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ABSTRACT  

We compare the broadband contrast performances of several Phase Induced Amplitude Apodization (PIAA) 
coronagraph configurations through modeling and simulations.  The basic optical design of the PIAA coronagraph is the 
same as NASA’s High Contrast Imaging Testbed (HCIT) setup at the Jet Propulsion Laboratory (JPL).  Using a 
deformable mirror and a broadband wavefront sensing and control algorithm, we create a “dark hole” in the broadband 
point-spread function (PSF) with an inner working angle (IWA) of 2(fλ/D)sky.  We evaluate two systems in parallel. One 
is a perfect system having a design PIAA output amplitude and not having any wavefront error at its exit-pupil.  The 
other is a realistic system having a design PIAA output amplitude and the measured residual wavefront error.  We also 
investigate the effect of Lyot stops of various sizes when a postapodizer is and is not present.  Our simulations show that 
the best 7.5%-broadband contrast value achievable with the current PIAA coronagraph is ~1.5×10-8.   

Key words: Coronagraphy, adaptive optics, space telescopes, exoplanets 

1. INTRODUCTION 
One of the important milestones of the Phase Induced Amplitude Apodization (PIAA) coronagraph, one of NASA’s 
High Contrast Imaging Testbed (HCIT) setups at the Jet Propulsion Laboratory (JPL), is to achieve 10-9 mean contrast in 
a dark hole with a 10% broadband light.  So far a mean intensity of 5x10-10 has been achieved experimentally in a dark 
hole in the monochromatic point-spread function (PSF) with an IWA of 2(fλ/D)sky using a configuration in which the 
DM was placed downstream of the front end PIAA set.  The aspheric PIAA mirrors used in that experiment was made 
by Axsys and is identified as “PIAA1” in this paper.  They are described in detail in Ref. 1.  Placing the DM upstream of 
the front end PIAA sub-system enables the correction of high spatial frequencies before the PIAA remapping carries that 
information to frequencies higher than Nyquist frequency, allowing a larger outer working angle (OWA).  Also, using an 
inverse-PIAA set at the back end enables one to recover a sharp diffraction-limited image over a useful field of view [2-
3]. We compare the broadband-contrast performance of several PIAA coronagraph configurations through modeling and 
simulations.  The structural design of the optical system as well as the parameters of various optical elements used in the 
analysis are drawn from those of the PIAA/HCIT system that have been implemented with one DM [4].  For the basic 
PIAA configuration currently implemented on the testbed, we investigate the effect of the residual phase error and its 
dispersion on the broadband contrast, examine the effect of Lyot stops of various sizes when a postapodizer is present, 
and compare the performances of three postapodizer designs.  We also evaluate the effect of small PIAA output-
postapodizer mismatch in terms of design and alignment. 

2. BACKGROUND 
2.1 Amplitude and Phase of the Exit-Pupil 

The PIAA implementation on HCIT is described in detail in Ref. 5, so the description will not be repeated here.  In order 
to simulate this testbed appropriately, the amplitude and the phase of the exit-pupil of the real system, without 
postapodizer and Lyot stop, were estimated.  This was done by using the phase retrieval method described in Ref. 4 after 
a “flat-state” of the exit-pupil phase was reached by several iterations of wavefront control via phase retrieval and DM 
actuation.  In this paper we mostly use the designed output amplitude of the PIAA1, but in several cases simulate the 
current testbed using the measured amplitude of the exit-pupil described in Ref. 4.  The designed PIAA1 output  
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amplitude is shown in an arbitrary gray-scale in Fig. 1(a).  The residual measured exit-pupil phase error is shown as an 
Optical Path-Difference (OPD) map in Fig. 1(b).  These amplitude and phase maps will serve as the starting point for the 
simulations in the next two sections.  No other optical aberration is included in the simulations.   

2.2 Occulter 

The occulter is a binary mask having a shape as shown in Fig. 1(c).  It is defined by the following five position 
quantities: fyyxxrYYXXR /] , , , ,[] , , , ,[ maxminmaxminminmaxminmaxminmin = , where f  is a focal length, minX  and maxX  are the 
coordinates of the left and the right vertical flat sides, , minY  and minmax YY −=  are the coordinates of the top and the 
bottom flat sides, and minR  is the radius of the semi-circle.  The occulter currently being used on the testbed has 

skymaxmaxminmin )/λ](92.2 ,24.3 ,49.0 ,46.1[] , , ,[ DYXXR = , where the “sky” subscript denotes corresponding locations in the 
source plane.  We will vary the values of ] ,[ maxmax YX  in this paper depending on the simulations to be performed, but 
keep the above values of ] ,[ minmin XR  as constants.  Figure 1(c) shows a nominal occulter used in this paper and has 

skymaxmax )/λ](.947 ,.278[] ,[ DYX = . 

     
Fig.1. Designed amplitude (left) and estimated phase (center) at the exit-pupil, seen through the entire coronagraph with no 

occulter and Lyot stop.  Both the amplitude and the phase are displayed in a linear scale.  The amplitude at the edge is 
approximately 1/10 that at the center.  This phase has been flattened by an iterative wavefront control process involving 
phase estimation and DM actuation before the data shown here were taken.  The residual wavefront phase shown here 
is at spatial frequencies beyond the control of the DM.  Its color-stretch is truncated in both ends for better visualization 
of its fine details.  Also shown on the right is the occulter used in the simulations of this paper.  It is a binary mask 
similar to the actual occulter in shape but with larger width and height.  The blue and the red shapes inside the 
transparent area indicate the control and the contrast dark-hole areas, Ωc and Ωb, respectively. 

2.3 Definitions of Dark-Hole Areas and Contrast 

For the current optical system with only one DM, we carry out wavefront control (WFC) or electric-field conjugation 
(EFC) over a region cΩ , where cΩ  is a half dark-hole region having the same shape as that of the occulter.  The blue-
frame in Fig. 1(c) shows the boundary of an example of cΩ , and corresponds to 

=] , , ,[ maxmaxminmin YXXR sky)/λ](44.3 ,31.5 ,75.0 ,72.1[ D .  We will evaluate the performance of the PIAA coronagraph using 
the mean normalized intensity, bI , defined as 

 { }
b),(0b /),( Ω∈= yxIyxIMeanI , (1) 

where “Mean” represents a mean-value operation, ),( yxI  is the image intensity of the occulted star, 0I  is the peak value 
of the unocculted star intensity, and bΩ  represents the contrast dark-hole area.  The subscript “b” means “big” and is 
used here to have the same naming convention as in our previous publications [6].  The red-frame in Fig. 1(c) shows the 
boundary of the bΩ  corresponding to the cΩ  in the same plot (blue-frame), and is defined by 

skymaxmaxminmin )/λ](12.3 ,99.4 ,07.1 ,04.2[] , , ,[ DYXXR = .  That is, we have chosen an bΩ  slightly smaller than the 
corresponding cΩ  in this study.  We will keep the values of ] ,[ minmin XR  unchanged for both cΩ  and bΩ  in this report.   
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2.4 About the Wavefront Control (WFC) Algorithm 

In this paper, we use a control algorithm similar to the “minimum-wavefront and optimal control compensator” 
described in detail in Ref. 7.  This approach is also called “Actuator regularization” [8].  The WFC algorithm described 
in Ref. 7 uses the wavefront at the system exit pupil as its input, and calculate the actuator commands as its output.  In 
the present case we set the DM actuators to superpose the negative of the electric-field (e-field) onto the image plane, 
with a goal to make the image intensity zero on the region Ωc on the image plane.  Therefore, the WFC algorithm uses an 
e-field column-vector e


 as its input, where 
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The joint cost function now becomes as  
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and the gain matrix G~  is obtained from 

 [ ] TT SISSG ~~γ~~ ~ 1
wu

−
+= , (4) 

where I~  is an identity matrix and u
  is the DM actuator command vector to be determined.  It is obtained from 

test
~

eGu


−= , where teste
  is the vector of the e-field to be minimized.  In Eq. (2), E


 is the column-vector of the complex e-

field on region Ωc.  It is formed by stacking the elements of the complex e-field on region Ωc in a certain order, as was 
explained in Eq. (1) of Ref. 7.  The )(E


ℜ  and the )(E


ℑ  are the real and the imaginary parts of E


, respectively.  In Eq. 

(4), the S~ is the sensitivity matrix consisting of the influence functions of all actuators, and wuγ  is the actuator 
regularization factor.  Our Fast Fourier-Transform (FFT) based simulation tool calculates the complex e-field at the final 
focal plane directly.  Therefore, the e-field estimation step [8] is not needed in our simulations.  The simulation creates a 
1103x1103 pixels (pix) PSF image in the final focal plane, with ~0.987pix per sky)/λ( D .  There are a total of 1024 DM 
actuators (32x32 actuators) in the current 1-DM system, but we exclude the actuators with zero or very weak influences, 
thus reducing the number of the actuators used to <1024.   

In this report, we carry out broadband control using three wavelengths: λ1 = 770nm, λ2 = 800nm, and λ3 = 830nm.  This 
is equivalent to simulating a broadband light with ∆λ/λ0 = 7.5%, where ∆λ is the bandwidth of the propagating beam and 
λ0=λ2.  In this case, the e-field column-vector in Eqn. (2) is replaced with a broadband one as [8] 
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To obtain a broadband PSF, we calculate the PSF’s at the above three individual wavelengths first, then take their 
arithmetic average with an equal weight.   

3. CONTRAST PERFORMANCE OF FOUR PIAA CONFIGURATIONS 
3.1 Schematic Diagrams of Four Different PIAA Coronagraph Configurations 

In this section, we will compare the broadband contrast performance of four different PIAA coronagraph configurations.  
Their schematic diagrams are shown in Fig. 2, where the four configurations are identified as “C1” through “C4”.  
Among them, C1 corresponds to the standard optical architecture currently being used on the HCIT in which the DM is 
placed downstream of the front end PIAA set and there is no an inverse-PIAA (iPIAA) at the back end of the optical 
system.  C2 is the same as C1 except that the DM is placed upstream of the front end PIAA set.  If we add an iPIAA set 
at the back end of C1 we obtain C3.  Similarly, we obtain C4 by adding an iPIAA set to the back end of C2.  In our 
simulations, the illumination of the DM covers approximately a 32-actuator diameter circle (out of 32x32 actuators).  

 
3 



 
 

 
 

The postapodizer used in the simulations of this section is a simple circular stop, not an annular binary postapodizer to 
be described later in this paper that is typically specified for PIAA coronagraphs.  The occulter is the same as that 
explained in Sub-Section 2.2, and the Lyot stop is a circular aperture with 614.0/lyo =DD , where D  and lyoD  are the 
diameters of the system clear aperture and the Lyot stop, respectively.  As explained in Ref. 4, the PIAA mirrors apodize 
the pupil amplitude and distorts the phase map of the input pupil.  At the same time, they produce a magnification and 
aberration of off-axis sources, which depends on the postapodizer and Lyot stop.  For the four configurations explained 
above, this magnification is 2.5.  For example, for C1 in Fig. 2, we have 
 skysys )/λ(5.2)/λ( DD ×= , (6) 

where the subscript “sys” means “system” and the sys)/λ( D  corresponds to the camera at the final focal plane.   

 
Fig.2. The schematic diagrams of four configurations, C1 through C4, to be simulated in this paper.  Among them, C1 

corresponds to the standard optical architecture currently in place on the HCIT in which the DM is placed downstream 
of the front end PIAA set and there is no an inverse-PIAA (iPIAA) at the back end of the optical system.  C2 is the 
same as C1 except that the DM is placed upstream of the front end PIAA set.  C3 is obtained by adding an iPIAA set at 
the back end of C1.  Similarly, C4 is obtained by adding an iPIAA set to the back end of C2.   

3.2 Broadband WFC: An Example 

In this sub-section, we explain the process of our broadband WFC simulation with an example.  If we apply the exit-
pupil amplitude and phase of Figs. 1(a) and 1(b) to C1, and use a Lyot stop with 614.0/lyo =DD  as well as the occulter 
shown in Fig. 1(c), we obtain a broadband pre-control PSF as shown in Fig. 3(a), where the wavelength-dependent phase 
is modeled as OPD×= )/2( λπφ , with the OPD given in Fig. 1(b).  After carrying-out 15 iterations of broadband WFC, 
we obtain a broadband post-control PSF as shown in Fig. 3(b).  The DM solutions which yield this result are shown in 
Fig. 3(c) as a DM actuator height map, and the normalized intensity bI  is shown as a function of control iteration 
number in Fig. 3(d).  In this report, the broadband WFC for each simulation case is carried out with two γwu -values:  
With γwu = γwu0 for 5 iterations and with γwu = 10×γwu0 for 10 iterations, where γwu0 is an initial value of γwu.  This γwu0 is 
different for different configurations as well as for different input parameters.  It also depends on how the sensitivity 
matrix S~  is calculated.  Therefore, it needs to be determined by trial and error at the beginning of each simulation run.  
In the current example, a sharp decrease in Ib takes place when γwu transitions from γwu0 to 10×γwu0.  This happens in 
many cases of our simulations, but not always.  
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Fig.3. (a) Broadband PSF before wavefront control.  It is obtained by averaging three PSF’s at λ = 770, 800 and 830nm with 

an equal weight, where λ denotes the wavelength.  (b) Broadband PSF after wavefront control.  It is obtained in the 
same way as part (a) after carrying out WFC for 15 iterations with three wavelengths: 770, 800 and 830nm.  (c) DM 
actuator heights used to obtain the PSF in part (b).  (d) Normalized intensity, Ib, versus the number of control iterations.  
The WFC was carried in two steps: With γwu = γwu0 for 5 iterations and with γwu = 10×γwu0 for 10 iterations, where γwu0 
is an initial value of γwu.  In this case, a sharp decrease in Ib takes place after this transition.   

3.3 Broadband Contrast of Four PIAA Configurations 

In theory, placing a 32x32-actuator DM downstream of the front end PIAA sub-system allows one to control spatial-
frequencies at most up to skysys )/λ(4.6)/λ(16 DD = .  On the other hand, if the DM is placed upstream of the front end 
PIAA sub-system, one will be able to control spatial-frequencies up to syssky )/λ(40)/λ(16 DD = . We have evaluated the 
performance of the above four PIAA coronagraph configurations in terms of their OWA and broadband contrast for the 
two cases of exit-pupil phase: An idealized case of 0=φ  and a realistic case of OPD×== )/2()( λπλφφ .  The results of  

   
Fig.4. (a) Normalized intensity, Ib, versus maxX of the contrast dark-hole area when 0=φ .  The four different colors 

correspond to the four PIAA coronagraph configurations as indicated in the figure legends.  The areas of both the 
control and the contrast dark-holes are increased by a variable W∆  in the form as WXX ∆+= max0max , 

WYY ∆+= max0max , and WYY ∆−−= max0min , where the subscript “0” denotes the nominal value of the corresponding 
quantity.  The other two dimensions, minX  and minR , are kept unchanged.  (b) Same as part (a), except )(λφφ = .   

0=φ  are shown in Fig. 4(a), and those of )(λφφ =  are in Fig. 4(b), respectively.  In these simulations, we increased the 
areas of both the control and the contrast dark-holes by a variable W∆  in the form as WXX ∆+= max0max , 

WYY ∆+= max0max , and WYY ∆−−= max0min , where the subscript “0” denotes the nominal value of the corresponding 
quantity.  The other two dimensions, minX  and minR , are kept unchanged.  In the idealized case, C1 and C3 work the best 
in terms of contrast, and C4 works the best in terms of OWA as expected.  However, C2 does not work well.  In the 
realistic case, C3 gives the best contrast at small OWA, and C4 does the same at large OWA.  For C4, 9

b 100.4 −×=I  at 
OWA = skymax )/λ(94.8 DX = .  This value is 9

b 109.3 −×=I  when 0=φ .  That is, C4 eliminates the effect of exit-pupil 
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phase error almost completely at some dark-hole areas.  This was not expected before.  Another important point to note 
is that C1 and C3 do not provide the expected control bandwidth (up to sky)/λ(4.6 D ) when )(λφφ = .  That is, in these 
two configurations, the phase error in the system reduces the size of the controllable area in the image plane.  We will 
discuss this point further in the next section. 

4. EFFECT OF EXIT-PUPIL PHASE ON CONTROL EFFICIENCY 
In most active optical systems equipped with one or more DM’s having a small number of actuators, say, for example, a 
few hundred actuators, the commonly used method for obtaining the sensitivity matrix S~  is direct measurement.  
Indeed, it is a preferred method. The reason is that the resulted S~  perfectly matches the optical system in which the 
wavefront sensing and control operations are to be performed.  However, this method becomes unpractical for optical 
systems such as the HCIT, where the DM has 1024 actuators and measuring their e-field based influence functions is 
very time-consuming.  Therefore, we obtain the S~  used in both simulations and experiment from the model of the DM 
actuator and the HCIT optical system.  One question we face in such a situation is what we should do with the exit-pupil 
phase, φ .  In the real world the φ  constantly changes due to drift and intentional motion of the optical hardware, and 
also as a result of a wavefront sensing and control process.  It is not an easy task to re-calculate the S~  for each new 
optical state.  In all the simulations presented above, we used an S~  matrix obtained with 0=φ .  In order to gain some 
understanding about the effect of this exit-pupil phase on the control efficiency of our testbed, we obtained a new set of 
S~  including the )(λφφ =  shown in Fig. 1(b), and repeated the simulations of the several points in Fig. 4(a) for C1.  The 
results are shown in Fig. 5(a), where we included the data of C1 shown in Figs. 4(a) and 4(b) for comparison.  As we can 
see, matching the S~  in terms of exit-pupil phase with the optical system to be controlled improves the control efficiency 
at regions where the OWA is small, but by very amount in the current case.  This result suggests that we do not lose 
much by working with a phase-error-free S~ .  As we pointed out in the previous section, the exit-pupil phase error not 
only raises the contrast floor we can achieve in a WFC process, but it also reduces the size of the image plane area that 
can be controlled.  C1 is supposed to work up to skymax )/λ(4.6 DX = in its control dark-hole area, and indeed does so 
when 0=φ .  However, when )(λφφ = , the contrast floor starts to worsen as early as skymax )/λ(2.5 DX ≈ .  Figure 5(b) 
shows the post-control PSF’s of C1 when skymax )/λ(2.6 DX =  in the range of sky)/λ](.966  0[ DX =  and 

sky)/λ](.954  95.4[ DY −= .   

   
Fig.5. (a) Normalized intensity, Ib, versus maxX of the contrast dark-hole area for C1.  The three different colors correspond 

to three different phase-error situations at the exit-pupil (Pupil φ) and when obtaining the sensitivity matrix (IF φ).  The 
areas of both the control and the contrast dark-holes are increased by a variable W∆  in the form as 

WXX ∆+= max0max , WYY ∆+= max0max , and WYY ∆−−= max0min , where the subscript “0” denotes the nominal value 
of the corresponding quantity.  The other two dimensions, minX  and minR , are kept unchanged.  (b) Log-scale post-
control PSF’s corresponding to skymax )/λ(2.6 DX =  in part (a).  The units of the x- and the y-axes are sky)/λ( D .   
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5. EFFECT OF DIFFERENT LYOT SIZES AND POSTAPODIZER DESIGNS 
The current PIAA coronagraph testbed at JPL uses C1 as its optical configuration.  Until now it has been operated with a 
narrow-band beam.  The best narrow-band contrast achieved to date is ≈bI 5x10-10.  In order to determine a “best” 
architecture for its broadband operation, we have investigated how C1 performs with a 7.5% broadband light and with 
various choices of postapodizer and Lyot stop size.  In this section, we describe our simulation results. 

5.1 Performance with a Designed PIAA Output Amplitude 

The first part of this study was carried out with the designed PIAA output amplitude of Fig. 1(a).  We considered three 
choices for a postapodizer: A circular stop, a 6-ring annular postapodizer, and a 10-ring annular postapodizer.  If a 
circular-stop postapodizer is applied after the PIAA mirrors, the coronagraph produces an amplitude at the exit-pupil of 
Fig. 1(a), seen through the entire system with no occulter and Lyot stop.  The same amplitude produced with a 6-ring 
annular postapodizer is shown in Fig. 6(a).  If the coronagraph is free of phase error, then the amplitude of Fig. 1(a) 
produces a PSF as shown in Fig. 6(b), and that of Fig. 6(a) produces a PSF in Fig. 6(c).  That is, in this case, the net 
effect of the 6-ring postapodizer is to produce an annular dark-hole from skymin )/λ(2 DR ≈  to skymax )/λ(4 DR ≈ .  The 
similar  results obtained with a 10-ring postapodizers are shown in Figs. 6(d) and 6(f).  Figs. 6(b) and 6(e) are the same 
except that Fig. 6(e) shows a larger area of the PSF than in Fig. 6(b).  In this case, the 10-ring annular postapodizer 
creates an annular dark-hole from skymin )/λ(2 DR ≈  to skymax )/λ(8 DR ≈  with a contrast floor comparable to that of 6-ring 
postapodizer.   

       

       
Fig.6. Exit-pupil amplitude and PSF maps obtained in C1 with 0=φ . (a) Exit-pupil amplitude when a 6-ring postapodizer 

is used.  (b) Pre-control PSF obtained with a circular-stop postapodizer.  The corresponding pupil amplitude is the 
same as that in Fig. 1(a).  (c) Pre-control PSF obtained with the 6-ring postapodizer of part (a).  (d) Exit-pupil 
amplitude when a 10-ring postapodizer is used.  (e) Same as part (b) except that its area is matched with part (f).  (f) 
Pre-control PSF obtained with the 10-ring postapodizer of part (d).   

The real coronagraph system is not free of phase-error.  As a result, the two annular ring postapodizers cannot produce 
an annular dark-hole region in their own, and one needs to perform WFC to generate dark-holes.  In order to take 
advantage of the function of the 6-ring and the 10-ring postapodizers, we carry out our following simulations with a new, 
semi-annular dark-hole region.  That is, we use skymaxminmin )/λ(4.83] 1.72, , 75.0[ ] , ,[ DRRX = for control dark-hole, and 

skymaxminmin )/λ(4.50] 2.04, , 07.1[ ] , ,[ DRRX =  for contrast dark-hole, respectively.  Figure 7(a) shows the normalized 
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intensity bI  as a function of normalized Lyot-stop diameter, DD /lyo .  The last data points at 15.1/lyo =DD  correspond 
to a case where the Lyot-stop is removed.  In the case of a circular-stop postapodizer, the bI decreases first, then 
increases, reaching an optimum value at 75.0/lyo ≈DD .  It exhibits somewhat irregular behavior with the 6-ring 

postapodizer, and gets the best value of 9
b 106.2 −×=I  at 05.1/lyo =DD  among all cases considered.  The 10-ring 

postapodizer produces the most interesting bI  result.  That is, the bI  becomes smaller with increased DD /lyo  and 
reaches an optimum value when the Lyot-stop is removed.  We believe the observed the behavior of the bI  is dependent 
on the residual phase error included in these simulations and may change if the optical system has a different set of phase 
error.  

       
Fig.7. (a) Normalized intensity, Ib, versus DD /lyo  for C1.  The three different colors correspond to circular-stop, 6-ring and 

10-ring postapodizers, respectively.  The last data points at 15.1/lyo =DD  are obtained without Lyot stop, or with 

∞=DD /lyo . (b) Normalized intensity, Ib, versus phase scaling factor, Fφ.  In this part, the Ib is evaluated with a series 

of new exit-pupil phase errors given by )(λφφ φF=  and by setting DD /lyo to its optimum values: 75.0/lyo =DD for 

circular-stop, 05.1/lyo =DD  for 6-ring, and ∞=DD /lyo  for 10-ring postapodizers, respectively.   

In order to get an understanding on how much improvement we can get in bI  if we reduce the exit-pupil residual phase 
error, we evaluated the bI  by changing the exit-pupil phase error as )(λφφ φF= , and by setting DD /lyo  to its optimum 
values: 75.0/lyo =DD for circular-stop, 05.1/lyo =DD  for 6-ring, and ∞=DD /lyo  for 10-ring postapodizers, respectively.  
The results of bI  are shown as a function of φF  in Fig. 7(b).  The 6-ring postapodizer maintains its leading performance 

in the entire range of φF , and gives a best result of 9
b 105.1 −×=I  at 0=φF . 

We found that the DM actuator displacement is quite different for three postapodizers.  In Figs. 8(a-i) we show the pre-
control PSF, post-control PSF, and the corresponding DM actuator heights obtained in C1 with the three different 
postapodizers: Circular-stop (top-row), 6-ring (middle-row), and 10-ring (bottom-row) postapodizers, respectively.  We 
used 7.0/lyo =DD  here because the three postapodizers produce comparable bI results at this DD /lyo  value.  The area of 
the active actuators is the largest with the circular-stop postapodizer, and the smallest with the 10-ring postapodizer.  The 
root-mean-square (RMP) and the peak-to-valley (PV) values of the DM actuator heights are also the smallest in the latter 
case.  That is, to achieve the same contrast level, one utilizes the DM actuators the less when using a 10-ring 
postapodizer than one does with a circular-stop postapodizer.  The behavior of the DM actuators when using a 6-ring 
postapodizer falls in between those of the circular-stop and the 10-ring postapodizers. 

We also want to know the best expected performance of the current PIAA coronagraph testbed when a different 
postapodizer is used.  To this end, we repeated the bI  versus DD /lyo  simulations with the measured amplitude at the 
exit-pupil shown in Fig. 9(a).  Figure 9(b) shows the corresponding normalized intensity results.  Again, the 6-ring 
postapodizer performs the best, but the best contrast value never reaches to 1x10-8.   

There can be a mismatch between the front end PIAA mirrors output and the postapodizer due to some design and/or 
fabrication errors.  In order to understand how much impact such an error has on the broadband contrast, we varied the  
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Fig.8. Pre-control PSF, post-control PSF and the corresponding DM solutions obtained with a circular-stop (top row), a 6-

ring (middle-row) and a 10-ring (bottom-row) postapodizers, respectively.  7.0/lyo =DD  in all cases.  The blue 
frames in pats (a), (d) and (g) show the area of contrast dark-hole.  The x-labels of parts (c), (f) and (i) are the root-
mean-square (RMS) and the peak-to-valley (PV) values of the corresponding DM actuator height maps.   

 
Fig.9. (a) Estimated amplitude at the exit-pupil, seen through the entire coronagraph with no occulter and Lyot stop.  It is 

displayed in a linear scale.  The upper-limit of its color-stretch is reduced from 1.0 to 0.85 for better visualization of its 
fine details.  The amplitude at the edge is approximately 1/10 that at the center.  (b) Normalized intensity, Ib, versus 

DD /lyo  for C1.  The three different colors correspond to circular-stop, 6-ring and 10-ring postapodizers, respectively.  

The last data points at 2.1/lyo =DD  correspond to no Lyot-stop, or ∞=DD /lyo . 

radius of the annular transparent and opaque bands of the 6-ring postapodizer as )( rrFTT = , and evaluated the 
broadband contrast of C1 for three values of rF , rF =0.97, 1.00 and 1.03.  Figure 10(Left) shows the profile of the 
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designed PIAA output amplitude with the three 6-ring annular postapodizer, and Fig. 10(Right) shows corresponding 
normalized intensity map after control.  The bI –value of each case is given in the x-label of the same plot.  The bI –
value increases by a factor of 1.69 and 1.73 when rF  = 0.97 and 1.03, respectively.  For the above three values of rF , 
we got 88

b 102.1 ,102.1 −− ××=I  and 8105.1 −× , respectively, when we used the measured pupil amplitude instead.   

Another possible situation regarding the alignment of a postapodizer with the PIAA mirrors is the off-centering of the 
postapodizer relative to the PIAA output.  In order to gain some quantitative understanding on the impact of such a 
situation on the broadband contrast, we off-centered the 6-ring postapodizer up to 05.0/ ±=∆ Dx along the x-axis, and by 
the same amount along the y-axis, along one direction at a time, and evaluated the corresponding before- and after-
control bI -values.  Figure 11(a) shows the PIAA output amplitude profile when Dx /∆ = -0.05, 0 and 0.05, and Fig. 
11(b) shows the before-control (solid-curves) and after-control (dashed-curves) bI -values obtained with the design 
PIAA output amplitude for C1.  We have the capability on the current testbed to align a postapodizer with a sub-micron 
precision, and we believe the above sensitivity of the HCIT contrast on the postapodizer position is good enough for us 
to position a postapodizer with a fairly high accuracy.    

 
Fig.10. (Left) Cross-section of the design PIAA output amplitude with a 6-ring annular postapodizer whose transmittance is 

defined by )( rrFTT = , where r is a radial position variable and Fr is a scaling factor.  (Right) Normalized after-control 
PSF’s corresponding to three Fr –values: Fr = 0.97, 1.00, and 1.03.  The corresponding mean normalized intensity 
inside the dark-hole, Ib, is shown in the x-label.   

 
Fig.11. (a) Cross-section of the design PIAA output amplitude with a 6-ring annular postapodizer off-centered in the x-

direction by Dx /∆ =-0.05, 0 and 0.05.  (b) Before-control (solid-curves) and after-control (dashed-curves) Ib–values of 
C1 corresponding to different 6-ring postapodizer de-centering values.  The postapodizer was de-centered in only one 
direction at a time.   

6. CONCLUSION 
One of the important milestones of the PIAA coronagraph project is to demonstrate 9101 −×  contrast with 10% 
bandwidth.  In order to identify the potentials and the limitations of the current single-DM PIAA coronagraph on HCIT, 
we have evaluated through modeling and simulations the broadband contrast performance of four different PIAA 
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coronagraph configurations.  The simulation results confirmed that an inverse-PIAA expands the OWA.  A somewhat 
surprising result is that, at some dark-hole size, the inverse-PIAA also improves the control efficiency, yielding better 
broadband contrast values as compared to the corresponding no inverse-PIAA case.  Overall, the C4 performs the best 
with the designed PIAA output amplitude in terms of both broadband contrast and OWA.  For C1, the optimum Lyot 
stop size is different for different postapodizer designs, and the 10-ring annular postapodizer performs the best when the 
Lyot stop is completely removed.  Different postapodizer designs require different DM actuator displacements to 
achieve comparable contrast levels.  Our simulations predicted that the best 7.5%-broadband contrast achievable with 
C1, the designed PIAA output amplitude and the 6-ring annular postapodizer is 9106.2 −× .  This result degrades to 

8105.1 −×  if the amplitude estimated at the exit-pupil of the current system is used.  The sensitivity of C1’s contrast 
performance to the PIAA-postapodizer mismatch and to the postapodizer position error was also investigated.  It was 
found that a 3% mismatch between the 6-ring postapodizer and the PIAA output worsens the contrast level up to a factor 
of ~1.7.  It was shown that the sensitivity of the pre-control and the post-control contrast values to the lateral position of 
a postapodizer can be used to align it with the PIAA output with a satisfactory accuracy within our current capability. 
We believe the above findings are very useful in determining the future direction of this project.   

ACKNOWLEDGEMENTS 

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the 
National Aeronautics and Space Administration.  

REFERENCES 

1. Guyon, O. et al., “High-contrast imaging and wavefront control with a PIAA coronograph: Laboratory system 
validation,”, Pub. Astron. Soc. Pacific 122, 71-84 (2010). 

2. Guyon O. et al., “Phase induced amplitude apodization (PIAA) coronagraphy: recent results and future 
prospects,” Proc. SPIE, 8151, 81510H (2011).  

3. Guyon O. et al., “Phase induced amplitude apodization (PIAA) coronagraphy: recent results and future 
prospects,” Proc. SPIE, 8442, 84424V (2012).  

4. Kern, B. et al., “Phase-induced amplitude apodization (PIAA) coronagraph testing at the High Contrast Imaging 
Testbed,” Proc. SPIE, 7440, 7440H (2009). 

5. Kern, B. et al., “Laboratory testing of a Phase Induced Amplitude Apodization (PIAA) coronagraph,” Proc. 
SPIE, 8151, 815104 (2011).  

6. Erkin Sidick, Stuart Shaklan, and Kunjithapatham Balasubramanian, "HCIT broadband contrast performance 
sensitivity studies,” Proc. SPIE, 8520, pp.85200M (2012). 

7. Erkin Sidick, Scott A. Basinger, and David C. Redding, “An improved wavefront control algorithm for large 
space telescopes,” Proc. SPIE, 7015, 70154P (2008). 

8. Amir Give’on et al., “Broadband wavefront correction algorithm for high-contrast imaging system,” Proc. 
SPIE, 6691, 66910A (2007). 

 
11 


	Abstract
	1. INTRODUCTION
	2. Background
	2.1 Amplitude and Phase of the Exit-Pupil
	2.2 Occulter
	2.3 Definitions of Dark-Hole Areas and Contrast
	2.4 About the Wavefront Control (WFC) Algorithm

	3. contrast performance of four piaa configurations
	3.1 Schematic Diagrams of Four Different PIAA Coronagraph Configurations
	3.2 Broadband WFC: An Example
	3.3 Broadband Contrast of Four PIAA Configurations

	4. Effect of exit-pupil phase on control efficiency
	5. effect of different lyot sizes and postapodizer designs
	5.1 Performance with a Designed PIAA Output Amplitude

	6. conclusion
	acknowledgements
	References

