AAS 13-815

DESIGN OF QUASI-TERMINATOR ORBITS NEAR PRIMITIVE
BODIES

Gregory Lantoine, Stephen B. Broschart, and Daniel J. Grebow *

Quasi-terminator orbits are a class of quasi-periodic orbits around a primitive
body that exist in the vicinity of the well-known terminator orbits. The inherent
stability of quasi-terminator trajectories and their wide variety of viewing geome-
tries make them a very compelling option for primitive body mapping missions. In
this paper, we discuss orbit design methodologies for selection of an appropriate
quasi-terminator orbit that would meet the needs of a specif ¢ mission. Conver-
gence of these orbits in an eccentric, higher-f delity model is also discussed with
an example case at Bennu, the target of the upcoming NASA’s OSIRIS-REx mis-
sion.

INTRODUCTION

A lot of missions aimed at the characterization of small primitive bodies (i.e., comets, asteroids,
and small planetary moons) are currently in fight and under development. Prominent examples are
ESA’s Rosetta and MarcoPolo-R, JAXA’s Hayabusa-2, and NASA’s OSIRIS-REx. These primitive
body missions must typically include some sort of global mapping campaign where visible spectrum
imaging is used to build up image collections and global shape models. For these applications, it
is necessary to collect data from directions that encompass the whole body. In particular, for good
global imaging and shape model we need images of the complete lit side of the object from a variety
of angles and orientations.

The standard technique to perform mapping is to rely on station keeping, such as controlled
polar orbits or vertical hovering (where the spacecraft stays along the line joining the Sun and the
body through frequent instantaneous maneuvers) [1]. For example, OSIRIS-REx is expected to
quasi-hover around 1999 RQ36 for one month [2]. Likewise, MarcoPolo-R should perform station
keeping for one month to stay on a far station location close to the Sun-asteroid line [3]. However,
these strategies require maneuvers to maintain the spacecraft on a suitable orbit, which therefore
introduces additional constraints, such as intensive operator interventions, limited mission lifetime,
and reduced accuracy of the estimate of the asteroid physical parameters.

It is therefore crucial to look for stable solutions that would provide extensive coverage without
the need of controlling the spacecraft. Finding such desirable stable orbits is a challenge because
the dynamical environment near small bodies is highly perturbed by solar pressure and gravitational
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forces from the asteroid and the Sun. Even the well-known stable retrograde equatorial orbits can-
not exist in this environment [4]. The design methodology of mapping orbits therefore requires a
paradigm shift by taking advantage of the highly nonlinear dynamics near a primitive body instead
of minimizing their effects.

Recently, a new class of stable, quasi-periodic orbits has been discovered in the solar pressure
perturbed Hill model around a primitive body [5, 6]. These trajectories are called ‘quasi-terminator’
orbits because they are part of quasi-periodic tori around the well-known periodic terminator orbits
that exist in that environment. Many of these quasi-periodic orbits offer a range of sun-lighted sur-
face viewing geometries while presenting long-term stability and robustness characteristics. Con-
trary to quasi-hovering strategies, these orbits are therefore ballistic and do not nominally require
active control.

This paper therefore describes a design methodology for generating quasi-terminator orbits that
could support mapping campaigns of primitive bodies. First, the paper develops the background
necessary to explain what a quasi-terminator orbit is and how it works. Then, the design space is
explored and useful plots are provided to enable mission analysts to quickly select an appropriate
quasi-terminator orbit that would meet the mapping campaign needs of a specif ¢ mission. Finally,
a continuation approach, relying on a multiple shooting differential correction algorithm, is used
to transition ideal quasi-terminator orbits to a higher-f delity dynamical model. The converged
solutions are shown to retain good design characteristics. Throughout the paper, we will illustrate
the techniques developed on a case study at asteroid 1999 RQ36 (recently renamed Bennu), the
target of the upcoming NASA’s OSIRIS-REx mission.

BACKGROUND
Equations of Motion

The dynamics of a spacecraft in close proximity to most primitive bodies are primarily driven by
the solar radiation pressure and the gravitational attraction of the Sun and primitive body (i.e., the
primaries). Let r = [x,y,z] and v = [x, y, 2] represent the normalized spacecraft position and velocity
vectors, respectively, and their coordinates with respect to a rotating frame centered on the primitive
body. This frame is defned such that the X direction points from the Sun to the primitive body,
the Z direction is aligned with the angular velocity of the primaries, and the y direction completes
the right-handed triad. Then the Augmented Normalized Hill Three-Body Problem (ANH3BP)
describes the spacecraft motion near a point-mass primitive body under the infuence of SRP and
solar tide in this coordinate frame (asssuming the primitive body is on an heliocentric circular orbit).
The equations of motion (adapted from [7]) can be written:

X=2y+3x—x/||r|>+
j=-2x—y/||r|]? (1)

i=—z—z/|Ir|P,

Only one parameter, 3, appears in these equations. This parameter is the nondimensional accelera-
tion due to SRP (assuming a spherical spacecraft) and is computed using Eq. 2:



where G is the solar fux constant (= 1 x 10'% (kgkm)/s?), (m/A) is the effective mass-to-projected
area ratio for the spacecraft, R is the constant distance between the Sun and the primitive body,
N = \/Usun/R3 is the mean motion of the primary orbits, Upp 1s the gravitational parameter of the
primitive body, and s, is the gravitational parameter of the Sun (1.327 x 10'! km3/s?). Moreover,
the ANH3BP is time invariant and admits an integral of the motion, the well-known Jacobi constant:

1 3 1
C= S IMP = 1/llrll = 57 + 52~ Bx, G)

Note that for the normalization, the unit length is (1,5/ ,uSu,,)l/ 3R and the unit time is 1/N.

Terminator orbits

Terminator orbits are a well-known class of orbits that exhibits stable behavior when solar ra-
diation pressure is a signif cant contributor to the orbit dynamics [8, 7, 9, 10, 4, 11, 12, 13]. The
terminator orbits are oriented such that the asteroid-sun line is perpendicular to the orbit plane. The
orbit center is also slightly offset away from the Sun from the primitive body center. As f3 increases
from zero, the terminator orbits move from being highly eccentric (as in the circular-restricted three-
body problem (CR3BP) [14]) to nearly circular [8].

Unfortunately, the terminator orbit geometry only allows for poor visibility of the lit side of
the object. Terminator orbits are therefore undesirable for shape modeling and surface properties

mapping
Quasi-Terminator orbits (QTOs) and Resonant Terminator orbits (RTOs)

Quasi-terminator orbits are a class of quasi-periodic orbits about small bodies that offers a much
wider range of Sun-relative geometries [5, 6]. These orbits originate from the two center manifolds
around the periodic terminator orbits, and evolve on an invariant torus described by two frequencies.
In fact, it has been demonstrated that the monodromy matrix of the terminator orbits have two pairs
of unit-magnitude, complex conjugate eigenvalues, which in a linear sense implies the existence of
nearby quasi-periodic motion [15, 16, 17].

Quasi-terminators orbits do not exclusively lie in the terminator plane, and their geometry can
allow for low nadir pointing phase angle, with various ranges from the illuminated surface. In
addition, these orbits are stable and do not nominally require any station-keeping maneuvers. Thus,
quasi-terminator orbits are attractive for global mapping campaigns at primitive bodies.

The trajectories on the two sets of invariant tori are geometrically distinct. The Sun-side quasi-
terminator orbits extend away from the terminator plane toward the sunlit side. These orbits are
therefore attractive for global mapping campaigns at primitive bodies. On the other hand, the dark-
side quasi-terminator orbits extend away from the terminator plane toward the shadowed-side of
the primitive body. These orbits have close encounters over the lit side, so they are favorable in a
reconnaissance phase to select a potential landing or sampling site. Other applications could also
involve inferring the gravity feld, internal structure and composition of the body through global
radar measurements.

A special class of quasi-terminator orbits is also particularly interesting for mission design: the
so-called resonant terminator orbits (RTOs) are special resonant, periodic cases of quasi-periodic
motion, where the two frequencies of motion on the invariant torus are commensurate. Geometri-
cally, an m:n RTO makes m revolutions around the body before closing on itself, and m/n is the
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Figure 1: Poincaré section (y = 0, y > 0) of Sun-side QTOs for § = 25 and C = —6.8. The spatial
plots and Poincaré crossings for several RTOs are also shown. The last computed Sun-side torus of
the family is also plotted in spatial coordinates.

frequency ratio of the RTO. In this paper, the characteristics of quasi-terminator orbits will be ap-
proximated by those of nearby RTOs since: 1) they are faster to compute than QTOs across a broad
design space because they are found by simply following period-multiplying bifurcations with the
terminator orbit family [12]; and 2) they are easier to characterize since they are periodic. Since
RTOs are regularly embedded in the quasi-terminator orbits, we believe that no signif cant informa-
tion is lost with that strategy.

For conciseness, we will focus only on the design of Sun-side RTOs for mapping campaigns.
Typical examples of Sun-side families of QTOs and RTOs near the terminator orbits are shown in
Figures 1 using a Poincaré section at z = 0 when z < 0 with a fxed Jacobi constant C. The blue
curves in these plots represent the 1-D intersection of the 2-D invariant torus of the QTOs with
the Poincaré section. Motion that begins on one blue curve (i.e., on a particular torus) has all its
subsequent intersections with the Poincaré section on that same curve. Each plot shows a variety
of quasi-terminator and RTO solutions at the chosen energy level (C = —6.8), as well as nearby
stable/unstable manifold structures.

CHOOSING A QUASI-TERMINATOR ORBIT

Previous work [6, 5] describes the characteristics of quasi-terminator orbits/RTOs and how to f nd
them. This section focuses on how to choose a QTO/RTO for a global mapping scenario, presents
charts to simplify the process of f nding an initial state, and presents an example mapping orbit case
consistent with the OSIRIS-REx mission.

Parameterization of Quasi-terminator Orbits

Since the normalized equations of motion (Egs. 1) have only a single parameter 3, the complete
conf guration space is 7-dimensional. Specif cally, there are 6 Cartesian states (R®) and one posi-
tive real parameter 3. In the region of stable quasi-periodic motion that exists near the terminator



and quasi-terminator orbit solutions, this space is flled with 3-frequency invariant tori. This pa-
per is concerned with “quasi-terminator” motion, which evolves on a 2-frequency invariant torus
[6, 5], and RTOs, which are a degenerate case of quasi-terminator motion where the two phase
angles describing the location on the torus (v; and v;) are not independent. Table 1 presents the
dimensionality of various orbit spaces of interest, as well as sample parameterizations of the space.

Table 1: Dimensionality of Orbit Solution Spaces

# of independent parameters Example parameterization

Conf guration space 7 X,V Z,% 0,2 B
Stable region 7 C, f1, f2, V1, V2, V3, BB
Terminator orbits 3 C,v,pB
Resonant terminator orbits 4 C f,v,B
Sun-/Dark-side quasi-terminator orbits 5 C, f,vi, V2, B

Selecting a Quasi-terminator Orbit

For a fxed value of 3, the remaining independent parameters that describe states on a quasi-
terminator orbit consist of two geometric parameters def ning the 2-D torus shape and two phase
parameters that defne the location on that torus. This understanding is useful when selecting a
quasi-terminator orbit. Most importantly, it can be understood that two geometry parameters can be
selected independently, but any other geometric properties of the orbits will be determined by those
choices. For example, a designer choosing a global mapping orbit could specify the periapsis radius
and the minimum Sun-body-S/C angle achieved by an orbit, but the maximum orbit radius would
be determined by those choices. Any two geometry parameters could be specifed, so in another
example the designer may choose an orbit period and a torus frequency ratio for an RTO and the
minimum ¢ and radius would be determined by those choices. The two phase parameters can be
specif ed in a number of ways. One way is to specify Cartesian coordinates directly (so long as they
are on the corresponding 2-D torus). An example used here is to specify y = 0 and x = 0.

In [6, 5], we presented plots of various geometric characteristics of quasi-terminator orbits as
a function of 3, as well as unit length and time parameters for some realistic mission scenarios.
Speaking roughly, it can be concluded from that data that quasi-terminator orbits are best for map-
ping applications for f values between 10 and 200. Figures 2 and 3 show the properties of quasi-
terminator orbits at 3 values in this range in detail. These plots can be used to assess the rough
geometric characteristics of a particular quasi-terminator orbit design. We’ve assumed y = 0 and
X = 0 here to set the phase angles, leaving a 3-D solution space. For f values between these 2-D
slices shown, interpolation should yield a reasonable approximation of the orbit properties.

Getting initial conditions

Ideally, initial conditions from QTOs are derived from a database of numerically-generated peri-
odic orbits and tori following the methods previously presented [6, 5]. However, for initial analysis
and consideration of these orbits, creating such a database may require a prohibitive investment of
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Figure 2: Important QTO/RTO properties for mapping orbit design at § = 10, 30.

0.14p 017
0.09+
0.12}
0.08F
0.1r 0.07-
= 0.08F = 0.06f
-} E-N
= = 0.05F
E E
£ 0.061 & 004l
0.04 0.03F
0.02-
0.02
0.01-
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
20 40 60 80 100 20 40 60 80 100
min(¢) (deg) min(¢) (deg)
(a) (b)
0147 017
J— B=10 J— =30
TO 0.00l TO
012} | ——3:188 ——3:18S
——4:18S 0.08F | ——4:18S
o1l —5:18S ——5:1SS
: 6:1SS 0.07r 6:1SS
7:18S 7:18S
=008 | ——81S8S = 0081 | ___g1ss
= = 0.05-
E E
£ 0.061 E 004l
0.04| 0.03r
0.02F
0.02
0.01+
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘
0 0.05 0.1 0.15 0.2 0.25 0 0.05 A 0.15
max(|[r[]) max(|[r[[)
(© (d)
0.14r 017
p=10 J— £ =30
0.09+ To
012+ —3:1SS
0.08F | ——4:18S :
——5:18S
017 0.07f 6:1SS
7:18S
= 0.08¢ =008 g4ss
N N
= = 0.05F :
E E
& 0.06r £ 0.04f ‘
0.04+ 0.03F
0.02F
0.02F
0.01+
0 ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0.15 0.2 0.25 0.06 0.07 0.08 0.09 0.1

0.11



min(||r||)

0.035
0.03
0.025
= =
= = 0.02
= g
g g
0.015
0.01
0.005
0 i i i i 0 i i i i
20 40 60 80 100 20 40 60 80 100
min(¢) (deg) min(¢) (deg)
(a) (b)
0.061 0.04r
0.035F
0.05F
0.03F
0.04F
0.025F
=
= 0.03F 0.02F
E
E
0.015
0.02F
0.01F
0.01F
0.005F
0 0 i i i ; i i
0 0 0.01 0.02 0.03 0.04 0.05 0.06
max(|[r]]) max(|[r[])
(©) (d)
0.06 0.04r
To $ =100 p =200

min((||r[])

—3:18S 0.035
0.05}
0.03f
0.04F :
: 0.025
0.03f 0.02f
: —7T0
0.015 ——3:188
0.02 ——4:188
0.01F ——5:1SS
001l 6:1SS
0.005 7:18S
——8:1SS

0 ; i ; ; 0 ;
0.025 0.03 0.035 0.04 0.045 0.015 0.02 0.025 0.03
Period ratio (SC orbit / PB orbit) Period ratio (SC orbit / PB orbit)

(e) 6]

Figure 3: Important QTO/RTO properties for mapping orbit design at 3 = 100, 200.



effort. An alternative approach is to read normalized Cartesian coordinates off of a f gure. Similar to
above, the space of solutions is reduced to 3-D by f xing the phase angles for the state. Figures 4 and
5 proceed in a similar manner to the previous f gures, presenting slices of the 3-D solution space.
Here, the Cartesian initial state parameters are plotted as function of the geometric parameters of
minimum orbit radius, minimum ¢, and torus frequency ratio /" (where the last two parameters are
dependent). Approximate initial states from this plot can be dimensionalized using the appropriate
length and time scales and propagated. Given the stability of these orbits, the propagated trajectory,
which is most likely on a nearby 3-D torus, is probably good enough for most analysis purposes.
The coordinates can also be tweaked iteratively toward the desired properties.

Example for OSIRIS-REx mapping orbit design

Table 2: Physical characteristics of Bennu

Upp  4.057184e — 009 km? /s

J 0.0127017
b 250 m
R 1.126 AU
e 0.2

Throughout this paper, an example is presented for design of a quasi-terminator mapping orbit for
the OSIRIS-REx spacecraft at the asteroid Bennu. Table 2 gives the main physical characteristics of
Bennu and its orbit. The OSIRIS-REx spacecraft at Bennu has a 8 of about 30, given its estimated
encounter mass of 1347 kg, a projected surface area of 14 m?, and an average total ref ectivity of
0.2 [18]. For this mapping orbit example, the following characteristics are desired.

e Achieves full range of geometry in 2 months or less
e Periapsis radius greater than 0.6 km
e Apoapsis radius at roughly 5 km

e Minimum Sun-body-S/C angle less than 50 deg

Figure 2 shows the characteristics of various RTOs at 3 = 30. Since only two geometric parameters
can be specif ed explictly, it is possible that all of the desired orbit characteristics cannot be met,
and quasi-terminator orbits may not be the right choice. For the OSIRIS-REx example however, the
desired mapping orbit characteristics can be met by an RTO with f between 5 and 7.

The following analysis will utilize an 6:1 Sun-side RTO with a minimum ¢ of 45 deg and a period
of about two months. Figure 6(a) shows a spatial plot of this periodic orbit and Figure 6(b) indicates
the quality of the mapping orbit by showing the groundtrack and altitude of the orbit relative to the
Sun direction. These plots assume the dynamics of the ANH3BP, which have several key limitations
to be discussed in the next section.
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Figure 6: 6:1 RTO example mapping orbit in the ANH3BP consistent with the upcoming OSIRIS-REx
mission parameters. (a) Spatial plot. (b) Groundtrack and altitude relative to the Sun.

TRANSITION TO HIGHER-FIDELITY MODEL

In the previous section, RTO families have been shown to offer a desirable variety of viewing
geometry for primitive body missions while exhibiting linear stability in the ANH3BP. However,
the real dynamical environment near a small body generally deviates signif cantly from the ideal
ANH3BP model due to the eccentricity of body’s heliocentric orbit, its irregular and rotating grav-
ity feld and the SRP variations due to spacecraft attitude changes. In fact, primitive bodies have
generally signif cant J, and orbital eccentricities (=~ 0.2 is common [19]). Because of these strong
perturbations it is crucial to transition the ideal orbits found in the previous section to a higher-
f delity model while retaining the advantageous viewing properties. The characteristics of the con-
verged solutions will ultimately dictate if f yable trajectory options exist near the selected RTOs.

Handling irregular gravity f eld perturbations

This section is focusing on the effect of orbital eccentricity only. In fact, gravity feld perturba-
tions can be simply handled by enforcing a minimum radius distance from the body. If the periapsis
of the orbit is too low, interactions with the irregular small-body gravity are likely to destabilize the
spacecraft motion. According to Scheeres [8], the solar radiation pressure forces are k-times greater
than the forces from the small-body shape effects when the following radius constraint is satisf ed*:

23 4y
vz (i) (3) e @

where 7, is the average radius of the primitive body. Assuming Bennu data (see Table 2) and
B = 30, we fnd the effects of SRP and the irregular gravity feld forces are of same magnitude
when 7, > 7,1 = 510 m = 0.01 LU. Likewise, the strength of the solar radiation pressure is 10
times larger than the asteroid shape effects when r, > r, 10 = 910 m = 0.0175 LU. Orbits with
periapsis above 7,1 (at least) must be chosen to avoid destabilization effects.

“This result is found by combining Eq. 12, Eq. 75 and Eq. 76 in [8] with our def nition of  in Eq. 2
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Eccentric Augmented Normalized Hill Three-Body Problem (EANH3BP)

Although the ANH3BP model (described in the background section) has proven fruitful for un-
derstanding and selecting RTO orbits, it possesses an inherent approximation, assuming that the
small-body orbit is circular. However, the motion of primitive bodies in the solar system is better
approximated by elliptic orbits. In particular, this is clearly the case for Bennu with a 0.2 eccentric-
ity. In this section, we therefore introduce a more realistic model by accounting for the eccentricity
e of the small-body orbit around the Sun. The Elliptic Augmented Normalized Hill Three-Body
Problem (EANH3BP) extends the ANH3BP by assuming that the small body revolves around the
distant perturbing body (the Sun) in an elliptic Keplerian orbit rather than a circular one. This new
model is therefore more accurate than the ANH3BP and includes time-varying perturbations of the
solar pressure and gravity arising from the variation in distance from the Sun. It follows that this
model is non-autonomous and does not possess a constant integral of motion (although it is approx-
imately when averaged appropriately [7]). The EANH3BP equation of motion, derived in [7], can
be written in the simple following form:

)‘5:2)}—1-(14—ec0sv)71 (3X—x/|‘r||3‘|’ﬁ)
j=-—2i+(1 +ecosv)_1 (—y/Hr’P) )
F=—z+(1 +ecosv)71 (—Z/Hl'||3) ,

where e is the eccentricity of the elliptic motion of the small body around the Sun, and v is the
true anomaly of the small-body orbit. These equations of motion are given in the same three-body
coordinate frame as the ANH3BP (see Eq. 1), but the true anomaly of the small body is used as
the independent variable instead of time. This formulation is elegant because the equations contain
only two parameters, the eccentricity of the small-body orbit e and the normalized effect of the SRP
force B. Note that for e = 0 in Eq. 5, we can recover the ANH3BP equations of motion (Eq. 1),
i.e. the ANH3BP is a particular case of the EANH3BP. It follows that solutions of the ANH3BP are
also solutions of the EANH3BP when the eccentricity vanishes.

Despite being more realistic, the EANH3BP has not been extensively studied in the literature
(see [7] for one of the few studies). The remaining of this paper will discuss the main effects of the
eccentric perturbation on the ideal RTO orbits and we will use various techniques to transition them
in the EANH3BP.

RTO sensitivities to eccentricity

First, in Figure 7, we investigate the behavior of the ideal RTO orbits as the asteroid orbital
eccentricity is increased. Note that the states of the ideal RTOs are used directly (at the semilatus
rectum in the asteroid orbit, i.e. v = m/2) without any differential correction. Even though the RTOs
are linearly stable, we can see that they are fairly sensitive with respect to eccentricity perturbations.
Many escaping trajectories are found on the periodic orbit initial conditions from the ANH3BP. In
these cases, the perturbations included in the EANH3BP are signif cant enough to destroy the stable
characteristic of these orbits. The RTO families that are destabilized the most by eccentricity are the
low-order resonant families. In fact, most of these orbits are too elongated toward the Sun, and the
increase in solar radiation pressure at perihelion (induced by the eccentric orbit) can therefore cause
escape. It follows that we need a robust approach to f nd the perturbed RTO orbits in the EANH3BP.
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Eccentric RTO tori

The perturbation caused by the small-body orbital eccentricity is periodic with period 27, as
shown in the right hand side of the equations of motion of Eq. 5 (the true anomaly appears only
in cosine functions). Consequently, due to this true anomaly dependency, RTO orbits are no longer
periodic (unless the period of a RTO orbit is commensurate with 27). However, since RTO orbits
are linearly stable, the eccentric perturbation does not grow after each orbit (to a linear approxima-
tion). For small eccentricity at least, it follows that the ideal RTO periodic orbits are replaced with
perturbed, quasi-periodic orbits evolving on a 2-D invariant torus parameterized by two incommen-
surate frequencies: the perturbing frequency 1/(27), and a frequency coming from the period of
the original periodic orbit of the case e = 0.

One way to transition a RTO orbit in the EANH3BP model is therefore to compute explicitly
these quasi-periodic invariant tori. A similar idea was successfully implemented for transitioning
Halo orbits in the eccentric, restricted three-body problem [16]. In that context, a stroboscopic map
Fr(X) is introduced, where a given initial condition X is propagated through the fow F of the
EANH3BP for a time 7. A fxed point of F 1 corresponds to a 7-periodic orbit (for instance, a RTO
orbit for e = 0). In the same way, a quasi-periodic orbit (with two basic frequencies corresponding
to the small body and RTO periods) corresponds to an invariant curve under the map F'7 that can be
parameterized by the true anomaly v. The main invariance constraint is:

Fr(X(v))-X(v+p)=0, (6)

which must hold for all v. Here T is the period of the RTO orbit and p denotes the rotation number
of the curve, i.e. the rotation of the states on the curve after winding once around the torus. The
rotation number can be expressed with the ratio of the two frequencies of the torus, and is therefore
known:

T
p_2nE_T (7
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The invariant curve is computed here by adapting the continuation method developed by Gomez
and Mondelo [15] to the eccentric problem, where the invariant curve is discretized over the domain
of true anomaly angles and represented via truncated Fourier series. Implementation details of the
Goémez and Mondelo procedure can be found in [15].

We applied this method to compute, for increasing eccentricities, quasi-periodic invariant tori
of a 8:1 RTO. Unfortunately, tori could be only found for e < 0.007, which is far from the 0.2
eccentricity of Bennu. The resulting set of quasi-periodic tori are displayed on the Poincare section
{y =0, y <0} in Figure 8(b). There are eight fxed points, corresponding to the intersections of
the 8:1 RTO periodic orbit. These points are surrounded by elongated curves representing the
intersections of the different quasi-periodic tori. In addition, in Figure 8(a), we draw the torus
member corresponding maximum eccentricity e = 0.05.
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Figure 8: (a) Quasi-periodic torus in EANH3BP for e = 0.007. (b) Poincare section of the quasi-periodic
torus.

-0.

The computed quasi-periodic orbits are confned to a two-dimensional torus as the dynamics of
these orbits can be summarized as the composition of two motions: the motion along the periodic
RTO orbit and a 27-periodic motion given by the orbital eccentricity. In reality, there exists a more
general quasi-periodic motion evolving on a 3-D torus described by three frequencies, where the
third frequency originates from the sun-side unit-magnitude eigenvalue pair of terminator orbits [5]
and is incommensurate with the frequency of the orbit. These tori defne a 3-D region of phase
space and are therefore likely to be more robust to eccentricity perturbations. This full motion was
not explored here because the method used in this subsection can only compute 2-D tori described
by only two frequencies. It follows that the tori displayed in f' g. x are a subset of the broader space
of quasi-periodic motion near the 6:1 RTO orbit, which may explain why the method was successful
for small eccentricities only.

Differential correction and continuation

Differential correction is another method to transition RTO orbits in a higher fdelity model.
There exists a wealth of algorithms in the literature. In this section, we propose a multiple-shooting
method coupled with a continuation method to smoothly deform a solution from the ANH3BP
into the EANH3BP. A similar method was implemented in [20, 21] for obtaining solutions in
higher-f delity models. At each continuation step, the states are computed through the following
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parameterization:
X(A) = (1 —A)Xann3Bp + AXEANH3BP (8)

where 0 < A < 1, Xanu3gp are the states given by the ideal ANH3BP model and Xgannsgp are
the states of the perturbed EANH3BP model. Starting at A = 0, successive multiple shooting sub-
problems are solved by slowly increasing the parameter A and enforcing continuity constraints
between the multiple shooting segments. When A = 1, the last sub-problem solved corresponds to
the desired state values X(A = 1) = Xgann3sp. We emphasize that any higher-f delity model can be
considered with this method. In our opinion, this approach is easy to implement and should be quite
robust: 1) as opposed to directly switching on the perturbations, a smooth continuation approach
is less likely to cause convergence issues; 2) the multiple shooting technique reduces the inherent
sensitivity of the problem by splitting the trajectory into multiple segments.

One major challenge of the differential correction method is that it does not preserve the theo-
retical invariant features and uniqueness of the tori computed in the previous section. In fact, there
are no constraints to the end points and therefore the differential corrector problem is not uniquely
defned. Instead, in this more practical approach, it is suff cient to converge on a nearby orbit with
similar shape and viewing geometries as the original RTO orbit. To enforce greater control over the
shape of the trajectory, we therefore apply constraints on the nadir angle and periapsis radius at the
intermediate multiple-shooting patch points.

This method is applied to the 6:1 RTO orbit selected in the Osiris-REx subsection. Unlike the
torus method, the orbit can be transitioned to the EANH3BP with a 0.2 eccentricity. The resulting
orbit, propagated for six months, is depicted in Figure 9 along with its groundtrack relative to the
Sun. Evolution of minimum nadir pointing phase angle, minimum periapsis radius and maximum
apaoapsis radius are given in Figure 10 and Figure 11. We can see that the geometry of the con-
verged orbit is similar to that of the original RTO orbit, apart from long-term sinusoidal variations
associated with the orbital eccentricity. The geometry constraints def ned in the Osiris-REx subsec-
tion are all met (min ¢ < 50 deg, min radius < 510 m, max radius ~ 5 km) . As hypothesized in the
previous subsection, the geometry of the Poincare section crossings in Figure 10(a) suggests that
the trajectory is near a 3-D quasi-periodic torus.

min||r|| = 0.52 km, min(¢) = 42 deg

— -2 i ; I ;
2 -4 100 150 200 250
y (km) x (km) right ascension (deg)
(a) (b)

Figure 9: Spatial plot (a) and groundtrack/altitude relative to the Sun (b) for converged example mapping
trajectory consistent with the upcoming OSIRIS-REx mission.
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Figure 10: (a) Ideal RTO orbit (red) versus transitioned RTO orbit (blue) on a Poincare section. (b) Evolution
of minimum nadir pointing phase angle.
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Figure 11: Evolution of apses for the ideal (red) and differentially-corrected (blue) RTO orbit. (a) Minimum
periapsis radius. (b) Maximum apoapsis radius.

CONCLUSION

A simple design methodology was introduced to select a quasi-terminator orbit suitable for the
global mapping requirements of a given mission. It was found that there are two degrees of free-
dom for the selection of the orbital parameters, including minimum nadir pointing phase angle and
minimum periapsis. In addition, the effect of the eccentricity of the small-body orbit on these or-
bits was investigated. In particular, several algorithms are suggested to transition these orbits in
this higher-f delity model. The transitioned orbits are shown to retain good geometry characteris-
tics, although they are no longer periodic. An example of appropriate quasi-terminator orbit for the
upcoming OSIRIS-REx mission has been selected and transitioned in the higher-f delity eccentric
model, which demonstrates the applicability of quasi-terminator orbits to this mission.

In future work, the complex gravity feld of the primitive body will be added in the differential
correction process. We will also investigate the computation of 3-D sun-side QTO tori in the eccen-
tric problem. Finally, a better understanding of the design space is required for the timely design of
observation cadences and other high-level constraints.
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