allocated to the performing structural elements described by the structural
architecture, to ensure that complete and traceable architecture descriptions are developed.
Based on the results of the functional decomposition, a model of the functional behaviors can be constructed,

showing how the system behaves by identifying the functional sequences, data items, and control mechanisms
necessary to perform the function.
Two representations of the functional architecture are necessary to completely express the functional design

solution: the functional hierarchy and the behavioral model. Some other representations may be added to support the
analysis and specification of the functional solution: functional timeline, resource utilization profile, and
requirement allocation representations.
A function may represent a task that cannot be easily understood or implemented. By decomposing a complex

function into several more manageable functions, the design solutions can become easier to communicate and
implement. The functional decomposition identifies the steps (not necessarily sequential) by which a complex
function will be performed. Often there are many decomposition alternatives that can be analyzed separately for

Figure 6 Multiple interfaces defined for many-to-many information exchanges - notional

American Institute of Aeronautics and Astronautics

8

performance or other architectural characteristics. As the alternatives represent simpler tasks, they can be more
efficiently analyzed.

Functional Hierarchy:
The functional hierarchy conveys the transformation of the interface specifications into the functions that the

interface must perform. It also provides traceability of the requirements to the initial product design
configurations. Figure 8 shows an example of a functional hierarchy for a commanding interface between two
systems.

The functional hierarchy provides some quantitative indications of the interface complexity: (a) the number of

levels of decomposition, (b) the breadth of each level of decomposition, and (c) the number of fundamental
functional elements (functional units) from which the structural design is to be derived. A functional element
becomes fundamental if it can be explicitly related to an element in the derived structural design. For instance the
functional decomposition shown in Figure 8 offers that there should be at least two structural components that will
accomplish the commanding functionality: one component sending the commands and additional information, and
he other receiving it.
The number of levels of decomposition will not be consistent throughout the functional hierarchy and might not

be relevant as the decomposition can generally be further elaborated. The number of layers involved with the
decomposition of a primary function is nevertheless a better indication ((from all mentioned above) of the
complexity. The breadth of the level of decomposition indicates complexity, especially during system integration,
since the integration might occur horizontally in the hierarchy. The number of functional units may be used as an
initial estimation of the scope of the system unit design.

Behavioral Model:

The behavioral model provides information that supports the specification of functional components and units.

It is a precise representation of the behavior in a notation that eliminates ambiguity. The behavior model may be a

static or a dynamic model of the software execution that identifies the responses to potential data
transformation, operator errors, and hardware malfunctions. The behavior model enables design alternatives to be
evaluated and resolved.

Figure 7 Functional decomposition example

American Institute of Aeronautics and Astronautics

9

Figure 9 presents an example of a behavioral model for two interacting systems (Launch Vehicle, and
Spacecraft) displaying notional commanding behavior. The diagram shows the functions performed by the system
components (send command, receive commend, etc.), the sequence of the execution (left-right, top-down
convention) and the direction of command exchange. The comments in red indicate the fact that there are two
missing requirements for a necessary exchange. By convention, the columns (called swimlanes in SysML) represent
the fact that the components shown on top perform the functions shown in its column.
In essence, the behavioral model contains descriptions of: (a) the sequence of functions that must be performed

(functional flow), (b) data flow among functions or across functional interfaces (data flow), (c) control logic that
determines the execution flow among conditional functional sequences (control flow), and (d) resources necessary to
accomplish each function (resource utilization).
A behavioral model is executable if the specified behavior can be executed or simulated by an automated

execution procedure. Model execution may be used to explore possible behaviors of the system, and validate the
behavioral specification of the system. An executable behavior model can be utilized to support design trade-offs.

D. Mapping behaviors to structure
Modeling interfaces according to the interface pattern provides a static description of the interfaces. The

Figure 8 Behavior model example

Figure 9 Interface pattern used consistently with the functional behavior

American Institute of Aeronautics and Astronautics

10

behavioral aspects are captured in the functional architecture. The two aspects of the modeled interfaces must be
consistent.
SysML enables an implicit allocation of the functions to components, e.g., by representing them in component-

specific ”swimlanes” on a SysML activity diagram (see Figure 9).
The interface pattern allows a more precise mapping between the two complementary aspects of the interface.

The representation of the structural connection and the functional control transition representation are implicitly
equivalent by using the same Junction to denote (“type” them in SysML terms) them. (Figure 9)

V. Modeling Engineering Analyses

Managing and tracking requirements, evaluating alternatives and performing trade studies, doing functional
analysis - each implies some sort of analysis. Any analysis involves, in principle, some aspects of the systems that
are being analyzed and produces results used to explain why and how the design solution has been chosen.
Traditionally, systems engineers perform and represent all the necessary analyses, sometimes straddling different
domains (electrical, thermal, etc.) using various tools and representations.

One of the main purposes of modeling is to create the support for more accurate and reliable, possibly automated

analyses of the domain being modeled. In an effort to precisely and unambiguously express the analysis process, the
analyses can be formally defined and their relationships with the other parts of the model explicitly represented. For
complex problems, manually creating and tracking such analysis models requires time and may become a source of
errors.
The analysis profile12 provides a modeling technique for identifying various kinds of analyses and their

relationships with other parts of the model. An analysis may embody an analytical result, a reference to a procedural
specification, or a pointer to a result. Conceptually, an analysis provides an explanatory justification between two or
more elements of the model. The Analysis analyzes some elements of the model and explains other model elements.
(see Figure 13 and Figure 23).
Some examples of analyses include: requirements analysis, trade studies, performance calculations, mass

calculations, etc. The analyses need to be explicitly identified and represented in the model, so that one can
determine why the analysis was necessary, what are its objects, what are the results, etc. Explicit relationships may
be established in the model so that the analyses and their objects are identifiable in the model.
To support automated analyses the model must obey certain rules which are explicitly encoded in the model (as

illustrated by the examples in the following sections). A partial list of the analyses represented in the model is
presented in Figure 12. In the remainder of this section, four specific types of analysis performed on the

Figure 10 Analyses definitions – report from the model

American Institute of Aeronautics and Astronautics

11

SLS/MPCV/MS/GSDO systems will be discussed in more detail: (A) Requirements Allocation Analysis, (B)
Configuration Analysis, (C) Functional Allocation Analysis and (D) Data Exchanges Allocation Analysis.

A. Requirements Analysis

Requirements allocation
The purpose of the requirement allocation analysis is to determine if all requirements have been allocated to one

or more elements of the design space. In modeling terms, allocation means mapping source requirements to either
derived requirements or other model elements that satisfy the requirements. The mapping is represented in the
model by specialized relationships such as satisfy if mapping to a component or derive if mapping to another
requirement.

As an example of requirement-to-requirement traceability, the requirements defined in the IRD can be traced to

their derived ICD requirements (Figure 14). The table shown in Figure 14 represents a fragment of a report
generated form the model, more specifically using the “SLS-MS IRD-ICD Derive Table” shown in Figure 13.
The rules that can be checked include: (1) except for top level requirements, every requirement must refine at

least one other requirement, (2) the requirement refinement graph must not contain cycles, etc.

Figure 11 Analysis of ICD/IRD requirements - model elements

Figure 14 ICD requirements traced to IRD requirements example

American Institute of Aeronautics and Astronautics

12

Requirements can by allocated to system components as well. This allocation is also referred as “requirements

allocation to structure”. The rules that can be checked in this case include:((1) all requirements must be allocated to
components, and (2) all components must be specified by one or more requirements. In some cases the allocation
implies one step (directly from a requirement to a component, for instance), but often times the allocation implies a
chain of relationships if the model representations are more complex (involving component decompositions for
instance).
Automatic procedures may check the rules and produce reports. Some modeling tools, MagicDraw included

offer built-in procedures for extracting the list of components satisfied by the requirements. More elaborated reports
as shown in Figures 15 and 16 can be obtained by using specialized 2reporting tools. For informational purposes
additional information can be added, such as the “Data exchange type”.

Requirement Satisfied by Data exchange type
MS shall receive telemetry from S/C MS-S/C TLM port TLM
S/C shall send telemetry to MS S/C-MS TLM port TLM

Figure 15 Requirements satisfied by the interface (port) report.

Design Element

Data
exchange
type

Satisfied requirement(s)

Spacecraft-Ground FTS port FTS
Indication

. S/C shall receive FTS spare from Ground

. S/C shall receive FTS spare from Ground

. S/C shall receive FTS arm from Ground
Spacecraft-Ground notification port Notification . S/C shall send ascent target command to Ground

Figure 16 Design elements satisfying requirements report.

As a synopsis of the requirements allocation a convenient representation of the results a dependency matrix is

shown in Figure 17. The rows show the system components grouped by system, and the columns show the satisfied
requirements.

Figure 12 Requirements allocation analysis results synopsis – table representation

American Institute of Aeronautics and Astronautics

13

Interface requirements pairs analysis
In the special case of the interface requirements, another useful requirements analysis can indicate the producer-

consumer pairs of requirements. This analysis requires the precise identification of the respective requirements as
producers or consumers in the model (for instance using stereotypes) and checking their matching accordingly.

A report produced as a result of this type of analysis is shown in Figure 18. The Producer-Receiver interface

requirements has identified a missing requirement.

B. Configuration Analysis
The purpose of this analysis is to determine the end-to-end configuration of the control paths and their

characteristics. As described in section IV Modeling Interfaces, the underlying modeling structure includes several
layers of abstraction in representing the control paths between systems (Figure 19). The main motivation for this
approach is to separate the implementation level from other specification levels. The highest interface layer
specifies very high level characteristics of the data exchange: the type of the data- CMD, and what are the
restrictions in terms of the confidentiality, integrity, data rate, etc. Usually this level is provided by the IRD
specifications, but may be provided by other source such as ICD, or verbal communications. Determining what
exactly is necessary at this level, and at any other level for that matter is a modeling choice, depending on the
modeling purposes as well as the modeling paradigm.

Figure 13 Producer-Receiver requirements analysis report fragment

Figure 19 Mapping software interface layers

American Institute of Aeronautics and Astronautics

14

The lower levels of specifying the software interface may include descriptions of the data packaging, network
connection characteristics, physical media, etc. To ensure the model consistency, these layers must be related to
each other by specific relationships, so that they can be unambiguously identified and the associated numerical
characteristics correctly interpreted and calculated.

By analyzing the asserted mappings between layers we have provided snapshots of various connection paths
with their characteristics as for instance the network connections characteristics (Figures 20, 21)
The properties characterizing the data exchanges may vary depending upon the system layer being modeled.
At the very high level, it may be sufficient to enumerate very general properties such as the type of the data

(command or telemetry, etc.) required to be exchanged, but more detail is required as data exchanges across

specific software components must be specified within the model.

Quantitative analyses can provide calculated values for critical paths or nodes. The calculations may be

represented in the model as parametrics and calculated using specialized external engines or procedures, or
external engines can be invoked directly.

A notional example of reporting numerical characteristics of the RF link between spacecraft and ground is
presented in Figure 22.

C. Functional Allocation Analysis (Allocation of Behavior to Structure)

In our model the structural modeling elements are separated from the behavior model elements. This segregation

has the desired effect of allowing for separate design experiments that match different structures to some given
functionality. The structure is decomposed in certain ways, the behavior is decomposed independently, and a loose
coupling is provided between the two.
The purpose of this kind of analysis is to determine whether the functions have been allocated to the system

components. The rules that the model has to obey include: (1) Each function is specified by one or more

Figure 22 Link options analysis example.

Figure 20 Network connection analysis example

Figure 21 Physical connections analysis example.

American Institute of Aeronautics and Astronautics

15

requirements, (2) each function is performed by exactly one component, and (3) each component is bound by at least
one requirement.
The results of this analysis include: (1) All components that perform a function, organized by functions

accomplished, (2) all functions that are not accomplished by any component, and (3) all components that are not
performing any functions, etc.
An example of a report generated as a result of this type of analysis is shown in Figure 24. The behaviors are

represented using SysML activity diagrams. The table shows the allocation of the Behavior (represented as activities
to system components (the partition on the activity diagram). The activities can be decomposed into more primitive
elementary activities. The composite activity is represented as the Owner. The allocation is in fact implicitly
represented by the swimlanes in the activity diagram (see Figure 9 for an illustration).

D. Data Exchanges Allocation Analysis (Allocation of Flow to Structure)

This kind of analysis refers to allocating the structural representation of transfers of energy, mass, and/or

information to the functional representation of them. In our model such allocations are established between the
connectors representing data exchanges between system components and the data transfers (input/output) of the
functions allocated to these components.

Interface Behavior Component Function
S/C to Ground CMD Receive CMD Spacecraft Provide Telemetry
Ground to S/C TLM Package TLM Spacecraft Provide Telemetry
Ground to S/C TLM Send TLM Spacecraft Provide Telemetry

The results of the analyses presented in Section V have been published as reports in PDF or Excel format. The
results have been actively used in the process of elaborating the MS-SLS software ICD.

VI. Generating Documents and Reports

Traditionally, documents have been used as the authoritative source of information for requirements,

architecture, plans, analyses, trade studies, etc. These documents are the main conveyers of this information, and are
used to communicate and obtain consensus. Besides textual content, they might contain charts, drawings, and
numerical results from various analyses. Content between documents might be related, which is often the case, but
the connections are hard to establish, often they are implicit and known only by their producers. If something
changes, then the change needs to be manually propagated across the document set.

Figure 23 Allocation of behavior to structure report example

American Institute of Aeronautics and Astronautics

16

The key assumption made by the MBSE approach is that the information models describing the system are much

better at describing systems than only documents. The word “only” is key here. There will always be a mix of
models and documents, some things might be better conveyed in documents, while some others are naturally better
conveyed in models. One of the greatest expectations of MBSE is the possibility of generating documents from
information in various models.
The information conveyed by a document can also be rigorously modeled. The system model and the document

model can be mapped or transformed to one another. The transformation is usually implemented as one-way, from
the system model to the document model. Different documents and reports can be modeled independently and
generated from the same system model by the same automated procedure. This technique ensures creating a
complete set of consistent documents and other various reports at any time.
JPL has developed 2,9methods and tools that integrate the system modeling and the document production. A

necessary step is to develop models for the required documents. Such models can be seen as templates for a class
of documents such as ICD, IRD, or architecture description documents (ADDs). A basic structure for a document,
including sections, paragraphs, figures, etc. forms the backbone, while the actual content can be extracted from the
system model. SysML is a graphical language, so many of the graphics in the document may be directly extracted
from the system model, while text might or might be not included in the system model. For instance, if the model
elements have associated textual descriptions, then those can be literally transferred to the generated document.
Some other document elements may be part of the document model itself. Automated procedures implement the
transformation between these two models.
Using this technique we have generated the MS-SLS ICD and a number of analysis reports including a report

describing the analyses that have been done for this project.

VII. Lessons Learned

Communication with the stakeholders is critical.

Embed the SE knowledge in the model and use the model to generate design descriptions, analyze results, etc. to be
used in the program documents, and ultimately automatically generate these documents from the model. Do this on a
regular and frequent basis to communicate with the stakeholders

Product oriented modeling
The SE engineering activities ultimately result in engineering products. Identify the products required by the

stakeholders, prioritize them, and organize the model so that it can produce them in a format as close as possible to

Figure 24 Automated document and other artifacts generation

American Institute of Aeronautics and Astronautics

17

the desired format, at the right time. Such products can be anything from a table, an excel spreadsheet, a PowerPoint
presentation, to a full-fledged ICD.

MBSE doesn't replace established SE processes.
The modeling activities must be integrated with the more established SE processes. Therefore Modeling of

interfaces should be conducted simultaneously with the development of the interface product rather than as an
afterthought. The SE knowledge is crucial for developing the systems engineered model.
Over time, some of the traditional SE practices will be absorbed into the model-based practices, as systems

engineering teams become more comfortable with these approaches.

SE Rules implemented in MBSE
MBSE facilitates enforcement of certain rules and constraints which helps engineers identify incomplete

interfaces of analyzed functions, e.g. command responses.

Graphics are a powerful communications medium.
The graphical representations produced based on the model not only pave the way for analyses (partially

automated) but more importantly, they help with the understanding of the modeling by the stakeholders. When the
systems engineers start using these graphics, it saves their time for more difficult analysis work. The graphical
representations were the first to be accepted and included in the SLS-MS ICD. The PowerPoint presentations
automatically generated from the model formed the core of otherwise ad-hoc presentation packages.

VIII. Conclusions and Future work

Through this project, JPL has been applying its institutional capability in MBSE to demonstrate the advantages
of the model-based approach to systems engineering in general, and in particular for developing cross-systems
interfaces in more rigorous ways. The model-based approach, including interface patterns and behaviors, allows
engineers to methodically conduct analyses which complement traditional systems engineering approaches. The
SysML model serves as a centralized source of systems engineering products, and informs cross-system
development. We used ontologies for modeling systems, their interfaces, behaviors, analyses and documents. Using
formal ontologies provides the basis for standardizing, automating and reducing the complexity of the problem
space, including software complexity.
Future work will extend the current capabilities presented in this paper, in particular the functional aspects and

the behavioral modeling approach, and will address more areas of the exploration systems.

Appendix – Modeling Using Semantically Enhanced Systems Engineering Profiles

SysML has been created as a general-purpose modeling computer language for systems engineering. Its heritage
is UML16 as the core language, with extensions to more specifically address the systems engineering domain. The
newly added vocabulary contains terminology used in systems engineering such as Requirements, and linguistic
support for describing engineering analyses such as parametrics. In essence, SySML is an object-oriented modeling
computer language, as much as UML is, with a systems engineering flavor. Thinking about SysML in the context
of systems engineering, as well as a language, there are a few points that can be made: (1) General-purpose
modeling languages such as UML/SysML are based on generic abstractions for specification, analysis, design,
validation and verification of a broad range of systems. At times, the generality of these languages can produce
ambiguity. For instance, a SysML Block may represent a system, or a document, or a function, depending on what
the modeler intends to express. (2) The semantics of the SysML language is only narratively specified in the
specifications document [SysML specs]. Interpreting the modeling constructs, and verifying the well-formedness of
the models is left for the tool providers to implement, without a standard formal language description. (3)There are
information modeling languages that have been designed using formal descriptions of the valid language constructs.
Based on these formal descriptions, checking the correctness of the used language can be also formally defined. In
this context, formal means using some artificially created language, such as logic axioms, operators and rules of
inference, and not natural language narrative. In a more restricted sense, formal may mean – a language that can be
understood by computers.
JPL has considered the following approach10: (1) extending SysML with vocabulary for concepts and

relationships meaningful to systems engineering, (2) mapping the SysML models to an implementation-neutral
language (OWL) with formal semantics that allows for automated checking of language well-formedness (filling the

American Institute of Aeronautics and Astronautics

18

lack of SysML formal semantics), as well as domain correctness checking (due to the systems engineering meanings
of otherwise too general model constructions.
UML/SysML provides a mechanism for extending the core language with vocabulary that contains familiar

systems engineering terms from the domain of interest. The collection of new terms is called profile. Defining a
consistent terminology with well-defined meaning is the first step to help integrate multiple systems engineering
languages and tools. The terminology with its formal representation is also called ontology. In addition, formal
rules for constructing the models allow for automated procedures to check design properties such as consistency and
conformance to specifications.
In essence, ontology specifies a vocabulary representing concepts from the domain of interest. Concepts can

have given relationships to each other. Concepts can have properties (e.g. mass). Ontologies can have associated
rules that define the well-formedness of the model constructs (i.e. the “sentences” constructed with the vocabulary).

JPL has extended the core set of SysML terminology with terms representing concepts from space systems

engineering. The language constructs are supported by formally defined mechanisms that ensure the correctness of
the models. These mechanisms have also been developed within JPL.

Figure 26 Ontology hierarchy

American Institute of Aeronautics and Astronautics

19

Specializing the language for a given domain of system engineering, or for a specific application domain allows

for more clear formulation and unambiguous communication of models.

Acknowledgments

The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
The authors thank the sponsor of the work, Dr. Michael Aguilar from the NASA Engineering Safety Center

(NESC), and our SLS partners Mark Burcham and Leann Thomas.

References
1Bayer, T., Bennett, M., Delp, C., Dvorak, D., Jenkins, J.S., and Mandutianu, S., “Update - concept of operations for

Integrated Model-Centric Engineering at JPL”, Proceedings of the IEEE Aerospace Conference 2011, Big Sky, MT, March 2011.
2Delp, C., Lam, D., Fosse E., Lee, C.Y., Model Based Document and Report Generation for Systems Engineering,

Proceedings of the Aerospace Conference, 2013.,
3Department of Defense Architecture Framework (DoDAF), U.S. Department of Defense, Version 2.02,August 2010.
4Friedenthal, S., Moore, A., and Steiner, R., A Practical Guide to SysML: The Systems Modeling Language, Morgan

Kaufmann Publishers / OMG Press, 2008.
5Friedenthal, S., Modeling System Interfaces with SysML v1.3, April 27, 2011

http://www.pslm.gatech.edu/events/frontiers2011/1.3_Friedenthal.pdf
6ISO/IEC Standard for Systems and Software Engineering - Recommended Practice for Architectural Description of

Software-Intensive Systems, ISO/IEC42010 IEEE Standard 1471-2000, 1st Ed., 15 July 2007.
7Ingham.M, Day, J., Donahue, K., Kadesch, A., Andrew Kennedy, Khan, M.O., Post E., and Standley, S., A Model-Based

Approach to Engineering Behavior of Complex Aerospace Systems, AIAA Infotech, 2012
8Jackson, M., Muñoz Fernández, M., McVittie, T., Sindiy, O., Architecting the Human Flight Program with Systems

Modeling Language (SysML), AIAA Infotech, 2012
9 Jenkins, S.. A Modeling Approach to Document Generation, INCOSE Insight December 2009, Volume 12 Issue 4.
10Jenkins, S., Rouquette, N., Semantically Rigorous Systems Engineering Modeling using SysML and OWL, SECESA

Proceedings, Oct. 2012.
11Jenkins, S., Rouquette, N., Mandutianu, S., Modeling with the JPL Ontologies, Internal document, NASA Jet Propulsion

Laboratory, California Institute of Technology, 2013
12JPL, Systems Engineering Foundation Ontologies, to be published, 2013
13No Magic, Inc., MagicDraw User Manual, Version 17.0.1, 2011, URL:

http://www.nomagic.com/files/manuals/MagicDraw%20UserManual.pdf
14Simpson, K, Sindiy, O., McVittie T., Model-Based Systems Engineering of the Orion Flight Tets 1 End-to_end Information

System, Aerospace Conference, 2012.
15OMG Systems Modeling Language (SysML)Specification, Object Management Group (OMG) Version 1.2, 1 June 2010.

1

American Institute of Aeronautics and Astronautics

20

16Object Management Group, OMG Unified Modeling Language™(OMG UML), Infrastructure, 2011

