Advances in Discrete-Event Simulation for
MSL Command Validation

Alexander Patrikalakis and Taifun O’Reilly
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109-8099
Email: amcp@jpl.nasa.gov and taifun@jpl.nasa.gov

Abstract—In the last five years, the discrete event simu-
lator, SEQuence GENerator (SEQGEN), developed at the Jet
Propulsion Laboratory to plan deep-space missions, has greatly
increased uplink operations capacity to deal with increasingly
complicated missions. In this paper, we describe how the Mars
Science Laboratory (MSL) project makes full use of an in-
terpreted environment to simulate change in more than fifty
thousand flight software parameters and conditional command
sequences to predict the result of executing a conditional branch
in a command sequence, and enable the ability to warn users
whenever one or more simulated spacecraft states change in
an unexpected manner. Using these new SEQGEN features,
operators plan more activities in one sol than ever before.

Keywords—Spacecraft; operations; sequencing; activity plan-
ning; discrete event simulation; resource management.

I. INTRODUCTION

Deep-space missions are becoming more and more com-
plex. While the Mars Exploration Rovers mission (MER) had
approximately 305k source lines of code (SLOC) in its Flight
Software (FSW) [1], MSL has upwards of 3 million SLOC [2],
an order of magnitude greater. FSW’s complexity is reflected
in the spacecraft parameter state space: MSL has 52128 FSW
parameters, half of which are modeled in SEQGEN. The sci-
ence payload also increased by an order of magnitude, from 11
pounds on MER to 165 pounds on MSL. SEQGEN models the
command durations of all science observations as a function of
spacecraft states, FSW parameters, and command arguments.
The operational constraints of deep-space missions are also
becoming equally more complicated; MER has 62 ground
constraints (also known as flight rules) checked by SEQGEN,
while MSL has 303 flight rules checked by SEQGEN. Activity
planning and sequencing on MSL are done in an event-driven
fashion, requiring changes to SEQGEN [3].

The discrete event simulator, SEQGEN, is used to simulate
spacecraft and their interactions with the Deep Space Network,
to verify spacecraft commands and arguments, to protect
spacecraft from faults, and to ensure that spacecraft operations
meet primary mission goals. To support the complexity of the
MSL mission, we had to evolve SEQGEN. In this paper we
discuss how MSL uplink sequencing and modeling needs drove
innovation in the emerging field of activity- planning software
for remote robots. These innovations eventually allowed the
SEQGEN simulated command sequence durations to approach
95% accuracy with respect to as-run times of MSL Mars
Hand Lens Imager (MAHLI) sequences. Before we discuss
the innovations, we first discuss some of the components

of spacecraft models (adaptations) that run on SEQGEN to
provide readers with some background regarding SEQGEN
and its use.

A. Spacecraft Model File (SMF)

A Spacecraft Model File (SMF) contains attributes, com-
mands, stimuli, ground events, and subroutines. Attributes
represent modeled spacecraft state, and commands are FSW
commands that can change the attributes within some sim-
ulated time frame. Stimuli are queued requests to change
simulated spacecraft and future ground states. For example,
SEQGEN uses specially named stimuli to let the simulation
specify what happens on blocking and non-blocking sequence
invocation and termination. Ground events perform the same
roles as commands, but are not real FSW commands; they are
used to model the physical behavior of DSN and spacecraft
interactions, and as back-doors to update spacecraft state in the
presence of anomalies. A mission’s SEQGEN adaptation uses
a combination of mission-specific and multi-mission SMFs.
Finally, subroutines are reusable groups of simulation logic.
Commands, stimuli, ground events, and subroutines alike all
update simulated spacecraft and ground states with a number
of STEPS in their corresponding RESULTS bodies.

Fig.1 lists an example of a contrived Martian laser model.
The model tracks the power state of the laser, and the number
of times operators fire the laser. This particular model contains
two commands, POWER_LASER and FIRE_LASER, that can
be included in a sequence. In the RESULTS sections of these
commands, the model updates the laser’s power state and
the number of fired shots. The key difference between the
SEQGEN simulation language and other procedural languages
is that time is an integral part of the modeling language. One
can explicitly model delays and command durations as steps
of a command’s RESULTS.

B. Context Variable File (CVF)

A CVF contains constants, known as context variables,
which can either be scalars or tables/matrices. Some of these
variables have special meaning for SEQGEN; for exam-
ple, specifying the minimum event duration or associating
branching command sequence directives with if/else/end_if
constructs. Some of the variables represent Deep Space Net-
work (DSN) configuration tables that are called upon by
the multi-mission DSN model files. The remaining variables
are mission-specific and can be used to represent anything

SOFTWARE (LASER,

ATTRIBUTES,

SHOTS (TYPE, UNSIGNED_DECIMAL, DEFAULT,O),
POWER_STATE (TYPE, STRING, RANGE,

\"ON", "OFF", "XN"\, DEFAULT,
"OFE") ,
end,
COMMANDS,
FIRE_LASER (
RESULTS,

LASER: :SHOTS = LASER::SHOTS + 1,
COMPLETED, (00:00:01, 0),
end

)y
POWER_LASER (

PARAMETERS,
power_state (TYPE, STRING, RANGE,
\"ON", "OFF"\) ,
end,
RESULTS,

IF, LASER: : POWER_STATE
LASER: :POWER_STATE =
DELAY_BY,00:00:01,
LASER: :POWER_STATE = power_state,
COMPLETED, (00:00:00, 0),

end,

ELSE,

ESERROR="Laser already on!",
COMPLETED, (00:00:01, 1),
end,
end
)
end)

!= power_state,
"XN" ,

Fig. 1. A contrived example of SEQGEN SMF file content.

/MAX_SHOTS
"const" 1000

Fig. 2. A contrived example of SEQGEN CVF file content.

from success/failure control codes to spacecraft operational
mode restrictions on FSW commands. A mission’s SEQGEN
adaptation uses a combination of mission-specific and multi-
mission CVF files. In a contrived example in Fig.2, we define a
constant representing the maximum number of times the laser
is allowed to be fired.

C. Flight Mission Rules File (FMRF)

A Flight Rules Mission File contains codified rules that
are used to flag violations of constraints set by operators
on the ground. FMRF flight rules can forbid illegal states
(with forbidden_synchronic), disallow simulated state
from being changed (with 1ock), and require a combination
of simulated state to be true for a period of time before a
state transition (with required_antecedent). SEQGEN
versions prior to 32.4 only supported checking FMRF-based
flight rules when affected model attributes changed and at the
beginning of SEQGEN simulation runs. Generally, FMRFs are
always mission-specific.

forbidden_synchronic (LASER-0001,

SEVERITY, ERROR,
MESSAGE, \"The laser wears out."\,
STATE, \LASER::shots > MAX_SHOTS\

) ##end LASER-0001

required_antecedent (LASER-0002,

SEVERITY, ERROR,

MESSAGE, \"Cool down before power on"\,
DURATION, 02:00,

NO_INTERIM_STATE,

ANTECEDENTS, LASER::POWER_STATE == "OFF",
RESULTANTS, LASER::POWER_STATE == "ON"

) ##end LASER-0002

Fig. 3. A contrived example of sample SEQGEN FMREF file content.

RT_on_board_block (1lasr00001, \lasrl\,

STEPS,
command_wait (1, POWER_LASER("ON"),

COMMENT,

\"Fire at will"\),

FIRE_LASER()),

FIRE_LASER()),

POWER_LASER ("OFF")),

command_wait (2,
command_wait (3,
command_wait (4,
end
) ##end ACTIVITY_TYPE lasrl

Fig. 4. A contrived example of SEQGEN SATF file content.

Fig.3 shows two contrived examples of FMRF flight
rules. First, a forbidden_synchronic flight rule warns
users about consumable depletion. In this example, the
rule named LASER-0001 states that it is an ERROR for
the laser to be shot more than MAX_SHOTS. Second, a
required_antecedent rule enforces a cool-off period of
two minutes between laser power cycles.

D. Sequence Activity Type File (SATF)

A SATF contains the on-board and ground command
sequences called blocks, also known as activities. Ground
blocks are used to model multi-mission DSN behavior such
as Doppler ranging, View-Periods, and DSN ground station
allocation. Ground blocks also model high-level communica-
tion windows in terms of lower-level spacecraft commands,
and are mission-specific. On-board blocks are sequences that
actually get executed on the spacecraft. SATF blocks are
mission-specific, as spacecraft commands vary from mission
to mission. The example listed in Fig.4 is an on-board block
that turns on a contrived Martian laser, fires it twice, and turns
it off.

E. SEQGEN adaptations and adapters

From the perspective of spacecraft operators, a SEQGEN
adaptation refers to the sum of the SEQGEN program (the
simulator); a user-defined function library that supplements
SEQGEN’s functionality (for example, with SPICE kernels
[4]); a multi-mission model for the DSN, sequence engines,
and orbital propagation timing and geometry; and a mission-
specific model of spacecraft commands and state. The ex-

amples shown in Fig.l1 - Fig.4 represent a subset of such
a mission-specific model of spacecraft commands and state.
Combined with other ancillary inputs such as light-time files,
SCLKSCET files, DSN view-period and station allocation
files, the above comprise the totality of a SEQGEN adaptation.

An adapter is a software developer that takes the SEQ-
GEN program and multi-mission elements, adapts them to the
modeling and verification needs of a specific mission, and
creates the mission-specific models of spacecraft commands
and state[5][6]. Adapters routinely create and modify SMEF,
FMRF, CVF, and SATF files. Less frequently, adapters will
modify the user defined library.

II. SIMULATION IMPROVEMENTS

MSL, like its predecessor MER, uses a new version
of Rover Markup Language (RML), instead of Virtual Ma-
chine Language (VML), to represent sequences in the MSEQ
(MSLICE-Sequencing) database [7]. VML is an expressive
language that permits all aspects of procedural programming:
assignment, conditional branching, loops, local and global
variables, and subroutines [8], allowing operators to sequence
complex spacecraft activities. MSL chose to use RML over
VML to leverage MER legacy and because RML is less com-
plex. To support MSL uplink goals without VML, SEQGEN
required updates to internal simulation features; these updates
are described below.

A. Event-driven command sequencing

Until recently, SEQGEN did not support simulating com-
mand execution durations and the relative ordering of the com-
mands in a sequence for determining the absolute start and end
time of each command. As the status returned by a command’s
RESULTS is known only at the last simulated time step of the
command, conditional sequencing is only possible when the
results of a command have run to completion. As MSL requires
the ability to conditionally terminate a sequence based on the
last command’s status (and other spacecraft states), we updated
SEQGEN to support command_wait steps in sequences.
command_wait steps instruct the sequence engine to wait
until the command indicated has completed before dispatching
the next command in a sequence. Event-driven sequences are
exclusively composed of command_wait steps.

As the completion of command execution can take time, we
made SEQGEN able to abort a command in the middle of its
execution, terminating the command with a FAILURE status.
Because commands are simulated to completion in event-
driven sequencing, the return status of each command can be
assigned to a block variable usually named LAST_STATUS.
LAST_STATUS resembles one of more than two hundred
DDIs (Defined Data Items, well-known spacecraft states) on
MSL. Special commands in sequences refer to DDIs to con-
ditionally execute more commands, depending on the value
of the DDI. Now that SEQGEN can assign command return
status to the LAST STATUS block variable, it can be used
to simulate the LAST_STATUS for each spacecraft sequence
engine.

B. Conditional sequencing

In remote rover operations, operators need conditional
branching in sequences because they cannot acquire knowledge
of the rover’s state in real time. Conditional branching allows
operators to sequence tests for contingencies, and to Kkill
sequences if an anomalous state exists. Thus, operators need
to also be able to simulate multiple branches of conditional
sequences.

MSL uses DDIs to enable sequences to query actual
spacecraft state and to prematurely abort such sequences
in case the queried spacecraft state was not nominal. MSL
exposes spacecraft state at the sequence and command levels
using DDIs. There are sequence directives, a special kind of
command, that will conditionally execute the commands in
the “if/else” branches of a conditional statement depending on
whether the equality relation involving the DDI is true or false.

Using the MER Rover Sequencing and Visualization Pro-
gram (RSVP), it was possible to use if/else_cond block steps
in SATFs to explore the future [9]. Because RML used in
the uplink pipeline on MSL does not translate to 1 f_cond
or else_cond steps in the SATF files produced by MSEQ
Server, the operator preference had to be communicated to
the SEQGEN simulation another way. Currently, MSL uses
“magic comments” attached to the relevant IF/ELSE sequence
directives in SATF to assume true, false, or nothing about the
DDI (in)equality test. Magic comments are specially formatted
COMMENT entries attached to a command_wait step in block
in an SATF file. Magic comments are magical because they
allow operators to make assumptions about spacecraft states
accessible via DDIs.

Fig.5 lists the sequence block 1asr00002. Command
IF_COND (DDI, relation, wvalue) will enter the con-
ditional branch if the relation between DDI and value is
true. Command ENDIF_COND marks the end of a conditional
branch, and command TERMINATE immediately kills the
current instance of a sequence. Magic comments are present
on the steps with numbers 2 and 5. The first magic comment
in step 2 forbids the simulations sequence engine from dis-
patching step 3. The magic comment in step 5 allows the
simulation’s sequence engine to dispatch the command in step
6. The outcome of actually executing 1asr00002 on the
spacecraft will depend on whether the spacecraft successfully
powered the laser ON in step 1, and on the local mean solar
time at step 5. This “magical” function of magic comments
requires adapters to parse the command’s comment in the
mission-specific part of the adaptation.

As contingency planning continues to be a part of rover se-
quence planning, we realized that conveying true/false branch
preference is better dealt with by the SEQGEN simulator. We
took the parsing burden off the adapters in the mission-specific
model and added such a feature to SEQGEN, by introducing
the ASSUMED_MODEL_VALUES tag to event steps in SATF.
Then, all that adapters need to do is query the presence and
value of properties in this tag using the new built-in function
GET_VALUE_FOR_KEY.

C. Model attribute history persistence

Implementing flight rules that specify how long heaters
are not allowed to be turned on before and after the rover

RT_on_board_block (1asr00002, \lasr2\,
VARIABLES,
LAST_STATUS (TYPE, INTEGER) ,
end,
STEPS,
command_wait (1, RETURN_ASSIGN_TO,
LAST_STATUS,
POWER_LASER ("ON")),
COMMENT,
\" [assume false]l"\,
IF_COND ("LAST_STATUS"
"NOT_EQUAL",
0)),
RETURN_ASSIGN_TO,
LAST_STATUS,
TERMINATE (SUCCESS)),
ENDIF_COND()),
COMMENT,
\" [assume truel"\,
IF_COND ("LOCAL_TIME",
"GREATER_THAN"
10:00:00)),
RETURN_ASSIGN_TO,
LAST_STATUS,
FIRE_LASER()),
ENDIF_COND()),

command_wait (2,

command_wait (3,

command_wait (4,
command_wait (5,

command_wait (6,

command_wait (7,
end
) ##end ACTIVITY TYPE lasr2

Fig. 5. A contrived example of SATF content with conditional branching
driven by magic comments.

goes to sleep is possible by WAITing on rover computer and
heater power states in stimuli spawned by the commands that
govern heaters and computer power state. However, proactively
checking this rule is cumbersome due to the large number
of heater zones (100+), the three types of heating modes
(low level zone control, the immediate warm-up requests, and
scheduled warm-up requests), and the at least six different
ways to cause a computer power cycle. Furthermore, it is
complicated by the fact that heaters can be scheduled to turn
on even when both computers are off [10].

It is easier to model heater activity separately from
rover computer power cycles and check heater usage against
computer power cycles at the end of a simulation run.
Now, SEQGEN can persist historical model attribute val-
ues throughout and across multiple simulation runs. Setting
PERSIST_COUNT to values greater than one for an at-
tribute will maintain just as many historical values of that
model attribute. Functions GET_ATTRIBUTE_AT_TIME and
GET_TIME_OF_ATTRIBUTE_TRANSITION allow adapters
to query the past value of a model attribute, and to query
transitions, allowing flight rules like the one above to be
checked at the end of a simulation run, instead of during
the simulation. Persisting histories across multiple SEQGEN
simulation runs allows us to check this kind of rule during
multi-sol plans, which require multiple runs.

SOFTWARE (utility,
SUBROUTINES,
pre_command (
RESULTS,
LOCAL, STRING[],matches,
matches = regex_match (CSCMDSTEM,
"HW.*", H"),
IF,LISTLEN (matches) > 0,
ESERROR="Take care with HW commands"
end,
end
)y
end)

Fig. 6. A contrived SMF that flags all commands that begin with HW with
an error.

D. Regular expression pattern matching

Previously, the SEQGEN program had limited string-
processing capability; it was not possible to compare a string
to a regular expression and look for matches. We added regular
expression pattern matching functions to SEQGEN, allowing
the MSL adapters to use succinct regular expressions to specify
a valid file path argument of data management commands,
instead of using a convoluted loop that examines file path
strings, character by character.

Regular expressions can also be used to implement flight
rules that can be triggered by hundreds of commands. For
example, lack of testing might forbid hardware commands
from ever being used during nominal operations. So, instead of
specifying each of the 100 or so fictitious hardware commands
as being forbidden during operations, one can use a regular
expression-based rule specifying all hardware commands with
" . *HW s n .

Fig.6 demonstrates one way to use regular expressions to
check flight rules. pre_command is a reserved subroutine
that SEQGEN executes right before executing the RESULTS
of each command. C$CMDSTEM is the SEQGEN symbol name
containing the name of the command being processed. When
the count of the matches of the regular expression HW. * in
CSCMDSTEM is greater than zero, the operator sees an ERROR.

E. Run-time interpretation using the evaluate built-in function

The MSL SEQGEN adaptation models many of the fifty-
two thousand FSW parameters. FSW parameters are organized
into groups, and a set of commands corresponds to each group
of parameters. Furthermore, just as there are more than 30
mechanisms that have the same kinds of tolerance parameters,
many parameter groups have many copies, for example, one
copy for each mechanism. Finally, all the parameter groups
belong in one of approximately thirty operational categories.
Operational categories with many parameters allow individual
parameters in a group to be set, without resetting the remain-
ing parameters in the group, using special parameter setting
commands. These parameter setting commands take an array
of parameter <name, value> pairs. Operators use the array
variant when the number of parameters in a group is too large
to justify resetting all of the parameter values.

FIRE_LASER(

PARAMETERS,

nshots (TYPE, UNSIGNED_DECIMAL),
end,
RESULTS,

LASER::SHOTS = LASER::SHOTS + 1,
COMPLETED, (1 + nshots = 00:00:02, 0),
end
)y

Fig. 7. A contrived command with a duration that depends on its arguments.

The MSL adaptation simulates FSW parameter-setting
commands that take an array of parameter-value pairs by
using a new run-time interpreter. Given the parameter name,
SEQGEN first looks up the name of the SMF model and
the model attribute name that is tracking that parameter in a
CVF table. Next, SEQGEN builds a string that assigns the
new parameter value to the model attribute it just looked
up. Finally, SEQGEN interprets this string and performs the
assignment using the evaluate () step. Using lookup tables
and the interpreter allows us to avoid implementing a sub-
routine that tests for 23,038 different FSW parameter names
and updates the corresponding model attribute with the given
new parameter value. Furthermore, as all SEQGEN RESULTS
are evaluated, either implicitly or explicitly with evaluate,
SEQGEN performs the same in time for both methods.

F. New modeling features improve duration estimate accuracy
for MAHLI imager

As shown in Fig.1, the duration of each command in
an adaptation is defined explicitly in one or more places.
These durations do not need to be constant; in fact, command
durations can vary depending on any number of factors, such
as the simulated state or command arguments. Fig.7 shows
a contrived FIRE_LASER command that takes an nshots
argument and uses it to dynamically compute the command’s
duration during simulation.

As a testament to how our modeling refinements improved
SEQGEN’s accuracy when simulating the duration of MAHLI
science activities, great improvement is seen after sol 70, when
FSW parameters were introduced to the MAHLI SEQGEN
model (Fig.8). Like the command arguments in Fig.7, we use
model attributes that correspond to the MAHLI FSW param-
eters to simulate command durations. On average, SEQGEN
simulates MAHLI sequence durations to within 5% of actual
run times. Accurate sequence durations are important because
the MAHLI is used during sample acquisition and processing,
complex activities that have small time margins.

III. VERSATILE GROUND CONSTRAINT CHECKS

Fig.1 shows an example of checking a flight rule in the
RESULTS section of the POWER_LASER command. Fig.3
shows an example of a flight rule in an FMREF file on the
number of LASER shots fired. Previously, these were the only
two ways to check flight rules. MSL required us to show
the root cause of flight rule violations, add new RESULTS
sections, and user-defined rules, to the FMREF file.

Cumulative average of daily average
percent difference of SEQGEN and as-run
MAHLI sequence durations

0.25
0.2
0.15
0.1
0.05

Fig. 8. MAHLI SEQGEN model accuracy [11]. The vertical axis represents
the cumulative average of the percent difference of as-run and simulated
MAHLI sequence durations. Gaps in data indicate periods of time when the
MAHLI was not used for science.

A. Constraint violations always show cause

The genealogy of a command is the chain of sequences and
command numbers that map directly to a specific instance of a
command. Previously, if a command violated a flight rule in an
FMREF file, SEQGEN only reported the time at which a flight
rule violation occurred due to the command execution. To
expedite root cause analysis, we updated SEQGEN to always
report the genealogy of the command whose execution violates
a flight rule in an FMREF file in addition to the violation text.
As the violation text is a string constant, it was not possible
until now to relate the exact genealogy to the operator. This
capability allows operators to pinpoint the source of flight
rule violations quickly and precisely, without running many
simulations with sequences removed one at a time. For exam-
ple, if the third command in the sequence listed in Fig.4 was
the 1001st laser shot fired in the example model, the FMRF
rule in Fig.3 would by violated. When the third command of
lasr00001 violates the rule in the FMREF file, the genealogy
of the violation would end in $1asr00001_3CMD. Knowing
the command number, 3, allows the operator to modify or
remove the third command, so that the flight rule is no longer
violated.

As shown above, genealogies reveal the ordinal number of
the command that spawns a sequence, so it is possible to iden-
tify a specific instance of a sequence that is executed multiple
times. On MSL, sequences that maintain the file system and
remove data products are reused. Showing the genealogy of
rule violations allows operators to identify violations in reused
sequences with the master sequence, and therefore, sol, they
occurred in.

B. Constraints can output multiple errors

Previously, when a flight rule violation is triggered, SEQ-
GEN could only output one message, and while the message
was customizable using attributes in scope, it was not possible
to build the error message incrementally using the assignment

user_rule (LASER-0002,

TRIGGERS,
check_power_cmd (
TRIGGER,
COMMAND_START, POWER_LASER,
end,
RESULTS,
IF, power_state == LASER::POWER_STATE,
ESERROR = "Laser already on!",
end,
end), end) end,
Fig. 9. A contrived user-defined flight rule that triggers of a command in

the SMF listing in Fig.1.

operator. This made it difficult to identify the names of three or
more concurrently executing sequences that violate the MSL
concurrency manager flight rules. Thus, we added support
for rule RESULTS sections to SEQGEN, allowing adapters
to iteratively build error messages and include information
about all offending concurrent sequences. These RESULTS
sections follow the same format as the RESULTS sections of
commands.

C. User-defined constraint types

Previously, flight rules were triggered based on changes in
attribute values and optionally based on duration constraints.
Also, there were only eight predefined types of rules. Adding
RESULTS sections to flight rules in FMREF files was the first
step towards implementing user-defined rules. User-defined
rules allow adapters to trigger violation messages when sim-
ulated state changes and when events including commands,
stimuli, ground events, and blocks (sequences) occur. Regular
expressions can be used to limit the scope of any trigger.
Furthermore, rules were moved from one common __ RULE
model element to individual model elements, so each rule
can now keep track of its own LAST_VIOLATION_TIME
attribute. Previously, this would result in declaring attributes
with the same name multiple times, resulting in a syntax error.
Using all the trigger types available, we confirmed that it is
possible to migrate all flight rules still present in MSL SMF
to user-defined types, finally separating spacecraft state and
behavioral logic from ancillary rule-checking state and logic.
For example, the flight rule implemented in the SMF sample in
Fig.1 that forbids turning the laser” on when it is already on,
could be implemented using a command-based trigger. Fig.9
shows an example of the user-defined rule type variant of this
rule.

IV. UPDATED EXTERNAL INTERFACES

The SEQGEN simulator, along with related Mission Plan-
ning and Sequencing tools like MPS Editor and SLINCii have
been updated to support new features mandated by MSL uplink
needs. MPSEditor is a mission planning and sequencing tool,
that also serves as the integrated development environment of
choice for SEQGEN adapters. SLINCii translates spacecraft
commands to binary op-codes. We describe some of these
updates below. Fig.10 below shows SEQGEN’s upstream and
downstream interfaces.

%\ Acquire, Process,
Radiate Cmd/Seq DSN DSN tore, Distribute . 1)) o

{l t d
to MSL (Direct or via Cmd elemetry an

adiometric Data
Rela
RTO/DACS

Sequence grg (SLINCu SCMFGEN)

Translation

MPCS Raw Data Product Gen,
Channel Process, Report Gen
RTO/MDAS

Valldatlon

SEQGEN
Monitor and Analyze S/C
Plan Safety, Health, and
RSVP/ Checking Performance - Archive

MIPL
MSLICE EXpaZ Loforan 9 EngEAS
Sequenc Science
Edmng MSLICE Tactica)

Activity Image SOAS

SOAS IPE/APSS Pla""'" Proces Monitor and Analyze Inst
Create Sequences, RTO/OPGS
Transfer Scripts, Tables

Safety, Health, and
Performance - Archive sci
Deliver Resource Profile
Sci/SOAS M MEAL
Eng/EAS

Sci/SOAS

Fig. 10. MSL GDS UL/DL Context Diagram [12].

A. Relatively-timed commands in SSF

SEQGEN produces a Spacecraft Sequence File (SSF) as
a result of simulation runs. SSF files are the verified product
passed downstream through the uplink pipeline [13]. Prior to
MER, all commands in an SSF had to be time-tagged with
an absolute time. However, tagging commands with absolute
times is not compatible with event driven sequencing. The
SSF standard, SEQGEN, and SLINCii were updated to accept
relative command timings.

B. Generating SSF files for SATF blocks

Previously, at least one command with an absolute time
tag (a real-time request) in an SASF file (Spacecraft Activity
Sequence File) was necessary to produce an SSF with useful
content. As MSL master sequences call each other, it is
possible that a sol’s command load will not require real-
time commanding, so the ability to generate valid SSF only
from SATF files was necessary. SEQGEN now generates, and
SLINCii correctly interprets SSF files from SATF files, even
without a SASF request.

When an MSLICE user compiles a sequence project,
the MSEQ (MSLICE Sequencing) Server returns SSF files
that correspond to the sequence content of the RML files
included in the request that only contain sequences and no
immediate commands (SASF requests). The REST compilation
call contains serialized RML sequence data, and the MSEQ
Server converts this RML to SATF and SASF with MPS Editor
libraries. Then, MSEQ Server will run the SATF and SASF
through SEQGEN with simulation turned off using a bare-
bones model, generating an SSF [14]. MPSEditor components
can automatically creates a bare-bones SEQGEN adaptation
with no attributes and no RESULTS, from the current MSL
command dictionary.

C. durations.xml Rover Sequencing and Visualization Program
(RSVP) interface

MPS provides a standard user-defined function library to
supplement SEQGEN functionality that missions customize,
adding the functions needed. We started including XML

parsers in the standard user-defined library. The MSL SEQ-
GEN adaptation has no geometry knowledge, so the duration
of mobility and manipulation commands in Rover Planner (RP)
sequences is simulated by RSVP. However, to correctly capture
flight rule violations present in RP sequences, SEQGEN needs
to be told how long each of the commands in those sequences
takes. RSVP creates multiple durations.xml files, which are
combined and then read and associated with each RSVP com-
mand with XML parsing functions in MSL’s mission-specific
user-defined function library. As RSVP does not invoke the
MSL SEQGEN adaptation with a set of initial conditions for
simulation, RSVP is unable to provide the full genealogy for
each command in RP sequences in durations.xml. Instead,
RSVP provides a reduced genealogy for each command in
its sequences.

Genealogies do not contain actual command names; rather,
they contain the names of sequences and individual com-
mand numbers. On the handover from one sol to the next,
SEQGEN chops off everything in the genealogy up until
and including yestersol’s master sequence, so that SEQ-
GEN genealogies and RSVP genealogies match. For exam-
ple, if tosol is Sol 100, the genealogy of the first com-
mand in tosol’s master sequence may be represented as
Smars00099_XXCMDSmars00100_1CMD, wherein XX is
the number of the command that caused the handover to
mars00100. Because there is only one master sequence
per sol, identifying commands with reduced genealogies like
Smars00100_YYCMD still allows RSVP to match durations
to the right commands. While the example above is not an
actual genealogy used by MSL, it captures the essence of the
genealogy structure used by MSL.

D. XMLRPC server-mode modeling

In addition to processing simulation runs in batch mode,
SEQGEN simulation can also be performed interactively in
server mode [14]. RSVP invoked SEQGEN interactively on
MER [4] using the Data Transfer Mechanism (DTM) interface,
but on MSL, RSVP uses SEQGEN in batch mode only. We
added a new interface to the server mode to recent versions
of SEQGEN that allows simulation requests to be performed
over the wire using XMLRPC requests. These requests are
processed in different threads of the same core process, but do
not interact with each other as they are run inside independent
simulations, so the concurrent simulations are not plagued
by causality errors in typical PDES systems [15]. Running
SEQGEN in XMLRPC mode does not significantly affect the
runtime bottom line: in both cases, SEQGEN is able to process
four hundred commands per second (Fig.11).

Even though different simulation instances on the same
server process are not subject to such errors, it is possible
for mission-specific model faults to emerge as MSL allows
16 threads of parallel execution at most (MER allowed 14).
We use semaphores (not just locks) and aggressive runtime
assertions during sol-to-sol master handover to ensure the
consistency of our sequence engine simulation and activity
constraint manager violation checks. The activity constraint
manager is a component of MSL FSW that prevents the rover
from being counterproductive. For example, the constraint
manager may prevent sample processing during drives, thus
preventing vibration from distorting sample processing results.

Batch vs. XMLRPC performance

10000

Td

1000 7
= y =0.0025x + 0.4357
2 7
3 7
Q
< 100 id
o
£
=
c
2

7
7]
10
.
@l = y =0.0025x - 0.0747
[m} ~R]
1 10 100 1000 10000 100000 1000000

dq Joled

Fig. 11. SEQGEN runtime performance as a function of command load.
Batch results appear in blue and XMLRPC results appear in red.

Recent versions of MPSEditor [16] include a simple se-
quencing perspective that builds on existing MSEQ Eclipse
RCP functionality and additionally allows simulation to be
performed on any SEQGEN process running in XMLRPC
server mode, including local processes. Thus, the combination
of SEQGEN run in XMLRPC mode and MPSEditor allows
ad-hoc modeling and sequencing to be performed locally.

V. FUTURE WORK

Running SEQGEN locally may represent a large time
savings, as approximately half the time it takes to model
sequences in an RML file in MSLICE is spent sending the
sequences to and retrieving the SEQGEN-simulated results
from the MSEQ server [13].

Currently, MSLICE is exploring the use of Sequence
Revitalization (SEQR) [17] activity timelines to persist and
version activity plans. SEQGEN now affords the ability to read
and write SEQR timelines through a command line option.
These activity plans could be used by the MSL SEQGEN
adaptation to implement more thorough ground constraint
checks. Furthermore, work is underway to store the final
spacecraft and ground states of a SEQGEN simulation run
in SEQR state timelines, in addition to storing them in an
output file. These final states could be corrected by a Timeline
Component System (TCS) component that reads the latest
available telemetry data from AMPCS.

ACKNOWLEDGMENT

The work described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. 2013 California Institute of Technology. Gov-
ernment sponsorship acknowledged.

[1]

[5]

[6]

[7]

[10]

(11]
[12]
[13]

[14]

[15]

[16]

(17]

REFERENCES

G. Reeves and J. Snyder, “An overview of the mars exploration
rovers’ flight software,” in Systems, Man and Cybernetics, 2005 IEEE
International Conference on, vol. 1, 2005, pp. 1-7 Vol. 1.

A. Murray, M. Schoppers, and S. Scandore, “A reusable architectural
pattern for auto-generated payload management flight software,” in
Aerospace conference, 2009 IEEE, 2009, pp. 1-11.

B. Streiffert and T. O’Reilly, The Evolution of Seqgen - A Spacecraft
Sequence Simulator. American Institute of Aeronautics and Astronau-
tics, 2013/06/14 2008.

K.-M. Cheung, A. Ko, D. Page, J. Bixler, and S. Lever, “Design and
architecture of planning and sequence system for mars exploration rover
(mer) operations,” in AIAA SpaceOps Conference, Montreal, Canada,
2004.

L. Needels, Multi-Mission Sequencing Software. ~American Institute
of Aeronautics and Astronautics, 2013/06/14 2002.

B. Streiffert and T. O’Reilly, Sequence System Building Blocks: Using a
Component Architecture for Sequencing Software. American Institute
of Aeronautics and Astronautics, 2013/06/14 2006.

T. W. Starbird, J. R. Morris, K. S. Shams, and M. W. Maimone,
“Rapid diagnostics of onboard sequences,” Jet Propulsion Laboratory /
California Institute of Technology, Pasadena, CA, United States, NASA
Tech Brief, December 2012.

C. Grasso, “The fully programmable spacecraft: procedural sequencing
for jpl deep space missions using vml (virtual machine language),” in
Aerospace Conference Proceedings, 2002. IEEE, vol. 1, 2002, pp. 1-
75-1-81 vol.1.

A. Mishkin, D. Limonadi, S. Laubach, and D. Bass, “Working the
martian night shift - the mer surface operations process,” Robotics
Automation Magazine, IEEE, vol. 13, no. 2, pp. 46-53, 2006.

K. Novak, Y. Liu, C.-J. Lee, and S. Hendricks, Mars Science Laboratory
Rover Actuator Thermal Design. American Institute of Aeronautics
and Astronautics, 2013/06/14 2010.

Msl reports / getseqtree script output for sols 10-250.

A. A. et al., “Mars science laboratory mission system mos & gds mbse
effort,” February 2011, internal Presentation.

T. Crockett, K. Shams, and J. Morris, “Telerobotics as programming,”
in Aerospace Conference, 2011 IEEE, 2011, pp. 1-7.

J. Salcedo and T. Starbird, “Seq_gen: A comprehensive multimission
sequencing system,” Jet Propulsion Laboratory / California Institute of
Technology, Tech. Rep., April 1994.

R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM,
vol. 33, no. 10, pp. 30-53, Oct. 1990.

B. Streiffert and T. O’Reilly, MPS Editor - An Integrated Sequencing
Environment. American Institute of Aeronautics and Astronautics,
2013/06/14 2010.

S. Chung, Timeline-based Mission Operations Architecture. American
Institute of Aeronautics and Astronautics, 2013/06/14 2012. [Online].
Available: http://dx.doi.org/10.2514/6.2012-1269750

