
1 
 

LYAPUNOV ORBITS IN THE JUPITER SYSTEM USING 
ELECTRODYNAMIC TETHERS 

Kevin Bokelmann*, Ryan P. Russell†, and Gregory Lantoine‡ 

Various researchers have proposed the use of electrodynamic tethers for power 
generation and capture from interplanetary transfers. The effect of tether forces on 
periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added 
to the restricted three-body problem model and a series of simplifications allows 
development of a conservative system that retains the Jacobi integral. Expressions are 
developed to find modified locations of equilibrium positions. Modified families of 
Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero 
velocity curves and stability analyses are used to evaluate the dynamical properties of 
tether-modified orbits. 

INTRODUCTION 

There is increasing interest in missions to the outer planets, highlighted by the most recent decadal 
survey. Among many unique challenges of outer planet missions, extreme distances from the Sun lead to 
restrictive power constraints. In particular the large Sun-spacecraft distances limit the use of solar cells 
due to solar radiation decreasing as an inverse square law. While the ongoing Juno mission to Jupiter is 
able to make use of solar cells its power is less than 500 W, limiting its science capabilities.1 The 
common alternative to solar power is using radioisotope thermal generators (RTGs) such as those used for 
Cassini and Galileo. These come with their own set of problems, including political and safety issues that 
arise when dealing with radioactive materials. 

A developing alternative is making use of the rotating magnetic field of planets through 
electrodynamic tethers. Jupiter is of greatest interest due its strong magnetic field but magnetic fields exist 
at the Earth and the other gas giants as well. The premise of using a tether to provide power relies on 
basic principles of electromagnetism, namely that current is induced when a conductor moves through a 
magnetic field. This current generation makes for an attractive alternative power source for spacecraft, 
replacing solar cells that become increasingly ineffective far from the Sun, or radioisotope thermal 
generators that are complex and in limited supply.2,3 Power scarcity is a common limiting factor in 
spacecraft design so this additional source is of much practical interest. Research has explored power 
generation in different motion regimes including during system satellite tours as well as orbiters 
stationary relative to a secondary body.4,5,6 

The second capability of electrodynamic tethers is as a force generator. Charged particles (such as 
current in a tether) moving through a magnetic field create what is known as the Lorentz force. This force 
is a function of position, velocity, and tether orientation and is non-conservative. Given that this force can 
be generated with negligible propellant used for attitude control there is potential for significant mass 
savings. The largest potential for propellant mass reduction comes from applications to departure and 
capture for interplanetary trajectories as these are typically large fractions of propellant budgets. Initial 
and ongoing research shows that capture from hyperbolic orbits can be greatly assisted if not completely 
performed by electrodynamic tethers.7,8,9 Other work shows how tethers can be used for orbital transfers 
about a single body.10 Also of interest is the efficiency of tethers for these transfers in terms of mass 
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relative to electrical thrusters where it has been shown that tether systems can be lighter over long-term 
applications.11  

An application of the Lorentz force is that it alters the equilibrium points in the circular restricted 
three-body problem (CRTBP). Research has been done on the stability and dynamics for tethers operating 
at these modified equilibrium points, typically in the interest of power generation without deorbiting. 
Various analyses have shown that these equilibrium points are stable or can be made stable through the 
use of control laws.12,13,14,15 The next step is to expand these equilibrium points into fully periodic orbits in 
the three-body system. In the typical three-body model these periodic orbits are being considered for a 
variety of applications including parking orbits, inter-moon transfers, and as descope alternatives to 
science orbits.16,17,18 The addition of a tether can makes spacecraft self-powered but introduces Lorentz 
forces that will alter the orbits. Knowledge of the effect of these forces on orbit orientation and stability is 
needed for a full end-to-end mission design with tethers. 

PROBLEM DEFINITION 

The CRTBP is used to model the gravitational dynamics of the spacecraft influenced by Jupiter and 
one of its moons. Although the focus is on planar motion, the full model is used to study the planar 
stability to out-of-plane perturbations. Unlike other works such as References 12 and 15, the Hills 
approximation is not considered as variations in the magnetic field strength prevent a general scaling 
applicable to all moons, eliminating one of the main benefits of using the Hill model. Using a rotating 
frame centered at the system center of mass the equations of motion are described by Equation ( 1 ) 

             ( 1 ) 

where the spacecraft center of mass position is given by          , velocity is           , and the 
frame rotates with the primaries at angular rate  . The potential-like function   is given in Equation ( 2 ): 
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where    and    are the distances of the spacecraft from the respective primaries and   is the ratio of the 
smaller primary gravitational parameter to the sum of both primary’s gravitational parameters. 
Normalization factors are used to convert to dimensionless units such that the distance between the 
primaries is one length unit (LU) and the frame rotation is one radian per time unit (TU).  

The tether dynamics are treated as a perturbing force to the circular restricted three-body model 
dynamics giving Equation ( 3 ): 

                    ( 3 ) 

where   is a normalizing constant that converts the force to dimensionless acceleration. Assuming the 
force is given in newtons and LU is expressed in kilometers: 
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where     is the spacecraft mass. As stated previously, the tether works on the electrodynamic principle 
of the Lorentz force where a conductive wire moving in a magnetic field has an induced current which 
reacts with the magnetic field to cause a force. The induced electric field is dependent on the inertial 
relative velocity between the spacecraft and the plasma fixed to Jupiter’s magnetic field: 
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where   is the local vector of the magnetic field and    is the rotation vector of Jupiter. Using a bare 
tether with length   and width  , averaging the current along the length of the tether, and choosing the 
zero-bias point for maximum current gives the Lorentz force in newtons13: 
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                ( 9 ) 

The current depends on the orientation of the tether with the electric field as        , where the tether 
direction    is measured aligned with the tether and points towards the tether cathode. Magnetic field 
properties are included where    and    are the charge and mass of an electron and    is the local 
plasma electron density. The actual magnetic field of Jupiter is off-set from Jupiter center and tilted by 
10.77  from the Jupiter rotational plane, resulting in non-autonomous dynamics.19 To simplify the model 
it is assumed that the magnetic field is a basic dipole aligned with and in the opposite direction of the 
rotation of Jupiter. The primary consequence of this simplification is a time-varying error in the magnetic 
field direction. The magnetic field strength is assumed to follow an inverse cube law       

  where 
                    

  and the plasma density is assumed constant at            . 

Note from Equations ( 8 ) and ( 9 ) that the Lorentz force scales linearly with tether width but to the 
five-half power with tether length. If the force is known for a given tether orientation, position, and 
velocity, one can quickly recalculate the force for different tether sizes using this scaling property. Tether 
direction has a significant effect on the Lorentz force both in that the force is limited to be perpendicular 
to the tether and that the force magnitude depends on the dot product   . To reduce the scope of the 
problem tether orientation is assumed to be aligned with the position vector such that the tether is always 
pointing radially to or away from the center of mass of the primaries, unless stated otherwise. This results 
in the tether force being at near maximum and is also generally the stable tether attitude when not near 
moons. 20  Higher fidelity studies will consider the stability of the tether attitude while operating in 
proximity to smaller primaries. 

 
Figure 1. Planar diagram of CRTB frame including tether and Lorentz force directions 
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Figure 1gives an example diagram of the three-body frame centered at the system center of mass 
including the tether and the Lorentz forces. As described previously, the Lorentz force   is perpendicular 
to both the tether orientation    and the local magnetic field  . 

For all simulations in this study a set spacecraft mass of 1000 kg with a tether width of 0.01 m is used. 
The dynamics are considered at Io and Metis on a per-case basis to highlight differences deriving from 
changes in the magnetic field strength and relative plasma velocity. 

EQUILIBRIUM POINTS 

A primary interest is in tether modified equilibrium points within the three-body system. The initial 
method is a global approach of all possible equilibria in the xy-plane. The method grids over locations and 
calculates the unperturbed acceleration, then sets the tether orientation so the Lorentz force opposes this 
acceleration. The tether orientation to oppose the gravitational and centrifugal forces is calculated using a 
cross product: 

           ( 10 ) 

      
   

     
 ( 11 ) 

Using a reference tether length   , this tether orientation is used to calculate the Lorentz force    . The 
actual tether length required to produce sufficient force to counter the three-body acceleration    is found 
by taking advantage of the scaling properties of the Lorentz force: 

 
   
   

 
     

    
 
  

    
( 12 ) 

where     is the length of the tether required to generate a force that achieves equilibrium. 

 

Figure 2. Contour levels representing locations of equilibrium points for varying tether lengths at Io. 
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Figure 3. Curves of equilibrium points as a function of counter-clockwise angle from the line between 
primaries,θ, and distance from system center. Curves are between Io to L4 (left) and L3 to L5 (right) 

Curves of equilibrium positions with constant tether length at Io are shown in Figure 2 and Figure 3. 
Intuitively, longer curves are associated with increased tether sizes. Figure 2 gives a global view of 
possible equilibrium points in the xy-plane of the rotating frame including a detailed view near Io. It can 
be seen that the curves only exist in the regions between the unperturbed L1/L2 and L4 points as well as 
the L3 and L5 points. Outside of these regions the tether orientation required to provide the correct force 
direction causes    in Equation ( 8 ) to be negative, hence no current is induced. Figure 3 further details 
these regions by plotting the curves in polar coordinates, highlighting that the curves close off at the 
Lagrange points. It can also be seen that the distance of the equilibrium points from system center remains 
near unity with the largest discrepancy occurring about L1 and L2. 

This deviation is best examined in the detail plot in Figure 2. It is seen that tether lengths below 100 
km do not have significant variations in equilibrium points about L1 and L2. As the length increases the 
contour curves expand about L1 and L2 until they connect with the curves originating from the L4 point 
at a length of approximately 370 km. This connection allows for a wide range of equilibrium points along 
the leading side of Io. 

While the global approach gives good knowledge of what is possible to achieve in a general sense it 
lacks fidelity near the smaller primary, particular on the evolution of the location of the L1 and L2 points. 
An in-depth look at this evolution is made by using a continuation approach to get modified equilibrium 
points L1* and L2*. The tether orientation is limited to the position vector-aligned attitude to reduce the 
problem scope. Using either Lagrange point as an initial guess along with an initially small tether size, a 
differential corrector is used to iterate on the spacecraft position until a perturbed equilibrium position is 
found. The tether length is then increased and the differential corrector rerun to get a new equilibrium 
point using the previous point as the new initial guess. The process is repeated until no new feasible 
equilibrium points exist.  

The differential corrector uses derivatives of the total tether perturbed acceleration with respect to 
position. The  -based terms are included for completeness even though the equilibrium points are 
expected to be within the xy-plane. These derivatives are obtained using a numerical complex step 
approach. Complex step has the additional benefit of being less prone to machine precision error than 
finite difference methods.21 The Newton update step is calculated using the following equation: 

 
       

      

  
 
  

      
( 13 ) 
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The update is iterated until the total acceleration magnitude is near zero within tolerance. Since the 
starting locations are the known L1 and L2 points with small steps in tether size, the initial guesses are 
sufficiently close for the simple differential corrector to converge.  

 

Figure 4. Lines of tether-perturbed L1* and L2* points at Io. Arrows indicate direction of evolution. 

 

Figure 5. L1 (blue diamond) and L2 (red circle) equilibrium coordinates relative to Io as a function of tether 
length. 

In Figure 4 the evolution of the equilibrium positions in the xy-plane centered at Io is plotted while 
Figure 5 shows the individual coordinate as a function of tether size. The notation      is introduced to 
indicate position relative to Io. Recalling the start at the L1 and L2 points with      it is seen that as 
tether length is increased the equilibrium point shifts forwards. Further increases lead to curving towards 
the leading side of Io. At a length of 413 km the L2 point reaches conditions where the chosen tether 
orientation can no longer achieve an equilibrium point. The perturbed L1 points eventually shift towards 
the surface of Io and impact when tether length is 1718 km. This extreme length of tether is not practical 
but included for completeness. Note that the evolutions of these points is similar to results from Scheeres 
et al. in Reference 12 in that the points curve around the front of the primary and then down to the surface. 
Key differences are that those authors included tether attitude equilibrium rather than a general heuristic, 
and they developed the analysis in the Hill’s model of motion, hence their results do not have a gap 
between the L1* and L2* curves. 
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Figure 6. Lines of perturbed L1* and L2* points at Metis. 

 
Figure 7. Metis L1 (blue diamond) and L2 (red circle) equilibrium coordinates as function of tether length. 

In order to achieve more reasonable tether lengths the inner moonlet Metis is considered. The moonlet 
has a weaker gravity field and is in a stronger region of Jupiter’s magnetic field. Plots are again made to 
show the equilibrium points, seen in Figure 6 and Figure 7. As Metis is only 1.83 Rj from Jupiter it’s 
orbital velocity is greater than the rotating magnetic field; this switches the direction of the tether Lorentz 
force from that at Io causing the equilibrium points to shift towards the trailing edge of Metis. The weaker 
gravity and stronger Lorentz force allows for significantly shorter tether lengths with a 26 km tether 
capable of equilibrium directly trailing the moonlet. This difference in force magnitudes allows for unique 
possibilities including placing the spacecraft in a position where Metis itself functions as a partial 
radiation shield from Jupiter.22 A major concern is that the average radius of the moonlet is only 21.5 km, 
meaning each tether end will be effectively on opposite sides of Metis. This gravity differential on the 
tether ends will lead to the tether collapsing and wrapping about the moonlet unless the width is increased 
to stiffen the tether. The fact that this small radius also results in a non-spherical gravity field is currently 
ignored. 



8 
 

 
Figure 8. Ideal power generation at Metis is near-identical for L1* (blue) and L2* (red) 

As a key benefit of electrodynamic tethers is power generation, the power derived from the tether at 
the modified equilibrium points is calculated for Metis. Since the equilibrium points include the tether 
force it is possible to indefinitely generate power without altering the orbit about Jupiter, assuming the 
equilibrium point can be maintained. The ideal power equation is a simple expression: 

          ( 14 ) 

where the current   is given by ( 7 ). The power is plotted in Figure 8 where it is apparent that there is a 
near-linear relation with the logarithms of the variables. This relation is primarily due to the choice of 
tether orientation and relatively small variance in the spacecraft position resulting in a near constant 
current for all tether lengths. Additionally the power is nearly identical for both sets of equilibrium points, 
again a result of the relatively small difference in their positions. Basic substitution of Equations ( 7 ) and 
( 8 ) into the power equation shows that power is proportional to      and an analytical fit can readily be 
found as: 

               ( 15 ) 

where tether length is in kilometers and the power is in watts. A check of the relative error shows a 
maximum of 0.17% for the L1 points and 0.23% for L2 so the expression is reasonably accurate. For a 
tether of 25 km there is an ideal power of 35 kW, seven times the power capability of Juno’s solar cells. 
To match Juno’s upper limit of 500 W requires a tether length of only 4.6 km, clearly demonstrating the 
potential of tether-based power generation.  

TETHER LYAPUNOV ORBITS 

As an extension to equilibrium positions there is interest in the evolution of the L1 and L2 Lyapunov 
orbits due to tether forces from a radially aligned tether. Starting from known unperturbed orbits the 
Lorentz force is introduced and its effects on orbital shape, orientation, and stability are evaluated. The 
orbits are naturally characterized by both their integral of motion and the tether size. To limit the scope of 
the work only a limited range of these variables is considered by holding one constant while allowing the 
other to vary. 

Conservative Approximation 

The tether force is velocity dependent making the tether-perturbed problem non-conservative. As the 
energy change is path dependent it is unlikely that exact periodic orbits exist in general, although they 
have been found under special conditions in other non-conservative systems.23 To transform the equations 
to a conservative system the assumption is made that the force magnitude is proportional to a constant 
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divided by the spacecraft in-plane distance from system center and the force direction is always 
perpendicular to the position vector: 

 
    

      

     
       

( 16 ) 

where the constant   is determined by doing a least squares fit to the actual Lorentz force calculated over 
                with zero spacecraft velocity relative to the rotating frame. 

Table I. Lorentz force approximation parameters and comparative forces at bodies of interest. 

Body                            
     

Europa 7.8179163e-012 0.0077 
Io 4.6696398e-011 0.0461 

Metis -3.9632967e-009 3.9166 
 

The parameter   is calculated at bodies of interest and shown in Table I. For Metis there is a negative 
value due to the body’s velocity about Jupiter exceeding the rotational velocity of the magnetic field 
resulting in a drag-like force. A comparison of the approximated force magnitudes are also given for a 
tether length of 25 km. The decreasing distance from Jupiter results in differences of orders of magnitude 
between each body. 

There are two main sources for inaccuracies in the approximation model force magnitude. As the line 
fit is imperfect the approximation breaks down as   deviates from near-unity. Additional error derives 
from the actual force dependency on the velocity of the tether relative to the magnetic field. The tether 
orientation is the same for both the full and approximate models resulting in zero error for the force 
direction. To quantify the approximation error calculations are made of the actual and approximate tether 
forces over a grid of radii and tangential velocities,   so at each grid point the spacecraft state is   
         . 

 
Figure 9. Relative error percentage in the force approximation at Io. 

The analysis is applied at Io to get a relative error for the conservative force approximation, shown in 
Figure 9. Negative values indicate the actual tether force is larger than the conservative model 
approximation. Due to the size scaling of the force the relative error is independent of tether length. 
Looking at the figure it is clear that differing radii is the largest contributor to errors. The lack of precision 
in the fit leads to as high as 15% error while still relatively close to the moon’s distance from Jupiter. 
Large periodic orbits can go beyond these radii although typical L1 and L2 orbits are expected to remain 
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within 15% error. At the unperturbed L1 and L2 points the error is at -7.11% and 7.94% respectively. 
These are roughly on order with expected errors introduced from assumptions made about the magnetic 
field strength and simple non-tilted dipole simplifications. The error is comparatively invariant to small 
changes in orbital velocity as the velocity relative to the plasma is on the order of tens to hundreds of 
kilometers per second.  

The force approximation has an associated potential function: 

                
 

 
  ( 17 ) 

The potential function allows for a new integral of motion by augmenting the standard CRTBP Jacobi 
constant: 

                       ( 18 ) 

This integral of motion can be used to determine allowed regions of motion through zero velocity curves 
and provides a natural generating parameter for periodic orbit families. 

 

Figure 10. Detail view of tether (right) and non-tether (left) zero-velocity curves at Io. 

Zero-velocity curves are used to visualize the general spacecraft dynamics. The values of these curves 
are found by setting the velocity in Equation ( 18 ) to zero and solving for the motion integral over a grid 
of locations. Plots of zero velocity curves for the unperturbed system, as well as with the new integral of 
motion at Io are given in Figure 10. The tether curves were made using a 150 km length tether to 
exaggerate effects. 

The introduction of the tether leads to changes as the angle from the Jupiter-Io line varies. In the plots 
from Figure 10 it is seen that relative to the non-tether curve the contours of C = 3.0015 converge 
prograde of Io, increasing regions of motion, while they diverge retrograde resulting in shrinking regions 
of motion. As the Lorentz force is directed prograde about Io the spacecraft gains kinetic energy and 
travel becomes less restricted while traveling retrograde relative to Io reduces regions of motion. At C = 
3.0054 the Hill’s throats around L1 and L2 are seen which indicate that travel between Jupiter and Io is 
possible. Without tether forces these throats are nearly symmetric about and initially open at the  -axis. 
By introducing the tether forces it is seen that the throats are shifted slightly prograde, though with a 150 
km tether the difference is limited. On the C = 3.0054 curve the throat is normally closed near L2 but it 
opens due to the tether force. Similar behavior is expected for the throat at L1. 
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Periodic Orbit Generation 

Due to the existence of the tether force the equations of motion loses both   -plane and  -axis symmetry, 
preventing the common approach of targeting perpendicular planar crossings to find periodic L1 and L2 
orbits.24 A full dimensioned targeting algorithm is implemented to search for periodic orbits.25 In brief, 
the method starts with choosing a held position state            to enable checking for repeats of the 
initial state. Typical selections are crossings of the   -,   -, or   -planes. As the final state is calculated 
at this crossing the plane crossing coordinate is automatically satisfied and can be ignored, leading to a 
reduced state vector  . A constraint vector   is introduced to enforce that the trajectory returns to its 
initial state with an optional constraint to target specific energy levels,  : 
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Given an initial    that yields non-zero   calculate an update to the state     using a linear 
approximation: 

   

   
       

( 20 ) 

   

   
  

            

      
 
   

 
( 21 ) 

    

   
 

   

   
 

   

  

  

   
 

( 22 ) 

Details of the corrector equations used are derived in Reference 25. An important attribute of the 
algorithm is its use of singular value decomposition (SVD) to approximate matrix inverses, allowing it to 
easily handle over or under constrained problems as well as singularities.  

The algorithm is used iteratively to generate families of orbits characterized by either tether length of 
the motion integral. The initial states of these orbits are modified from those found in the corrector 
algorithm such that they more closely resemble the perpendicular x-axis crossings characteristic of 
standard three-body periodic orbits. Starting from the first member of each family these new initial states 
are found by propagating each orbit and finding locations where     . As each orbit is a closed loop 
there is always a minimum of two such locations. Out of the found candidate locations the new initial 
state is chosen closest proximity to the state of the preceding orbit within the family. Each orbit of the 
family is then characterized by their initial state, periodic time, and tether length. A stability analysis is 
applied to every orbit in both families and the stability indices are parameterized by the size of the tether. 

To obtain         the convenient and accurate numerical complex step method is again used. For 
each periodic orbit the state transition matrix over one period, also known as the Monodromy matrix, is 
calculated. The eigenvalues of this matrix indicate the stability of the periodic orbit. These eigenvalues 
are used to calculate stability indices using Equation ( 23). As the eigenvalues occur in reciprocal pairs 
only three unique stability indices exist. Additionally, because the system is autonomous one index is 
trivial as it is always 2, representing a perturbation along the orbit trajectory.23 For linear stability the 
remaining two indices must be real and have magnitudes less than 2 otherwise the orbit is unstable with 
larger magnitudes representing more unstable orbits. 

            ( 23 ) 
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For planar periodic orbits the stability indices are denoted as vertical or horizontal,    and    respectively. 
The horizontal indices correspond to perturbations within the orbit plane while the vertical indices are 
out-of-plane deviations.26 

Variable Length Families 

First there is an analysis of the effects of varying tether size at constant   on the L1 and L2 Lyapunov 
orbits at Io. Metis is not considered due to the close proximity of the equilibrium points to the surface. For 
both L1 and L2 a representative starting orbit is selected from the non-tether perturbed Lyapunov families. 
The only criteria used for initial selection is a general consideration of the approach distance to Io. The 
initial L1 orbit has             with a period of 3.5872 TU (24.24 hr) while the L2 orbit is at 
            with period 3.6613 (24.74 hr). Each initial orbit is then extended into a family of orbits 
by increasing tether length and using the differential corrector to return to a periodic orbit while keeping 
the integral of motion constant. As will be seen, reflections occur where the tether length switches 
between increasing and decreasing to continue the family. At these reflections the continuation method 
temporarily varies   instead of length to generate initial guesses for the next member of the family. The 
L2 family ends with impacting the surface of Io, while the L1 family is continued until convergence 
becomes difficult without using unreasonably small steps. The reasoning for this is discussed below. 

 
Figure 11. Evolution of L1 Lyapunov orbits at constant C. 

 

Figure 12. Evolution of L1 orbits from no tether up to maximum orbit distance (left) and after maximum 
distance (right) 
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Figure 13. Characteristic curves of L1 and L2 families, including “apses”. 

Figure 11 plots a few of the orbits from the L2 family including the initial unperturbed orbit and the 
final orbit before impact. Due to the choice of different energy levels between the families the L1 family 
does not impact Io and has additional orbits in the family. The L1 orbits are plotted in Figure 12 where 
two plots are used for clarity. The left plot shows orbits until the family achieves its maximum distance 
from Io while the orbits after this point are shown in the right plot. Figure 13 gives the characteristic 
curves for both families, with markers correlating to the orbits plotted in the trajectory figures. 

Starting with a qualitative analysis of the orbits, for both the L1 and L2 families increasing tether 
length causes the orbits to shift forward and slightly rotate about Io. It is clear that the orbits are not 
symmetric about the  -axis as there is bulging on the leading side of the moon due to the positive  -
direction of the Lorentz force. For small orbits that remain within a few Io radii of the moon the L1 and 
L2 families are near-reflections about Io. With larger orbits the trajectories of both families tend to follow 
the curve of Io’s orbit about Jupiter as they effectively depart from and re-encounter Io at non-resonant 
intervals. The last orbit found in the L1 family (denoted with blue hexagon markers) is particularly 
dynamically interesting in that half of its orbit time (~88 hr) is spent in a loop with a smaller inner loop 
near its closest approach. Distances from Io during this looping time range from a “periapse” of 15470 km 
to 31630 km. 

Looking at the characteristic curves given in Figure 13 shows that the families are initially near-
invariant to changes in tether length. It is only after lengths exceeding 100 km that notable differences 
occur, however these changes are small relative to the variations that start after the first reflection at 217 
km tether length. The L2 curves go through a second reflection before impacting while the L1 curves go 
through seven reflections before the corrector encounters convergence difficulties. Each reflection occurs 
at smaller changes in tether length which can be seen clearest in the plot of L1 orbital period. The change 
in tether length between the last two reflections is only 1 km. It is this shrinking reflection interval that 
leads to difficulty in converging to new periodic orbits as the step sizes to enable convergence become 
infeasibly small. Additionally the orbit itself becomes effectively invariant with the only notable 
difference as slowing growth in the small looping regions mentioned earlier. 
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Figure 14. Horizontal (left) and vertical (right) stability indices for the L1 (solid) and L2 (dash) Lyapunov 

families at constant C. Lines of critical value included for reference. 

Consider the stability indices given by Figure 14, where the indices have been separated by the 
vertical and horizontal grouping. Both indices are typically real valued, and instances where imaginary 
components appear are random and on the order of 10-14. These imaginary values are attributed to 
numerical error involved with the complex step derivative method used. Comparing the two families it is 
seen that both indices tend to follow the same general shape although the quantitative differences increase 
through the family continuation. The effect is most noticeable after the second reflection where the L2 
vertical indices diverge from the L1 line as the L2 orbits approach and ultimately impact Io. 

As was seen in the characteristic curves the tether length initially has little effect on the indices before 
the 100 km tether length. With each successive reflection the indices become increasingly sensitive to 
changes in tether length to the point that they appear to be vertical lines. The indices for out of plane 
perturbations consistently remain within or just beyond stability. Horizontal stability is atypical and 
usually occurs during a reflection where the indices are rapidly changing from positive to negative values. 
As mentioned, orbits where the magnitudes of both the vertical and horizontal indices are less than the 
critical value of two are dynamically stable. Due to the sensitivity of the indices to changes in tether 
length after several reflections it becomes difficult to precisely find stable orbits, however they do exist. 
Examples of the stable orbits that occur during the first reflection for the L1 and L2 families can be seen 
in Figure 11 and Figure 12. These are the second smallest orbits plotted and are indicated by the green 
square makers. The orbits occur with a tether length of approximately 215 km and closely resemble 
perturbed versions of the originating zero-length tether orbits. No more stable orbits exist for the L2 
family. The L1 family has limited number of additional stable orbits. One other stable orbit was 
successfully identified and is included in the right plot of Figure 12, marked with upward pointing 
triangles. The orbit leads Io in a simple ellipse-like shape far from the Jovian moon with a closest 
approach of 18000 km from moon center. The stability of the discussed orbits is verified by propagating 
over 100 orbital periods with no notable departures. 

Varying the Integral of Motion 

Allowing for different values for the integral of motion is needed for a full analysis of tether-perturbed 
periodic orbits. To keep the scope manageable an in-depth analysis is considered at two constant tether 
lengths for both L1 and L2 families. The first case uses a 150 km tether while the second is at 200 km. 
While orbits at lower lengths were considered they do not sufficiently differ from either the 150 km or 
zero-length orbits to be dynamically interesting. 

Starting from a small orbit about the tether-modified equilibrium point, iterative changes to the motion 
integral described by Equation ( 18 ) are made and the state is converged to a new orbit using the 
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differential corrector. Once two orbits have been found a basic linear extrapolator is used to guess the 
next state to speed convergence. The orbits are continued until they impact Io or undergo rapid reflections 
such that practical convergence becomes difficult with reasonable step sizes. 

 
Figure 15. Example L1 (left) and L2 (right) Lyapunov orbits at constant tether length of 150 km. 

 
Figure 16. Characteristic curves for L1 (left) and L2 (right) families as motion integral varies with constant 

tether length. 

Several orbits from both the L1 and L2 families are given in Figure 15 while Figure 16 plots the 
characteristic curves. As expected the families start as small orbits about the equilibrium points which 
have been shifted towards the leading side of Io due to tether forces. These initial orbits are at the 
maximum motion integrals of 3.0054928 and 3.0054301 for L1 and L2 respectively. The orbit size 
increases as   is decreased, with initial orbits closely resembling typical Lyapunov orbits. At the end of 
the families the orbits exhibit bulging on the leading side of Io. The sensitivities of the families to changes 
in the motion integral increase as the families are continued with most of the changes occurring over a 
small sub-interval of the total range of motion integral considered. While this is indicative of an 
upcoming reflection both families impact Io and are considered complete for the purposes of this paper. 
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Figure 17. Horizontal and vertical stability for L1 (solid) and L2 (dash) families with 150 km tether length. 

The stability indices of the families using a constant tether length of 150 km are shown in Figure 17. 
The imaginary components of the indices are again negligently small and are ignored. Note that the 
curves for the vertical indices are near-identical making differentiation difficult. The horizontal indices 
have a minimum value of 34, above the critical value indicating that no orbits within the families are fully 
stable. Vertical stability alternates through the families with a total of three crossings of the critical value. 
These crossings indicate that there are at least two simple and one period-doubling bifurcations of the 
periodic orbit that can be followed in later work to generate additional periodic orbit families. 

 
Figure 18. Tether-forced Lyapunov periodic orbits at constant tether length of 200 km. 
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Figure 19. Non-zero initial states, periodic time, and “apse” distance for L1 and L2 families as motion 

integral varies. 

The L1 and L2 families calculated using a constant 200 km length tether are given in Figure 18. 
Neither family experiences an impact with Io resulting in the continuation process ending after a series of 
increasingly frequent reflections similar to the orbital families where length was allowed to vary. The 
orbits found before the first reflection are qualitatively similar to those found at the 150 km length. 
Beyond the first reflection the orbits continue to grow in size up to a maximum as can be seen from the 
sub-plot of “apoapse” given in Figure 19. As the families continue the orbits reduce in size before 
developing fractal-like looping dynamics similar to what was observed for the constant motion integral 
families. All the characteristic curves additionally have fractal-like spiraling over successive reflections 
with the exception of periodic time which monotonically increases. 

The orbits shown from the L1 family highlight the small orbit about the tether modified equilibrium 
point, the orbit with maximum Io distance (diamond markers), the last orbit found in the family 
(triangles), as well as two stable orbits(squares and circles). As the L2 family is a near-reflection of the L1 
family it does not include the stable orbits but instead plots an orbit with similarities to a rotated and 
shifted standard Lyapunov orbit (squares) Two of the orbits (marked by circles and triangles) in the L2 
family are shown specifically to highlight that changes to orbital shape become predominantly limited to 
the looping structure.  

 
Figure 20. Varying stability indices for L1 (left) and L2 (orbits) with constant tether length of 200 km. 

The stability indices are given in Figure 20 where again there are no significant imaginary components. 
Note that for improved visibility the horizontal indices plot has been cropped to exclude significant spikes 
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of -92000 and 376000 that occur over the final two reflections of the families. It is clear that both vertical 
and horizontal indices go through the stable region indicating the existence of stable orbits. As was seen 
for the variable length families the horizontal indices are highly sensitive to changes to   during these 
stability transitions, to the point that        becomes on the order of 1013. This sensitivity makes finding 
orbits within the relatively small stability region numerically challenging, and they are unlikely to be 
caught naturally in an automated continuation algorithm. 

CONCLUSIONS 

The introduction of electrodynamic tethers to the CRTB problem leads to changes in both the 
equilibrium points and the periodic orbits of the model. As discussed previously one of the main benefits 
of utilizing a tether is to enable a self-powered spacecraft in a stationary observing location relative to a 
minor body. At Metis the power required for current spacecraft can be generated with a tether only 4 km 
long. While the power production decreases with distance from Jupiter the tether is still capable of 
providing more than 400 W of power with a tether length of 20 km. Historic data from the tether test 
satellite SEDS shows a 20 km tether having a mass of 7 kg, translating to 1.4 kg for the 4 km tether.27 
This has mass advantages over the alternatives of larger solar arrays or RTGs which are typically on the 
order of tens of kilograms. Considering that the power generated scales exponentially with tether length 
longer tethers actually become more efficient in terms of power produced per tether mass.  

In addition to the power generation, these modified equilibrium points provide opportunities for new 
mission designs. If there is interest in placing the spacecraft in an equilibrium point for constant 
observation geometries of a moon, mission planners are no longer limited to choosing one of a few points. 
Assuming a degree of controllability in tether length it would be possible to transfer across a range of 
equilibrium points for long-term constant observation. Selection criteria for these locations can include 
utilizing the bodies as partial shielding from Jovian radiation. A more innovative concept is the use of a 
probe at the end of the tether to physically sample the moons while the Lorentz force holds the spacecraft 
in a steady location, obviously this concept assumes highly precise control of the tether. 

A problem with using the equilibrium points near the moons is that the points are generally unstable.14 
An alternative to maintaining a highly-constrained position is using periodic orbits about equilibrium 
points. After generating multiple families of basic Lyapunov orbits it is found that stable orbits do exist 
for differing tether lengths and energy levels. Investigations of more advanced orbits via bifurcations will 
likely find more stable orbits of interest. This has significant implications from a mission design 
standpoint. At the most basic level these orbits can be used as long-term parking orbits near a moon 
without requiring corrective maneuvers. Additionally power can be generated over the course of the orbit 
without the need to maintain position as would occur at equilibrium points. Assuming the orbit is 
favorable for science data it can be captured into for significantly less cost than typical low-altitude 
science orbits deep in the moon’s gravity well. 
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