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For missions to smaller primitive bodies, solar radiation pressure (SRP) is a sig-
nificant perturbation to Keplerian dynamics. For most orbits, SRP drives large 
oscillations in orbit eccentricity, which leads to large perturbations from the     
irregular gravity field at periapsis. Ultimately, chaotic motion results that often 
escapes or impacts that body. This paper presents an orbit maintenance strategy 
to keep the orbit eccentricity small, thus avoiding the destabilizing secondary   
interaction with the gravity field. An estimate of the frequency and magnitude of 
the required maneuvers as a function of the orbit and body parameters is derived 
from the analytic perturbation equations. 

INTRODUCTION 

For missions to smaller primitive bodies, solar radiation pressure (SRP) is a significant pertur-
bation to Keplerian dynamics. For most orbits, SRP drives large oscillations in orbit eccentricity, 
which leads to large perturbations from the irregular gravity field at periapsis. Ultimately, chaotic 
motion results that often escapes or impacts that body. This paper presents a pair of similar orbit 
maintenance strategies to keep the orbit eccentricity small, thus avoiding the destabilizing       
secondary interaction with the gravity field. An estimate of the frequency and magnitude of the 
required maneuvers as a function of the orbit and body parameters is derived from the analytic 
perturbation equations. Numerical results of the application of control laws designed to fix ma-
neuver targets or maneuver schedules derived from the analytic equations applied to full-
ephemeris simulations are also shown. 

DYNAMICS OF NEAR-CIRCULAR ORBITS 

The mean effect of a simple, anti-sun SRP model on a set of orbital elements has been         
described using the following equations:1 

𝜆̇ = − 𝐶𝑔𝑒
√1−𝑒2

sin𝜔 sin𝜆 − 𝑁̇       (1) 

𝑑
𝑑𝑡
𝑖 = − 𝐶𝑔𝑒

√1−𝑒2
cos𝜔 sin 𝑖 sin𝜆       (2) 

𝑒̇ = −𝐶𝑔√1− 𝑒2(sin𝜔 cos 𝜆 + cos𝜔 cos 𝑖 sin 𝜆)   (3) 

* Mission Design Engineers, Mission Design & Navigation Section, Jet Propulsion Laboratory, California Institute of 
Technology, 4800 Oak Grove Dr. Pasadena, CA 91109, M/S 301-121 
 

© 2013 California Institute of Technology. Government sponsorship acknowledged.  

(Preprint) AAS 13-816 

 1 

                                                      



𝜔̇ = −𝐶𝑔√1−𝑒2

𝑒
(cos𝜔 cos 𝜆 − sin𝜔 cos 𝑖 sin 𝜆)− �𝜆̇ + 𝑁̇� cos 𝑖   (4) 

𝑎̇ = 0         (5) 

𝐶𝑔 = 3𝐺1
2𝐵𝑅2 �

𝑎
𝜇
        (6) 

Where: 

e  Eccentricity 

a Semi-major axis 

i Inclination 

ω Αrgument of periapsis 

λ  Node of the orbit relative to the sun line 

𝑁̇ Instantaneous orbital rate of the central body (asteroid, comet) about the sun 

G1 The solar constant ≈ 1017 Newton 

B The effective spacecraft mass/area ratio 

R The central body (asteroid, comet) distance from the sun 

µ The gravitational parameter of the central body (asteroid, comet) 

Cg The solar-pressure / gravity ratio parameter. 

𝑥̇ or 𝑑
𝑑𝑡
𝑥 The time rate of change of the parameter x 

For orbits with sufficiently small eccentricities, equation 1 approaches the orbital rate of the 
asteroid (or comet) about the sun and equation 2 becomes small relative to the remaining terms. 
Equation 2 becomes even smaller (since e is non-zero, but small compared to √1 − 𝑒2) if the  
inclination is near polar. While a polar orbit assumption is not strictly necessary for the            
derivation, it does make for a cleaner solution. Making the small-eccentricity assumption, then, 
equations 1, 2, and 4 simplify: 

𝑑
𝑑𝑡
𝑖 ≈ 0        (11) 

𝜆̇ ≈ −𝑁̇       (12) 

𝜔̇ = −𝐶𝑔√1−𝑒2

𝑒
(cos𝜔 cos 𝜆 − sin𝜔 cos 𝑖 sin 𝜆).   (13) 

This implies that, so long as the eccentricity remains small, the orbit plane is essentially inertial 
and that shape and orientation of the orbit within the plane are oscillating under the influence of 
solar radiation pressure. 

The presence of the eccentricity in the denominator of equation 13 presents a problem for 
near-circular orbits that can be eliminated by recasting the eccentricity and argument of periapsis 
in terms of the components of the eccentricity vector: ex and ey. By doing so, 

𝑒𝑥 = 𝑒 cos𝜔      (14) 

𝑒𝑦 = 𝑒 sin𝜔,       (15) 

the time rates of change become: 

 2 



𝑒𝑥̇ = 𝑒̇ cos𝜔 − 𝑒𝜔̇ sin𝜔    (16) 

𝑒𝑦̇ = 𝑒̇ sin𝜔 + 𝑒𝜔̇ cos𝜔.    (17) 

By substituting equations 3 and 13 into equations 16 and 17, it becomes possible to eliminate the 
magnitude of the eccentricity from the denominator of equation 13, and a pair of useful equations 
emerges: 

𝑒𝑥̇ = −𝐶𝑔√1− 𝑒2 cos 𝑖 sin 𝜆    (18) 

𝑒𝑦̇ = −𝐶𝑔√1− 𝑒2 cos 𝜆.    (19) 

For an exactly polar orbit, these two equations simplify greatly: 

𝑒𝑥̇ = 0       (20) 

𝑒𝑦̇ = −𝐶𝑔√1− 𝑒2 cos 𝜆     (21) 

These, then, imply, that the eccentricity vector runs exactly “up” or “down” in a polar plot of 
eccentricity and argument of periapsis (“e-ω space”), depending on the sign of the cosine of the 
hour-angle of the orbit plane. Further, this motion will reverse itself as the generally inertial orbit 
plane goes through an edge-on orientation relative to the sun and the sign of the cosine flips. 
However, this reversal occurs on a time scale comparable to the orbit period of the asteroid or 
comet about the sun. Even a non-polar orbit will see a similar very-long-period. The more polar it 
is, the smaller the component of that motion in the horizontal direction. Recall that for this     
formulation, the coordinate frame used is a sun-asteroid synodic (or sun-relative) frame, and the 
inclination is measured relative to the orbit plane of the asteroid or comet about the sun and not 
necessarily the equator of the body. As such, it is much more likely that the orbit evolution would 
be better described by equations 18 and 19 than 20 and 21. 

The time constant of the oscillation, as mentioned earlier, is equal to the orbit period of the  
asteroid or comet about the sun. The magnitude is a function of Cg and thus the specific body, the 
orbit being studied, and the assumed spacecraft. If we consider the case of a spacecraft in orbit 
about Tempel 1 (µ = 4479 m3/sec2) and making reasonable assumptions about the spacecraft 
mass/area ratio (B = 32 kg/m2) and the semi-major axis of the orbit (a = 24 km), the parameter Cg 
has a large enough value (3 x 10-8 Hz) even at 4 AU to increase the eccentricity of an initially  
circular orbit to 0.018 in a week, thus lowering periapsis by 0.44 km in a worst-case hour-angle 
(λ = 0°, corresponding to an edge-on orientation). At Tempel 1’s perihelion distance of 1.5 AU, 
the eccentricity change increases by an order of magnitude. Thus regular maintenance would be 
required to maintain the nearly circular orbit.  

If we assume that the orbit maintenance frequency is much larger than the rate of change of 
the orbital hour angle (λ) and the SRP/Gravity parameter (Cg), such that they can be considered 
constant, and further assume that eccentricity is small such that √1 − 𝑒2 ≈ 1, then equations 18 
and 19 reduce to simple constant rates: 

𝑒𝑥̇ = −𝐶𝑔 cos 𝑖 sin 𝜆     (22) 

𝑒𝑦̇ = −𝐶𝑔 cos 𝜆      (23) 

The implication of this much-simplified model is that the eccentricity and argument of        
periapsis will evolve in the same relative way, given the same initial inclination, hour angle, and 
solar distance, regardless of their initial values, provided the time scale is short enough and the 
orbit remains sufficiently circular.  
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Given the fundamental assumptions that the orbit eccentricity is small, the main result of the 
derivation above is that the orbit plane is essentially fixed inertially and that the solar radiation 
pressure force causes the orbit shape and orientation within the plane, but not its size, to vary  
linearly at a constant rate. This rate, captured in equations 22 and 23, is a function of the orbit size 
(a), inclination (i), and hour angle (λ) as well as the ratio of solar radiation pressure to central 
body gravity (Cg).  

COMPARISON OF THE MODEL TO INTEGRATED TRAJECTORIES 

For this, and all other numerical tests, an example system about Tempel 1 was developed, 
consistent with our best understanding of its ephemeris2 and shape.3 The shape model was    
transformed4 into a degree-and-order 12 spherical harmonic gravity field using a constant density 
of 0.6 g/cc. The osculating initial states, relative to the Tempel 1 pole and in the sun-line frame 
used to derive Equations 1-6, are detailed in Table 1. Left to evolve on its own, this initial state is 
driven close enough to a lobe in the Tempel 1 gravity field that it is ejected from orbit. 

Table 1: Initial State Used for All Numerical Tests 

Parameter Value 
(Pole) 

Value 
(Sun-Line) Unit 

Initial Epoch 24 August 2020 TDB 

Semi-Major Axis 22.5 22.5 km 

Eccentricity 0.02 0.02  

Inclination 75.0 67.2 deg 

Argument of Periapsis 255.0 264.0 deg 

 

The first check to perform is to determine if Equations 1-6 do a “good enough” job describing 
the evolution of the orbit from Table 1. The easiest way to do that is to propagate the orbit and 
inspect the evolution of the elements. Figure 1 shows the results of a 10-day propagation. As can 
be seen there, the semi-major axis is essentially constant, though with a large multi-frequency 
oscillation. The ascending node, which is a component of the hour angle, λ, shows the expected 
nearly-linear behavior. The inclination is also showing a secular variation during these 10 days. 
However, the 0.01 deg/day inclination rate is several orders of magnitude slower than the 20 
deg/day apsidal rate. That is consistent with the claim that the inclination rate approaches zero as 
the eccentricity does. Based on this, the dynamics of Tempel 1 are apparently sufficiently        
described by the base equations used in the derivation of the controller.  

But, before we can address the issue of whether or not Equations 22-23 describe the evolution 
of the eccentricity and argument of periapsis, we must first determine the nature of the SRP-
Gravity parameter, Cg. The spacecraft effective mass/area ratio, B, is not simply the mass of the 
spacecraft divided by its cross-sectional area normal to the sun-line. It must take into account  
diffuse and specular reflection. Given a system to perform the full-dynamical propagation, the 
easiest way to calculate Cg is using Equation 24: 

𝐶𝑔(𝑡) = 3𝐹𝑠
2𝑚�

𝑎
𝜇
     (24) 
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where Fs is the magnitude of the solar pressure force parallel to the sun-line, m is the mass of the 
spacecraft, and the other symbols are as previously defined. It should be noted that in this       
formulation, Cg is transformed to a time-varying value. The distance to the sun isn’t a constant, 
the cross-sectional area of the spacecraft isn’t necessarily constant, and the osculating semi-major 
axis varies. Ideally, the combined value is nearly constant.  

 

 
Figure 1: Evolution of the Keplerian orbital elements (Sun Line Frame) over a 10-day propagation 

Over the 10-day test propagation, it was determined that Cg was indeed nearly constant, as 
shown in Figure 2. There is a less than 3% variation peak-to-trough, with a pronounced secular 
trend. Fortunately, this is easy to explain, as Tempel 1 is on the inbound half of its orbit over   
these 10 days, dropping from 4.02 AU to 3.99 AU, increasing the solar pressure acceleration from 
19.9 nm/s2 to 20.2 nm/s2, or a 1.5% increase. This is sufficiently flat that, as shown in Figure 3, 
the initial value alone is good enough to capture the long-period evolution of the orbit in e-ω 
space. 
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Figure 2: SRP/Gravity Parameter vs. Time 

 
Figure 3: The motion of the fully integrated trajectory within e-ω space (blue, solid) compares 

nicely with the approximation of the derived control law (red, dashed). 

CHOOSING AN INITIAL ECCENTRICITY AND ARGUMENT OF PERIAPSIS 

To maximize the time between maneuvers, the initial argument of periapsis (ω 0) should be a 
value that puts the modeled motion in e-ω space (the red dashed line in Figure 3) through the 
origin, as in Equation 25. 

𝜔0 = 𝜋 + tan−1 � −𝐶𝑔 cos𝜆
−𝐶𝑔 cos 𝑖 sin𝜆

� = 𝜋 + tan−1 � −cos𝜆
−cos 𝑖 sin𝜆

�   (25) 
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When solving for the inverse tangent, the quadrant of the solution should be retained. As in    
Figure 3, the initial argument could easily be in Quadrant III (180° ≤ ω0 ≤ 270°). Most numerical 
packages contain a version of the inverse tangent that retains the quadrant, typically called 
“atan2.” The negative signs are thus preserved in Equation 25, as “atan2” routines separate out 
the numerator and denominator of the inverse tangent and that information must be preserved. 

Using the values from Table 1, Equation 25 states that the optimal initial argument of         
periapsis, in the sun-line frame for our Tempel 1 example, is 250.7 deg, very similar to Table 1’s 
264.0 deg. As expected, by inspection of Figure 3, this optimal location is to the left of, or clock-
wise from, the initial point defined by the state in Table 1.  

One rather interesting implication of Equation 25 is that the size and shape of the orbit, the 
mass of the asteroid, and the solar distance are all irrelevant to the selection of the argument of 
periapsis target. The maneuver frequency is a function of those parameters, but the optimal initial 
argument of periapsis is not. Since the inclination and argument of node are essentially fixed (per 
Equations 11 and 12), the evolution of the optimal initial argument of periapsis is a simple     
function of the position of the asteroid about the sun. For mission durations much smaller than the 
heliocentric orbit period, a single fixed value of ω0 is an appropriate approach. For longer       
missions, the controller will eventually fail when the cosine of the hour angle changes sign and 
the motion within e-ω space reverses itself. This shortcoming is easily circumvented by manually 
updating the e-ω target as a function of mission timeline. 

The selection of the initial eccentricity can be a function of the mission objective, such as 
keeping the variation in the orbital altitude below some limit, or designed to meet some particular 
maneuver frequency. If a particular maneuver frequency is desired, then Equations 22 and 23 can 
be recombined to give a total eccentricity rate, as in Equation 26: 

𝑒̇ = 𝐶𝑔√1 − sin2 𝜆 sin2 𝑖.    (26) 

This equation is not the same as Equation 3. This rate is subject to all of the various near-circular 
assumptions made in the derivations of Equations 22 and 23. However, it is useful in that it   
models how fast the orbit evolves along the red dashed line in Figure 3 defined by Equations 22 
and 23. As such, if some particular duration, tm, is desired between maneuvers, the initial eccen-
tricity should be as in Equation 27. Equivalently, the estimated time between maneuvers, given 
some initial eccentricity, is as in Equation 28. These two equations can help bound the trade    
between orbital eccentricity and operational tempo. 

𝑒0 = 𝑡𝑚𝐶𝑔
2

√1 − sin2 𝜆 sin2 𝑖    (27) 

𝑡𝑚 = 2𝑒0
𝐶𝑔√1−sin2 𝜆 sin2 𝑖

     (28) 

Using the value of the initial eccentricity of 0.02 from Table 1, Equation 28 suggests that the 
spacecraft would exceed an eccentricity of 0.02 after 8.8 days, which is what the upper-right  
panel of Figure 1 shows.  

THE FIXED-TARGET CONTROLLER 

The first controller designed using the above dynamics was a simple, single-impulse controller 
that returns the eccentricity (e) and argument of periapsis (ω) to some fixed user-specified and 
Equations 25-28 informed value. The controller achieves this by searching for when a constraint 
is violated and then applying the corrective maneuver at the last opportunity to do so before the 
violation was encountered. This fixed-target and maneuver-before-violation approach results in a 
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variable duration between maneuvers. The intent is that this controller would be used when the 
maximum eccentricity matters more to the mission objective and concept-of-operations than the 
operations tempo.  

The fixed-target controller propagates an initial state forward in time until either a constraint is 
violated or a fixed time has elapsed. If the fixed time is encountered, then the simulation is said to 
be complete and no further integrations are undertaken. If a constraint violation is found, the   
controller searches for when, prior to the violation, a single maneuver could have been performed 
to return the orbit evolution to the user-specified eccentricity, es, and argument of periapsis, ωs. 
This is accomplished by searching for when Equation 29 is satisfied. 

𝑟 = 𝑎�1−𝑒𝑠2�
1−𝑒𝑠 cos(𝜔+𝑓−𝜔𝑠)     (29) 

where a, r, ω, and f are the instantaneous semi-major axis, orbital radius, argument of periapsis, 
and true anomaly of the pre-maneuver state, respectively. The maneuver vector is then simply 
determined by solving for the Cartesian states of the desired orbit using the pre-maneuver        
instantaneous inclination and longitude of node and then differencing the velocity component 
from the pre-maneuver Cartesian velocity. This formulation preserves the orbit size and plane 
while re-shaping and re-orienting the orbit to match the desired values.  

Using the initial conditions from Table 1, the fixed target controller was run for 365 days     
using an e = 0.02, ω = 250.7 deg target and a two-sided range constraint. The range between the 
spacecraft and the comet center was required to remain between 22 and 23 km. The results are 
illustrated in Figures 4-8. As can be seen in Figure 6, the controller does an excellent job of   
maintaining the orbital radius within its designated bounds. The variation, particularly in the   
second half of the integration is apparently too tight, suggesting that that controller might be   
doing maneuvers earlier than necessary. However, that is a feature of a single-maneuver         
controller. At the next opportunity in the orbit where Equation 29 holds, the orbital radius would 
have exceeded its bounds, and so the achieved variability is less than the requirement. The total 
delta-v for this was small: about 1.4 m/s total. 

These figures illustrate the fundamental short-coming of this controller as implemented, 
though. As the hour angle (“node”) of the orbit changes, the ratio 𝑒𝑦̇ 𝑒𝑥̇⁄  changes and the e-ω  
evolution slowly rotates counter-clockwise. Because the maneuvers are triggered by the orbital 
radius exceeding or dropping below fixed values, the time between maneuvers gets shorter and 
shorter. By the end of the 365-day integration, the maneuver spacing has dropped from slightly 
over 7 days to just over 3.5 days. As the node continues to change due to Tempel-1’s motion 
about the sun, the maneuver frequency will continue to increase. Eventually, the sign 𝑒𝑦̇ will 
change and the constraints will be violated almost immediately.  

One additional feature of note is the time history of the inclination. The near-circular            
assumption of e ≈ 0, transforming Equation 2 into Equation 11, states that the inclination should 
be constant. That is clearly not the case, as the inclination has increased from 67 deg to 71.25 deg 
over the course of a year. However, the rate of change in the inclination is an order of magnitude 
slower than the rate of change in the argument of periapsis and thus Equation 11 remains a useful 
approximation, particularly as its implications are applied to the control law encoded in Equations 
22-23 and 26-28.  
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Figure 4: Orbital Elements from a 365-day integration of the fixed-target controller.  

Note the growth in inclination (middle-left). 
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Figure 5: Polar plot of the eccentricity vec-
tor from a 365-day integration of the fixed-
target controller (starting at the green 
dot). Note the counter-clockwise rotation 
of the trend as the node changes. 

Figure 6: Time history of the orbital radius during a 
365-day integration of the fixed-target controller. The 
controller maintains the 22-23 km constraint at the 
expense of variability in the ops tempo. 

  

Figure 7: Days between Maneuvers during a 365-day 
integration of the fixed-target controller. As the e-w evo-
lution rotates clockwise, the time between maneuvers 
gets shorter. 

Figure 8: Maneuver sizes during a 365-
day integration of the fixed-target con-
troller.  

THE FIXED-SCHEDULE CONTROLLER 

The second controller designed was somewhat more complex. While it too is single impulse, 
the controller chooses its own eccentricity and argument of periapsis targets to keep the orbit as 
circular as possible with a constant time between maneuvers. “Constant” in this case is a relative 
term. Because single-impulse maneuver opportunities only occur when Equation 29 is satisfied, 
there is necessarily some variability involved in the maneuver timing. There are many ways to 
accommodate that fact. This controller propagates for a fixed duration and finds the opportunity 
to do a maneuver prior to the end of that duration in much the same way as the fixed-target     
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controller. It is essentially a temporal constraint instead of a spatial constraint. The eccentricity 
and argument of periapsis targets for Equation 29 are determined using Equations 27 and 25 
based on the instantaneous values for the inclination, i, hour angle, λ, and SRP/gravity parameter, 
Cg, at the end of the propagation and a user-specified desired maneuver interval, tm. The pre-
integration duration and desired maneuver interval are somewhat independent. 

Using the initial conditions from Table 1, the fixed-schedule controller was run for 365 days 
using an initial propagation time of 8 days and a desired maneuver interval of 7 days. The results 
are illustrated in Figures 9-13. As can be seen in Figure 11, the controller does a very good job of 
maintaining a nearly constant maneuver frequency: 7.4-7.5 days between maneuvers. Careful tun-
ing of the orbit size and inputs to the control law should allow an operations-friendly maneuver 
frequency to be selected.  

The increasing eccentricities in Figure 9 and orbital distances in Figure 11 illustrate how this 
controller maintains a nearly-constant maneuver schedule. As Tempel 1 closes with the Sun and 
the SRP/gravity parameter, Cg, rises, the eccentricity rate increases and the orbit’s initial eccen-
tricity must increase with it. This is can be seen very clearly in Figure 10 as the initial and final 
eccentricities move radially outwards. This also has an effect on the per-maneuver sizes. As the 
maneuvers are forced to move the orbiter ever-further in e-ω space, they get ever larger. The total 
is almost identical to the fixed-target controller because the maneuver frequency is (more) con-
stant, however: about 1.4 m/s. 

 
Figure 9: Orbital Elements from a 365-day integration of the fixed-schedule controller. 
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Figure 10: Polar plot of the eccentricity 
vector from a 365-day integration of the 
fixed-schedule controller. Note the coun-
ter-clockwise rotation of the initial ar-
gument of periapsis as the ascending 
node changes (middle-right panel of 
Figure 9). 

Figure 11: Time history of the orbital radius during a 
365-day integration of the fixed-schedule controller. The 
near-constant ops tempo comes at the expense of growing 
orbital radius variation. 

  

Figure 12: Days between Maneuvers for a 365-day inte-
gration of the fixed-schedule controller. The variability 
is 7.4-7.5 days between maneuvers. 

Figure 13: Maneuver sizes during a 365-
day integration of the fixed-schedule con-
troller. 

CONCLUSIONS AND FUTURE WORK 

The two control-laws using the analytical results of Equations 22-23, 24-25, and 27-28 are 
numerically simple but very powerful. The fixed schedule controller, in particular, is                
extraordinarily stable. During testing, it was able to maintain an orbit about Tempel 1 through 
perihelion and the relatively high solar-radiation-pressure environment. With proper tuning, this 
controller may be able to meet most orbital maintenance requirements for a near-circular orbit 
about a primitive body. 
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Other implementations, such as a controller that maintains a fixed orbital distance like the ex-
ample fixed-target controller, but with the adaptability and stability of the fixed-schedule        
controller could also be built. Another option might be to use the orbital radius constraint and 
fixed-initial-eccentricity of the fixed-target controller with the variable initial argument of the 
fixed-schedule controller to capture the rotation of the e-ω space evolution. The fixed-target   
controller’s stability could be also be improved by combining it with an out-of-plane controller to 
maintain the hour angle at a near-constant value.  
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