
Advances in Discrete-Event Simulation for
MSL Command Validation

Alexander Patrikalakis and Taifun O’Reilly
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California 91109-8099

Email: amcp@jpl.nasa.gov and taifun@jpl.nasa.gov

Abstract—In the last five years, the discrete event simu-
lator, SEQuence GENerator (SEQGEN), developed at the Jet
Propulsion Laboratory to plan deep-space missions, has greatly
increased uplink operations capacity to deal with increasingly
complicated missions. In this paper, we describe how the Mars
Science Laboratory (MSL) project makes full use of an in-
terpreted environment to simulate change in more than fifty
thousand flight software parameters and conditional command
sequences to predict the result of executing a conditional branch
in a command sequence, and enable the ability to warn users
whenever one or more simulated spacecraft states change in
an unexpected manner. Using these new SEQGEN features,
operators plan more activities in one sol than ever before.

Keywords—Spacecraft; operations; sequencing; activity plan-
ning; discrete event simulation; resource management.

I. INTRODUCTION

Deep-space missions are becoming more and more com-
plex. While the Mars Exploration Rovers mission (MER) had
approximately 305k source lines of code (SLOC) in its Flight
Software (FSW) [1], MSL has upwards of 3 million SLOC [2],
an order of magnitude greater. FSW’s complexity is reflected
in the spacecraft parameter state space: MSL has 52128 FSW
parameters, half of which are modeled in SEQGEN. The sci-
ence payload also increased by an order of magnitude, from 11
pounds on MER to 165 pounds on MSL. SEQGEN models the
command durations of all science observations as a function of
spacecraft states, FSW parameters, and command arguments.
The operational constraints of deep-space missions are also
becoming equally more complicated; MER has 62 ground
constraints (also known as flight rules) checked by SEQGEN,
while MSL has 303 flight rules checked by SEQGEN. Activity
planning and sequencing on MSL are done in an event-driven
fashion, requiring changes to SEQGEN [3].

The discrete event simulator, SEQGEN, is used to simulate
spacecraft and their interactions with the Deep Space Network,
to verify spacecraft commands and arguments, to protect
spacecraft from faults, and to ensure that spacecraft operations
meet primary mission goals. To support the complexity of the
MSL mission, we had to evolve SEQGEN. In this paper we
discuss how MSL uplink sequencing and modeling needs drove
innovation in the emerging field of activity- planning software
for remote robots. These innovations eventually allowed the
SEQGEN simulated command sequence durations to approach
95% accuracy with respect to as-run times of MSL Mars
Hand Lens Imager (MAHLI) sequences. Before we discuss
the innovations, we first discuss some of the components

of spacecraft models (adaptations) that run on SEQGEN to
provide readers with some background regarding SEQGEN
and its use.

A. Spacecraft Model File (SMF)

A Spacecraft Model File (SMF) contains attributes, com-
mands, stimuli, ground events, and subroutines. Attributes
represent modeled spacecraft state, and commands are FSW
commands that can change the attributes within some sim-
ulated time frame. Stimuli are queued requests to change
simulated spacecraft and future ground states. For example,
SEQGEN uses specially named stimuli to let the simulation
specify what happens on blocking and non-blocking sequence
invocation and termination. Ground events perform the same
roles as commands, but are not real FSW commands; they are
used to model the physical behavior of DSN and spacecraft
interactions, and as back-doors to update spacecraft state in the
presence of anomalies. A mission’s SEQGEN adaptation uses
a combination of mission-specific and multi-mission SMFs.
Finally, subroutines are reusable groups of simulation logic.
Commands, stimuli, ground events, and subroutines alike all
update simulated spacecraft and ground states with a number
of STEPS in their corresponding RESULTS bodies.

Fig.1 lists an example of a contrived Martian laser model.
The model tracks the power state of the laser, and the number
of times operators fire the laser. This particular model contains
two commands, POWER_LASER and FIRE_LASER, that can
be included in a sequence. In the RESULTS sections of these
commands, the model updates the laser’s power state and
the number of fired shots. The key difference between the
SEQGEN simulation language and other procedural languages
is that time is an integral part of the modeling language. One
can explicitly model delays and command durations as steps
of a command’s RESULTS.

B. Context Variable File (CVF)

A CVF contains constants, known as context variables,
which can either be scalars or tables/matrices. Some of these
variables have special meaning for SEQGEN; for exam-
ple, specifying the minimum event duration or associating
branching command sequence directives with if/else/end if
constructs. Some of the variables represent Deep Space Net-
work (DSN) configuration tables that are called upon by
the multi-mission DSN model files. The remaining variables
are mission-specific and can be used to represent anything

SOFTWARE(LASER,
ATTRIBUTES,
SHOTS(TYPE, UNSIGNED_DECIMAL, DEFAULT,0),
POWER_STATE(TYPE, STRING, RANGE,

\"ON", "OFF", "XN"\, DEFAULT,
"OFF"),

end,
COMMANDS,
FIRE_LASER(

RESULTS,
LASER::SHOTS = LASER::SHOTS + 1,
COMPLETED,(00:00:01, 0),

end
),
POWER_LASER(

PARAMETERS,
power_state(TYPE, STRING, RANGE,

\"ON", "OFF"\),
end,
RESULTS,
IF,LASER::POWER_STATE != power_state,
LASER::POWER_STATE = "XN",
DELAY_BY,00:00:01,
LASER::POWER_STATE = power_state,
COMPLETED,(00:00:00, 0),

end,
ELSE,
E$ERROR="Laser already on!",
COMPLETED,(00:00:01, 1),

end,
end

),
end)

Fig. 1. A contrived example of SEQGEN SMF file content.

/MAX_SHOTS
"const" 1000

Fig. 2. A contrived example of SEQGEN CVF file content.

from success/failure control codes to spacecraft operational
mode restrictions on FSW commands. A mission’s SEQGEN
adaptation uses a combination of mission-specific and multi-
mission CVF files. In a contrived example in Fig.2, we define a
constant representing the maximum number of times the laser
is allowed to be fired.

C. Flight Mission Rules File (FMRF)

A Flight Rules Mission File contains codified rules that
are used to flag violations of constraints set by operators
on the ground. FMRF flight rules can forbid illegal states
(with forbidden_synchronic), disallow simulated state
from being changed (with lock), and require a combination
of simulated state to be true for a period of time before a
state transition (with required_antecedent). SEQGEN
versions prior to 32.4 only supported checking FMRF-based
flight rules when affected model attributes changed and at the
beginning of SEQGEN simulation runs. Generally, FMRFs are
always mission-specific.

forbidden_synchronic(LASER-0001,
SEVERITY, ERROR,
MESSAGE, \"The laser wears out."\,
STATE, \LASER::shots > MAX_SHOTS\
) ##end LASER-0001

required_antecedent(LASER-0002,
SEVERITY, ERROR,
MESSAGE, \"Cool down before power on"\,
DURATION, 02:00,
NO_INTERIM_STATE,
ANTECEDENTS, LASER::POWER_STATE == "OFF",
RESULTANTS, LASER::POWER_STATE == "ON"
) ##end LASER-0002

Fig. 3. A contrived example of sample SEQGEN FMRF file content.

RT_on_board_block(lasr00001,\lasr1\,
STEPS,
command_wait(1, POWER_LASER("ON"),

COMMENT,
\"Fire at will"\),

command_wait(2, FIRE_LASER()),
command_wait(3, FIRE_LASER()),
command_wait(4, POWER_LASER("OFF")),

end
) ##end ACTIVITY_TYPE lasr1

Fig. 4. A contrived example of SEQGEN SATF file content.

Fig.3 shows two contrived examples of FMRF flight
rules. First, a forbidden_synchronic flight rule warns
users about consumable depletion. In this example, the
rule named LASER-0001 states that it is an ERROR for
the laser to be shot more than MAX_SHOTS. Second, a
required_antecedent rule enforces a cool-off period of
two minutes between laser power cycles.

D. Sequence Activity Type File (SATF)

A SATF contains the on-board and ground command
sequences called blocks, also known as activities. Ground
blocks are used to model multi-mission DSN behavior such
as Doppler ranging, View-Periods, and DSN ground station
allocation. Ground blocks also model high-level communica-
tion windows in terms of lower-level spacecraft commands,
and are mission-specific. On-board blocks are sequences that
actually get executed on the spacecraft. SATF blocks are
mission-specific, as spacecraft commands vary from mission
to mission. The example listed in Fig.4 is an on-board block
that turns on a contrived Martian laser, fires it twice, and turns
it off.

E. SEQGEN adaptations and adapters

From the perspective of spacecraft operators, a SEQGEN
adaptation refers to the sum of the SEQGEN program (the
simulator); a user-defined function library that supplements
SEQGEN’s functionality (for example, with SPICE kernels
[4]); a multi-mission model for the DSN, sequence engines,
and orbital propagation timing and geometry; and a mission-
specific model of spacecraft commands and state. The ex-

amples shown in Fig.1 - Fig.4 represent a subset of such
a mission-specific model of spacecraft commands and state.
Combined with other ancillary inputs such as light-time files,
SCLKSCET files, DSN view-period and station allocation
files, the above comprise the totality of a SEQGEN adaptation.

An adapter is a software developer that takes the SEQ-
GEN program and multi-mission elements, adapts them to the
modeling and verification needs of a specific mission, and
creates the mission-specific models of spacecraft commands
and state[5][6]. Adapters routinely create and modify SMF,
FMRF, CVF, and SATF files. Less frequently, adapters will
modify the user defined library.

II. SIMULATION IMPROVEMENTS

MSL, like its predecessor MER, uses a new version
of Rover Markup Language (RML), instead of Virtual Ma-
chine Language (VML), to represent sequences in the MSEQ
(MSLICE-Sequencing) database [7]. VML is an expressive
language that permits all aspects of procedural programming:
assignment, conditional branching, loops, local and global
variables, and subroutines [8], allowing operators to sequence
complex spacecraft activities. MSL chose to use RML over
VML to leverage MER legacy and because RML is less com-
plex. To support MSL uplink goals without VML, SEQGEN
required updates to internal simulation features; these updates
are described below.

A. Event-driven command sequencing

Until recently, SEQGEN did not support simulating com-
mand execution durations and the relative ordering of the com-
mands in a sequence for determining the absolute start and end
time of each command. As the status returned by a command’s
RESULTS is known only at the last simulated time step of the
command, conditional sequencing is only possible when the
results of a command have run to completion. As MSL requires
the ability to conditionally terminate a sequence based on the
last command’s status (and other spacecraft states), we updated
SEQGEN to support command_wait steps in sequences.
command_wait steps instruct the sequence engine to wait
until the command indicated has completed before dispatching
the next command in a sequence. Event-driven sequences are
exclusively composed of command_wait steps.

As the completion of command execution can take time, we
made SEQGEN able to abort a command in the middle of its
execution, terminating the command with a FAILURE status.
Because commands are simulated to completion in event-
driven sequencing, the return status of each command can be
assigned to a block variable usually named LAST_STATUS.
LAST_STATUS resembles one of more than two hundred
DDIs (Defined Data Items, well-known spacecraft states) on
MSL. Special commands in sequences refer to DDIs to con-
ditionally execute more commands, depending on the value
of the DDI. Now that SEQGEN can assign command return
status to the LAST_STATUS block variable, it can be used
to simulate the LAST_STATUS for each spacecraft sequence
engine.

B. Conditional sequencing

In remote rover operations, operators need conditional
branching in sequences because they cannot acquire knowledge
of the rover’s state in real time. Conditional branching allows
operators to sequence tests for contingencies, and to kill
sequences if an anomalous state exists. Thus, operators need
to also be able to simulate multiple branches of conditional
sequences.

MSL uses DDIs to enable sequences to query actual
spacecraft state and to prematurely abort such sequences
in case the queried spacecraft state was not nominal. MSL
exposes spacecraft state at the sequence and command levels
using DDIs. There are sequence directives, a special kind of
command, that will conditionally execute the commands in
the “if/else” branches of a conditional statement depending on
whether the equality relation involving the DDI is true or false.

Using the MER Rover Sequencing and Visualization Pro-
gram (RSVP), it was possible to use if/else cond block steps
in SATFs to explore the future [9]. Because RML used in
the uplink pipeline on MSL does not translate to if_cond
or else_cond steps in the SATF files produced by MSEQ
Server, the operator preference had to be communicated to
the SEQGEN simulation another way. Currently, MSL uses
“magic comments” attached to the relevant IF/ELSE sequence
directives in SATF to assume true, false, or nothing about the
DDI (in)equality test. Magic comments are specially formatted
COMMENT entries attached to a command_wait step in block
in an SATF file. Magic comments are magical because they
allow operators to make assumptions about spacecraft states
accessible via DDIs.

Fig.5 lists the sequence block lasr00002. Command
IF_COND(DDI, relation, value) will enter the con-
ditional branch if the relation between DDI and value is
true. Command ENDIF_COND marks the end of a conditional
branch, and command TERMINATE immediately kills the
current instance of a sequence. Magic comments are present
on the steps with numbers 2 and 5. The first magic comment
in step 2 forbids the simulations sequence engine from dis-
patching step 3. The magic comment in step 5 allows the
simulation’s sequence engine to dispatch the command in step
6. The outcome of actually executing lasr00002 on the
spacecraft will depend on whether the spacecraft successfully
powered the laser ON in step 1, and on the local mean solar
time at step 5. This “magical” function of magic comments
requires adapters to parse the command’s comment in the
mission-specific part of the adaptation.

As contingency planning continues to be a part of rover se-
quence planning, we realized that conveying true/false branch
preference is better dealt with by the SEQGEN simulator. We
took the parsing burden off the adapters in the mission-specific
model and added such a feature to SEQGEN, by introducing
the ASSUMED_MODEL_VALUES tag to event steps in SATF.
Then, all that adapters need to do is query the presence and
value of properties in this tag using the new built-in function
GET_VALUE_FOR_KEY.

C. Model attribute history persistence

Implementing flight rules that specify how long heaters
are not allowed to be turned on before and after the rover

RT_on_board_block(lasr00002,\lasr2\,
VARIABLES,

LAST_STATUS(TYPE,INTEGER),
end,
STEPS,

command_wait(1, RETURN_ASSIGN_TO,
LAST_STATUS,
POWER_LASER("ON")),

command_wait(2, COMMENT,
\"[assume false]"\,
IF_COND("LAST_STATUS"

"NOT_EQUAL",
0)),

command_wait(3, RETURN_ASSIGN_TO,
LAST_STATUS,
TERMINATE(SUCCESS)),

command_wait(4, ENDIF_COND()),
command_wait(5, COMMENT,

\"[assume true]"\,
IF_COND("LOCAL_TIME",

"GREATER_THAN"
10:00:00)),

command_wait(6, RETURN_ASSIGN_TO,
LAST_STATUS,
FIRE_LASER()),

command_wait(7, ENDIF_COND()),
end
) ##end ACTIVITY_TYPE lasr2

Fig. 5. A contrived example of SATF content with conditional branching
driven by magic comments.

goes to sleep is possible by WAITing on rover computer and
heater power states in stimuli spawned by the commands that
govern heaters and computer power state. However, proactively
checking this rule is cumbersome due to the large number
of heater zones (100+), the three types of heating modes
(low level zone control, the immediate warm-up requests, and
scheduled warm-up requests), and the at least six different
ways to cause a computer power cycle. Furthermore, it is
complicated by the fact that heaters can be scheduled to turn
on even when both computers are off [10].

It is easier to model heater activity separately from
rover computer power cycles and check heater usage against
computer power cycles at the end of a simulation run.
Now, SEQGEN can persist historical model attribute val-
ues throughout and across multiple simulation runs. Setting
PERSIST_COUNT to values greater than one for an at-
tribute will maintain just as many historical values of that
model attribute. Functions GET_ATTRIBUTE_AT_TIME and
GET_TIME_OF_ATTRIBUTE_TRANSITION allow adapters
to query the past value of a model attribute, and to query
transitions, allowing flight rules like the one above to be
checked at the end of a simulation run, instead of during
the simulation. Persisting histories across multiple SEQGEN
simulation runs allows us to check this kind of rule during
multi-sol plans, which require multiple runs.

SOFTWARE(utility,
SUBROUTINES,
pre_command(
RESULTS,
LOCAL,STRING[],matches,
matches = regex_match(C$CMDSTEM,

"HW.*", ""),
IF,LISTLEN(matches) > 0,
E$ERROR="Take care with HW commands"
end,

end
),
end)

Fig. 6. A contrived SMF that flags all commands that begin with HW with
an error.

D. Regular expression pattern matching

Previously, the SEQGEN program had limited string-
processing capability; it was not possible to compare a string
to a regular expression and look for matches. We added regular
expression pattern matching functions to SEQGEN, allowing
the MSL adapters to use succinct regular expressions to specify
a valid file path argument of data management commands,
instead of using a convoluted loop that examines file path
strings, character by character.

Regular expressions can also be used to implement flight
rules that can be triggered by hundreds of commands. For
example, lack of testing might forbid hardware commands
from ever being used during nominal operations. So, instead of
specifying each of the 100 or so fictitious hardware commands
as being forbidden during operations, one can use a regular
expression-based rule specifying all hardware commands with
".*HW.*".

Fig.6 demonstrates one way to use regular expressions to
check flight rules. pre_command is a reserved subroutine
that SEQGEN executes right before executing the RESULTS
of each command. C$CMDSTEM is the SEQGEN symbol name
containing the name of the command being processed. When
the count of the matches of the regular expression HW.* in
C$CMDSTEM is greater than zero, the operator sees an ERROR.

E. Run-time interpretation using the evaluate built-in function

The MSL SEQGEN adaptation models many of the fifty-
two thousand FSW parameters. FSW parameters are organized
into groups, and a set of commands corresponds to each group
of parameters. Furthermore, just as there are more than 30
mechanisms that have the same kinds of tolerance parameters,
many parameter groups have many copies, for example, one
copy for each mechanism. Finally, all the parameter groups
belong in one of approximately thirty operational categories.
Operational categories with many parameters allow individual
parameters in a group to be set, without resetting the remain-
ing parameters in the group, using special parameter setting
commands. These parameter setting commands take an array
of parameter <name, value> pairs. Operators use the array
variant when the number of parameters in a group is too large
to justify resetting all of the parameter values.

REFERENCES

[1] G. Reeves and J. Snyder, “An overview of the mars exploration
rovers’ flight software,” in Systems, Man and Cybernetics, 2005 IEEE
International Conference on, vol. 1, 2005, pp. 1–7 Vol. 1.

[2] A. Murray, M. Schoppers, and S. Scandore, “A reusable architectural
pattern for auto-generated payload management flight software,” in
Aerospace conference, 2009 IEEE, 2009, pp. 1–11.

[3] B. Streiffert and T. O’Reilly, The Evolution of Seqgen - A Spacecraft
Sequence Simulator. American Institute of Aeronautics and Astronau-
tics, 2013/06/14 2008.

[4] K.-M. Cheung, A. Ko, D. Page, J. Bixler, and S. Lever, “Design and
architecture of planning and sequence system for mars exploration rover
(mer) operations,” in AIAA SpaceOps Conference, Montreal, Canada,
2004.

[5] L. Needels, Multi-Mission Sequencing Software. American Institute
of Aeronautics and Astronautics, 2013/06/14 2002.

[6] B. Streiffert and T. O’Reilly, Sequence System Building Blocks: Using a
Component Architecture for Sequencing Software. American Institute
of Aeronautics and Astronautics, 2013/06/14 2006.

[7] T. W. Starbird, J. R. Morris, K. S. Shams, and M. W. Maimone,
“Rapid diagnostics of onboard sequences,” Jet Propulsion Laboratory /
California Institute of Technology, Pasadena, CA, United States, NASA
Tech Brief, December 2012.

[8] C. Grasso, “The fully programmable spacecraft: procedural sequencing
for jpl deep space missions using vml (virtual machine language),” in
Aerospace Conference Proceedings, 2002. IEEE, vol. 1, 2002, pp. 1–
75–1–81 vol.1.

[9] A. Mishkin, D. Limonadi, S. Laubach, and D. Bass, “Working the
martian night shift - the mer surface operations process,” Robotics
Automation Magazine, IEEE, vol. 13, no. 2, pp. 46–53, 2006.

[10] K. Novak, Y. Liu, C.-J. Lee, and S. Hendricks, Mars Science Laboratory
Rover Actuator Thermal Design. American Institute of Aeronautics
and Astronautics, 2013/06/14 2010.

[11] Msl reports / getseqtree script output for sols 10-250.
[12] A. A. et al., “Mars science laboratory mission system mos & gds mbse

effort,” February 2011, internal Presentation.
[13] T. Crockett, K. Shams, and J. Morris, “Telerobotics as programming,”

in Aerospace Conference, 2011 IEEE, 2011, pp. 1–7.
[14] J. Salcedo and T. Starbird, “Seq gen: A comprehensive multimission

sequencing system,” Jet Propulsion Laboratory / California Institute of
Technology, Tech. Rep., April 1994.

[15] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM,
vol. 33, no. 10, pp. 30–53, Oct. 1990.

[16] B. Streiffert and T. O’Reilly, MPS Editor - An Integrated Sequencing
Environment. American Institute of Aeronautics and Astronautics,
2013/06/14 2010.

[17] S. Chung, Timeline-based Mission Operations Architecture. American
Institute of Aeronautics and Astronautics, 2013/06/14 2012. [Online].
Available: http://dx.doi.org/10.2514/6.2012-1269750

