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Abstract 
NASA’s Spitzer Space Telescope was launched on August 
25, 2003 from Florida’s Cape Canaveral Air Force Base. 
Drifting in a unique Earth-trailing orbit around the Sun, 
Spitzer sees an optically invisible universe dominated by 
dust and stars. Since 1997, the Spitzer Integrated Resource 
Planning and Scheduling System (SIRPASS) has helped 
produce spacecraft activity plans for the Spitzer Space 
Telescope. SIRPASS is used by members of the 
Observatory Planning and Scheduling Team to plan, 
schedule and sequence the Telescope from data made 
available to them from the science and engineering 
community. Because of the volume of data that needs to be 
scheduled, SIRPASS offers a variety of automated assistants 
to aid in this task. This paper will describe the functional 
elements of the SIRPASS software system — emphasizing 
the role that automation plays in the system — and will 
highlight lessons learned for the software developer from a 
decade of Spitzer Space Telescope operations experience. 

Introduction 
In this introductory section, we describe the project 
environment in which the Spitzer Integrated Resource 
Planning and Scheduling System (SIRPASS) was 
developed and used in operations. We include high-level 
descriptions of the Spitzer project, spacecraft facility, and 
both flight- and ground-based systems; much detail has 
been excluded, but can be found by consulting the 
references cited in the text. 

Spitzer Space Telescope 
The Spitzer Space Telescope (Werner et al. 2004) is the 
fourth and final of NASA’s great observatories, designed 
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to take images and spectra of astronomical objects in the 
infrared. Spitzer consists of a spacecraft, a 0.85-meter 
telescope and three cryogenically cooled science 
instruments: the Infrared Array Camera (IRAC), the 
Infrared Spectrograph (IRS), and the Multiband Imaging 
Photometer for Spitzer (MIPS), as shown in Figure 1. 

Launched from Cape Canaveral, Florida, on 
August 25, 2003, the mission plan called for a 60-day In-
Orbit Checkout (IOC) followed by a 30-day Science 
Verification (SV) phase. Spitzer employed an innovative 
warm launch architecture: the telescope is located outside 
the cryostat — rather than being encapsulated within it — 
and was at ambient temperature at Launch. The telescope 
baffle was cooled by helium vented from the cryostat, a 
resource that lasted until May 2009 and gave the spacecraft 
nearly 5.5 years of prime mission lifetime. After 
exhausting its supply of helium, Spitzer became too warm 
to conduct scientifically useful observations using either 
IRS or MIPS, but was still sufficiently cold to perform 
some IRAC observations. Spitzer was designed to perform 
scientifically useful observations for at least 2.5 years, but 
continues to do so almost ten years after launch. 

Spitzer is in an earth-trailing solar orbit, slowly drifting 
away from Earth at rate of approximately 0.64 AU every 
five years. Although this orbit was chosen primarily for 
thermal and launch mass considerations, it also vastly 
improves the simplicity and efficiency of operations. As a 
cryogenically cooled spacecraft, Spitzer is constrained to 
keep its solar arrays and sun shield pointed toward the Sun 
by restricting its ability to pitch and roll. As a result of 
these pointing restrictions, Spitzer can only observe targets 
within a narrow annulus that rotates about the sun once per 
year, but ends up covering all inertial targets for at least 40 
days each year. 





the LRP, this information is folded together with the 
information about the AORs in the SODB to produce a 
Baseline Instrument Campaign (BIC) for an extended 
period of time (usually one year) that allocates windows of 
time when each of the three instruments is planned to be 
available for observations. 

Once a BIC is established, the LRP also allocates what 
are called plan windows for each observation. The LRP 
function of SIRPASS — provided by the Spitzer Spike 
subsystem — assigns “plan windows” to each request in 
the SODB by intersecting target visibility as a function of 
time with the availability of a particular instrument (per the 
BIC), and any constraints associated with the observations. 
For example, constraints may include requests by 
observers to acquire data on specific dates, in a specific 
order, or at specified time intervals. Plan windows allow 
the scheduler to identify which science requests are 
available to schedule in the given time period. Plan 
window updates are usually done once per week in order to 
keep pace with the frequent modifications and additions to 
observing programs in the SODB, as well as to take into 
account observations that have been scheduled. 

Filling each week on the observatory timeline with 
engineering and science activities consistent with the BIC 
is the responsibility of the STS process. SIRPASS uses a 
variant of the Greedy algorithm to produce an optimized 
schedule of science observations (Samson 1998). The SSC 
Director approves the weekly schedule and then the 
sequence files are transferred to the MST at JPL for 
generation of command products, Mission Manager 
approval, and uplink to the spacecraft for execution (Barba 
et al. 2006). 

Spitzer Integrated Resource Planning and 
Scheduling System 

SIRPASS (Figure 2) is the last known adaptation of the 
Plan-IT II planning and sequencing tool first developed by 
William “Curt” Eggemeyer in the 1980s (Eggemeyer et al. 
1997). The Galileo, Mars Pathfinder and DATA-CHASER 
(Chien 1999) flight projects each used subsequent versions 
of Plan-IT II as part of their planning and scheduling 
systems. The lead author developed the Plan-IT II 
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adaptations for both Mars Pathfinder and the Spitzer Space 
Telescope. 

SIRPASS is an interactive software application for the 
planning and scheduling of Spitzer activities. The 
application is designed to be a software-based assistant to 
the members of the OPST, who are experts in the planning 
and scheduling of Spitzer observations. The application is 
a Decision Support System that provides an integrated 
platform for assessing the quality of Spitzer scheduling 
options. The application aids in scheduling instrument 
selection, assigns schedule times to specific observation 
requests, and generates stored sequence products destined 
for execution on Spitzer. 

Plan-IT II Core 
SIRPASS is an adaptation of Plan-IT II, a JPL-developed 
spacecraft activity planning software application. The 
Plan-IT II software application has a long history of use at 
the Jet Propulsion Laboratory, including use on the Mars 
Pathfinder and Galileo projects. Plan-IT II supports the 
modeling of spacecraft activities and their impacts upon a 
variety of resources. Because the Plan-IT II software 
architecture utilizes a highly object-oriented design, the 
core software can be easily extended for specific 
scheduling problem domains. Plan-IT II is developed in 
Allegro CL, a dynamic object-oriented development 
environment for ANSI Common Lisp from Franz, Inc. 

Spitzer Science Planning Interactive Knowledge 
Environment 
A survey of astronomical observatory planning and 
scheduling tools conducted in 1998 identified Spike as 
having the greatest degree of applicability to the difficult 
scheduling problem presented by the Spitzer Space 
Telescope. Similarities between the Hubble Space 
Telescope (HST) and Spitzer, including characteristics of 
the astronomer observer community, made Spike — first 
developed for HST — the natural choice for providing the 
required LRP function in SIRPASS. 
Introduction to Spike 
Effective utilization of space-based resources such as 
astronomical observatories is critical to supporting 
NASA’s mission of advancing and communicating 
scientific knowledge and understanding of the Earth, the 
solar system, and the universe. Part of the success of the 
HST mission has been the creation of systems that allow 
HST to achieve high science efficiency. HST has been able 
to supersede the pre-launch predicted efficiency of 35% 
with average efficiencies up to 50% during normal 
operations, with peaks into the 55% range (Adler and 
Workman 2008). A significant portion of this increase is 
due to ground system support software and operational 
improvements that were developed post-launch (Hawkins 

2009). Spike is one of the major software components that 
contributed to this increased efficiency (Johnston and 
Miller 1994). Over its 20+ years of development, Spike has 
evolved significantly, and has been applied successfully to 
a number of astronomic missions, in addition to Spitzer. 
History of Spike According to Hubble 
HST is a general-purpose space observatory that provides 
support for near-infrared, visible, and ultraviolet 
frequencies. In contrast to Spitzer, HST’s Low Earth Orbit 
(LEO) dominates the scheduling of observations. The two 
major constraining factors that LEO contributes to HST 
scheduling are that the target cannot be observed when 
occulted by the Earth or near the bright Earth limb, and, in 
addition, HST may not observe when passing over the 
South Atlantic Anomaly (SAA). Aside from the LEO, the 
main physical constraint on HST observations is that the 
target selected by the observer must not be scheduled 
within a minimum angular separation from the sun or 
moon. Finally, a user can place other requirements on an 
observation including absolute time windows and roll 
angles for observations, as well as timing and roll links 
relative to other observations. 

The first five years of experience using Spike to support 
service mode LRP illustrated three criteria that were 
recognized as important for service mode observing plans: 
Efficiency, Stability and Mutability (Kramer 2000). During 
those first five years of operations, Spike produced plans 
that were not successful in meeting these three criteria. The 
plans that Spike produced led to low efficiency short-term 
schedules, were unstable, and were very resistant to 
incremental change. The first Spike LRP planned 
observations to weeklong bins for input to a short-term 
scheduler. By design these bins had to be well 
oversubscribed so that there would be an adequate mix for 
the scheduler. This frequently meant that half of the 
observations planned for a given week’s bin would get 
bumped to another bin, once the schedule for the week was 
generated, which was frustrating for both scheduling staff 
and observers. 

To address these problems, Spike was redesigned to 
incorporate a new planning and scheduling operations 
concept using “plan windows,” which are typically 4–8 
week windows that are a subset of the observation’s 
constraint windows (Giuliano 1998). A plan window 
represents a best effort commitment to schedule in the 
window. Plan windows from different observations can 
overlap and the windows for a single observation can be 
non-contiguous. Spitzer Spike was based upon this model, 
rather than the original bin-based model that other missions 
had used. 



Adapting Spike 
Spitzer Space Telescope 
Initial development of Spitzer Spike focused on one of the 
primary differences in the Spitzer mission – the sequential 
nature of instrument usage described above. This led to the 
development of an extension to the Spike plan window 
concept, “instrument windows.”  

Instrument window campaigns (the BIC) were 
constructed using a layered strategy. This strategy focused 
on placing the most constrained “absolute time” 
observations on the timeline first, which output a skeleton 
BIC determined by these windows. The second step was to 
fill gaps between these based on a variety of criteria, 
including desired window size and the defined ordering 
described previously. Finally, the remaining observations 
were given plan windows where their constraint windows 
intersected appropriate instrument windows, modifying the 
BIC only when necessary. (Kramer, 2000) 
James Webb Space Telescope (JWST) 
The JWST will be a large, infrared-optimized space 
telescope, designed to find and study the first galaxies that 
formed after the Big Bang. JWST will have infrared 
sensitive detectors and a 6.5-meter segmented primary 
mirror that allows it to also look through interstellar dust 
clouds to see and study the formation of stars and planets. 
The telescope will have a lifetime of 5 to 10 years and will 
be placed about 1.5 million km from Earth in an orbit 
around one of the semi-stable Lagrange points in the Earth-
Sun system (L2).  

JWST has many similarities to both HST and Spitzer. 
Like HST, JWST will be operated in service mode, have 
similar observer constraints and allow some parallelism in 
instrument usage. More akin to Spitzer, JWST will be 
optimized for infrared observation, and not have the highly 
constraining earth orbit. JWST is also limited by non-
replaceable resources and not repairable, like Spitzer, so 
optimization of resource usage will be a key focus of LRP. 

Development of JWST Spike began after most work on 
Spitzer was concluded. Our experiences with Spitzer 
clarified some concepts in software design related to 
specializing the HST code base for new missions and 
helped us focus the early JWST work an a re-architecting 
of Spike (Giuliano 2011) to allow for more coherent 
Object Oriented design, and further extension for future 
missions. 
Far Ultraviolet Spectroscopic Explorer (FUSE) 
FUSE was launched into a low Earth orbit on June 24, 
1999, and was designed to perform high-resolution far 
ultraviolet spectroscopy. FUSE was similar to HST in LEO 
dynamics, but also had many physical constraints that 
differentiated it from HST (some of which were only 
apparent well after launch). 

The initial FUSE Spike implementation was developed 
prior to the advent of the plan window concept discussed 
above, and thus used the bin-based problem solving 
capabilities of Spike (Calvani et al. 2004). This version of 
FUSE Spike used many “repair based” algorithms from the 
Spike toolkit (Johnston and Miller 1994). Due to issues 
discovered after in-orbit checkout, a new constraint on 
reducing the number of slews across the orbital plane 
needed to be put in place. Since the generic algorithms 
weren’t easily tunable to handle this problem, early LRPs 
had to be developed by hand, rather than in Spike. 
Eventually, the Spike team developed a Campaign 
Scheduler for FUSE that was loosely based on the concept 
that had originally been deployed for Spitzer to build the 
BIC, despite the two missions being implemented using 
different core Spike models. For FUSE, “hemisphere 
campaigns” were laid out, around highly constrained 
observations, in a similar fashion to the instrument 
campaigns of Spitzer. 
Spike Lessons Learned 
The Campaign Scheduling concept developed for Spitzer 
proved to be a very useful concept for LRP, and was 
deployed successfully for FUSE, as described above. 

Throughout the development of Spike, we have noted 
that missions never end up being “as planned” and that one 
should develop with post-launch change in mind (Johnston 
and Miller 1994) and (Hawkins 2009). This was 
highlighted in our experience with Spitzer just as it was 
with HST and FUSE: post-launch, we found that, at times, 
the mission requirements weren’t quite as expected pre-
launch, or that manual overrides were necessary due to 
some wrinkle (or bug) that wasn’t anticipated. Examples 
include manual instrument campaign overrides and new 
“instruments” (not physical but virtual). 

Plan-IT II Adaptation 
SIRPASS, the Spitzer adaptation of Plan-IT II, 
incorporates a full complement of system-level models and 
activities. The software includes activity type definitions 
for all of the approved Spitzer request types, models for 
each resource whose utilization impacts the schedule, and a 
variety of integrated models and interfaces that support the 
tasks and decisions required of the OPST. LRP is 
supported by the Spitzer Spike module from STScI along 
with a variety of reports that detail the often-complex 
constraint relationships between requests. STS, which 
forms the majority of the week-by-week OPST tasks, is 
facilitated through the use of an automated scheduling 
algorithm derived from the HST scheduling operations. 
Finally, SIRPASS supports the weekly production of 
formal schedule review and stored sequence products. 



Development Environment 
SIRPASS is implemented following the ANSI Common 
Lisp standard using Allegro CL, version 8.2, from Franz, 
Inc. The integrated development environment includes the 
XEmacs editor, incremental compilation, dynamic linking 
and loading of shared libraries, foreign function interfaces 
to C and other languages, and runtime patching. An 
Allegro-supplied ODBC module, AODBC, which supports 
either the version 2.0 or the version 3.0 ODBC definitions, 
manages connections to the SODB. Source code is 
configuration managed at the SSC using CVS, the 
Concurrent Versions System. 
Plan-IT II Extensions 
SIRPASS uses a number of available extensions to the 
Plan-IT II core system to support its Spitzer functionality. 
The SIRPASS team developed many of these extensions as 
generally useful extensions to the core system, including: 

CSPICE: Provides access to NAIF CSPICE Toolkit 
functionality for calculating light time between Earth and 
spacecraft for timing downlink and uplink activities and for 
converting between NAIF body IDs and names. Access to 
additional CSPICE capabilities is available through 
bindings to the SpiceZfc library. 

DSMS: Provides access to JPL’s Deep Space Mission 
System artifacts, such as Command Definition Language 
files containing Spitzer’s Command Dictionary, definitions 
of DSN complex and antenna resources, and DSN schedule 
files such as Station Allocation Files and Viewperiod Files. 
The DSMS extension also provides the capability to save 
Plan-IT II activity schedules in Spacecraft Activity Type 
File (SATF) and Spacecraft Activity Sequence File (SASF) 
formats. 

Emacs: Provides additional Allegro CL XEmacs IDE 
integration with Plan-IT II for editing files as part of the 
planning and scheduling process and for scripting and 
otherwise controlling Plan-IT II from a programmable 
editor. 

Flat: Provides support for reporting planning and 
scheduling information in CSV and other flat file formats 
for integration with common spreadsheet analysis 
software. 

Gnuplot: Provides access to the popular graphing utility 
for plotting arbitrary planning data such as time series data 
or other data types. 

HTML: Provides support for producing many types of 
planner output in HTML format, including Plan-IT II 
reference documentation, timeline summary and activity 
detail information. 

Model Parameter: An extension for defining models and 
the parameters that influence their evaluation. Includes 
support for runtime modification of the parameter values 
and automatic reevaluation of the model. The end-user can 

model different operations scenarios by saving and loading 
predefined sets of parameter values. 

Reports: A windowed report-generating system that 
supports nicely formatted columnar reports with headers 
and footers. Reports can be viewed on screen, refreshed 
with updated data, saved to text files, and printed to 
PostScript printers. Adapters can easily define new reports, 
and many reports allow for end-user customization of 
content and layout. 

Test: An extension of the Allegro CL test harness to 
support interactive and scripted unit testing and reporting 
for Plan-IT II and adapted systems. 
Integrated Models 
In order to obtain accurate predictions in support of 
efficient scheduling, SIRPASS includes a number of 
independently developed models. 

 The Spitzer Slew Model: An efficient schedule allocates 
no more time than necessary to the slewing of the telescope 
from one location to the next. Should too little time be 
allocated to slewing, the telescope would be in danger of 
not finishing an observation before an established deadline. 
The Pointing Control System (PCS) slew model brings the 
on-board control algorithms into the realm of the ground 
data system, enabling a variety of ground-based software 
applications to accurately predict Spitzer slew times. Slew 
time, and the time it takes to settle upon a target, is non-
deterministic, and therefore the PCS slew model provides a 
best guess as to the actual time these activities will take 
during on-orbit execution. The slew model is implemented 
in the C language and integrated into SIRPASS. 

 The Spitzer PCRS Catalog Tool: The Spitzer Pointing 
Calibration and Reference Sensor (PCRS) Star Catalog 
Tool is ground-based software used in the Spitzer Uplink 
Process to select appropriate stars from the PCRS Guide 
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Star Catalog (GSC). PCCRS allows Spitzer to obtain more 
accurate pointing by referencing the locations of well-
known stars. PCRS calibration activities must be 
performed periodically during the schedule. In order to not 
significantly decrease the efficiency of the schedule, 
SIRPASS uses the Spitzer PCRS Catalog Tool to select a 
calibration star that is close to the scheduled slew path. 

 The Spitzer Spike Module: SIRPASS supports the LRP 
process through its integration of a Spitzer-adapted Spike 
from STScI. Spitzer Spike operates in one of two major 
modes. In both modes, Spitzer Spike calculates a Plan 
Window for each request. A Plan Window is a series of 
time intervals where a request may be scheduled. The 
request’s Plan Window is consistent with the BIC and all 
constraints in which the request participates. In some cases, 
the Plan Window is empty indicating that the request 
cannot be scheduled. 

Although Spitzer Spike can produce an optimal BIC 
from a set of provided requests, the provided BIC is often 
difficult to justify due to its somewhat uneven allocation of 
time between instruments and its tendency to occasionally 
drop an instrument out of regular rotation. Instead of using 
the Spitzer Spike mode that produces a BIC, the OPST 
instead handcrafts a BIC for the second major Spitzer 
Spike mode, which utilizes the provided BIC as input to 
the LRP process. 

The Mars Pathfinder Heritage Data Model: Several 
recent spacecraft have inherited the Mars Pathfinder (MPF) 
telemetry model that is partially based upon the 
Consultative Committee for Space Data Systems (CCSDS) 
concept of Application Process Identifiers (APIDs), 
wherein an APID is associated with an onboard application 
process that generates telemetry. For instance, packets 
designated as APID 20 for Spitzer contain IRAC 
instrument data (from AORs and IERs) specified by the 
ground to be sent first (for instance, calibration data). All 
downlink data are packetized and assigned to APID 
queues, from which data is downlinked in FIFO (first in 
first out) order. 

Within a single downlink session, APIDs are prioritized 
according to a two-dimensional priority matrix called a 
Downlink Priority Table (DPT). The DPT is used to make 
sure the most important data gets in the front of the 
downlink stream, regardless of when it is acquired, with 
the proviso that downlink from individual queues is FIFO. 
In the DPT, APIDs can be assigned to completely override 
others in priority (that is to say, completely prevent other 
APIDs from getting any downlink so long as any data is 
left in the higher priority APID), or they can be assigned to 
share a priority level on a percentage-of-bits basis. 
Different downlink sessions can be governed by different 
DPTs, and within limits, the DPT organization is 
negotiable, although generally once a set of DPTs is tested, 
it is not modified during flight (Mars Pathfinder 1996). 

The algorithms for applying a DPT to a volume of data 
categorized into APIDs is a general one, and applicable to 
most missions that have adopted the convention. The 
Spitzer model for APID/DPT use is essentially unchanged 
from the Mars Pathfinder implementation. The APID/DPT 
specification format is simple, however the system-level 
effects of the specification are often not fully understood 
until some flight experience has been gained through 
normal operations and, possibly, safe-mode or standby 
operations. Where the APID/DPT system becomes highly 
complex is in its effects on activity-specific data 
downlinks. The APID/DPT system makes it difficult to 
answer questions such as “when does data from activity X 
arrive on the ground” and there are currently no scheduling 

tools available which can satisfy a constraint expressed in 
the form “schedule this activity so that its data arrives on 
the ground no later than time X.” 
Observer-Imposed Constraints 
Spitzer allows observers to request constraints on their 
observations. Because observer-imposed constraints — 
combined with operational constraints such as target 
visibility and telescope roll limitations — make it more 
difficult to schedule observations in an efficient manner, it 
is essential that observers keep constraints to a minimum. 
It is recognized that some scientific programs can only be 
accomplished through use of observer-imposed constraints; 
however, Spitzer makes it a priority to ensure that these 
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constraints are thoroughly and soundly justified in the 
observing proposal. 

SIRPASS supports a constraint language similar to that 
defined by the Space Telescope Science Institute. The 
constraints (Figure 3) available to observers are: 

Chain, an ordered, uninterruptible group: The AORs 
will be executed in the order specified with no 
interruptions in the chain. The chain may not exceed the 
maximum allowable duration for a single AOR. 

Sequence, an ordered, interruptible group: A sequence 
constraint is similar to, but less stringent than, a chain 
constraint. The AORs will be executed in the order 
specified and a duration in which they should be completed 
is specified. The sequence constraint should only be used 
when the science requires sequential ordering of the AORs. 
For AORs in which the order of observation is not 
important, a “group-within” constraint should be used 
instead of a sequence constraint. 

Group-within: A group-within constraint specifies that a 
group of AORs will be executed within a specific length of 
time but with no particular starting date or time constraint. 
Once the first AOR has been executed, the rest of the 
AORs in the group will begin within the specified time 
interval. They may be executed in any order within the 
time interval. This is similar to a sequence constraint, but 
the observations may be executed in any order. 

Time-window: Time-window constraints consist of 
defining a window or series of windows for the start time 
of an AOR. If the open and close times of the window are 
specified to be identical for a moving target, then the AOR 
will be scheduled as an absolute time observation at that 
time, and will be executed at that time or no more than 
three seconds later. Spitzer’s scheduling architecture 
generally operates on relative time; inertial target AORs 
will simply run one after the other. Timing constraints for 
inertial target AORs are macroscopic (days, weeks, 
months), not microscopic (seconds, minutes, hours). 

Follow-on: A follow-on constraint executes the “follow-
on” AOR within a specified time range after a particular 
initial AOR has been executed. (In other words, from the 
end of the first AOR body to the beginning of the second 
AOR body.) Follow-on constraints are useful for periodic 
observations of a target where the interval between 
observations is relatively short (hours to a small number of 
days). 

Shadow: The shadow constraint is a special case of the 
follow-on constraint, and is used to obtain background 
measurements for moving targets. The primary AOR is 
executed as specified. The shadow AOR will be executed 
to repeat the track of the primary observation. The selected 
AOR parameters must be identical in the two AORs. The 
shadow may be executed before or after the primary AOR. 
Note that the shadow does not re-observe the target at a 

later date, but rather the background of the primary 
observation (Spitzer Space Telescope 2012). 

These observer-imposed constraints — along with 
spacecraft and operations constraints — are considered 
during both LRP and STS processes. During LRP, Spitzer 
Spike considers constraints while generating rough plan 
windows for requests that are consistent with the BIC; 
during STS, SIRPASS performs detailed, recursive tree-
walking time arithmetic to calculate the schedulable time 
interval for each constrained request. 
Science Operations Database 
The Science Operations Database (SODB) at the SSC 
stores information about all requests for Spitzer 
observations. The SODB is central to all science operations 
and contains a summary of all tracking and status 
information related to a given request. SIRPASS obtains 
information about requests for observations from the 
SODB and provides schedule and status updates to the 
SODB. The SODB interface was a major new addition to 
SIRPASS. 

The SODB classifies requests for observations into three 
categories: 

Astronomical Observation Request (AOR): A request to 
observe a target using one of Spitzer’s eight observing 
modes. Observers generate AORs by providing parameters 
to one of eight Astronomical Observation Templates. 
AORs are used for science observations and most 
instrument calibration activities. 

Instrument Engineering Request (IER): A request to 
operate a Spitzer instrument in a way that cannot be 
accomplished through one of the Astronomical 
Observation Templates. Spitzer engineers use IERs to 
perform instrument operations in a way that is not 
available to observers, generating some IERs by 
parameterizing Instrument Engineering Templates (for 
example, some instrument calibration requests). Other 
IERs are fixed sequences that do not require 
parameterization (for example, instrument turn-on and 
shut-down). 

Spacecraft Engineering Request (SER): A request to 
perform a spacecraft activity not requiring the use of 
instruments (for example, data downlink). Spacecraft 
engineers generate some SERs by parameterizing complex 
activity templates (for example, Wide Angle Sun Sensor 
calibrations), while other SERs are fixed sequences that do 
not normally require parameterization (for example, data 
downlink). 

We can categorize the information stored by the SODB 
thusly: 

General: Includes title, program and observer 
affiliations, comments, instrument, and observation type. 

Resource Estimates: Includes predicts of execution 
duration and telemetry data volume. 





calculates a cost for scheduling each available unscheduled 
request at that time and selects the least costly activity to 
start at that scheduled time. The process continues until all 
available unscheduled requests have been scheduled, or no 
additional available unscheduled requests can be 
scheduled. The cost for scheduling a specific request at a 
specific time is the sum of several terms; each term is 
multiplied by its own coefficient and scaling factor. 
Amongst the terms used are costs associated with slewing 
to the target from the previously established location on the 
sky, a (very high) cost for breaking a chain constraint, 
costs associated with how much overall time is left to 
schedule the request and whether or not the request is 
considered highly constrained. Evaluating the cost formula 
yields a single number, and the request with the lowest cost 
number is selected for scheduling at the considered time. 

Because the scheduling of different weeks occurs in 
parallel, the scheduling process emphasizes the need for 
OPST members to communicate impacts to the schedule to 
those team members scheduling adjacent weeks. 
Scheduling a request in week n may result in its follow-on 
request needing to be scheduled in week n+1. When this 
occurs, it is termed a “must go” request in week n+1; 
SIRPASS supports this process by generating “must go” 
and other constraint-related reports as part of the 
scheduling process. Should constraints need to be broken, 
constraint waivers can be obtained from the SSC’s 
Observer Support Team. 
Scheduling Rules 
SIRPASS extended the Plan-IT II core with a new way to 
instantiate activities on the timeline: the New Activity by 
Rule command. The user invokes the New Activity by 
Rule command on any number of predefined activity types, 
and SIRPASS arranges for Adapter-supplied rules to be 
applied in a predetermined order. 

For example, during the Nominal mission, schedulers 
used the New Activity by Rule command to schedule 
Cryogenic Telescope Assembly (CTA) makeup heater 
commands according to a complex model of thermal 
performance. Early in the mission, spacecraft engineers 
made rules designed to keep the telescope at a steady 
temperature, and the CTA makeup heater-scheduling rule 
ensured that heater levels were switched each time an 
instrument was powered on or off. Later in the nominal 
mission, engineers decided that on-board cryogen could be 
more efficiently utilized if there were a single pulse of 
heater use (which caused the cryogen to sublimate and on 
its escape through the shroud of the telescope, cool the 

baffle) followed by a period where the telescope’s 
temperature was allowed to float. For simplicity, 
parameterization of scheduling rules was not exposed 
through the operations interface, but rules could be 
adjusted to accommodate temporary changes in desired 
behavior. 

Scheduling rules were also available for data 
accountability housekeeping, IRU calibrations, momentum 
desaturation, downlink, and star tracker pointing reference 
calibrations. 
Decision Support Tools 
The ViewingZones tool was developed by Mark Garcia, a 
JPL Mission Planner, and provides a quick way to 
visualize the complex relationship between the OPZ, Earth 
and other important celestial bodies, and the observation 
targets for a given Period of Autonomous Operations 
(PAO), the schedule time between downlinks. The 
ViewingZone tool is written in Quick, a scriptable 
interactive, programmable desktop calculator that is part of 
the Mission Analysis Software Library (MASL) tools suite 
developed by JPL’s Mission Analysis Section, and a 
precursor to the current MONTE system. 

SIRPASS includes many other decision support tools, 
including time calculators, schedule content summary 
reports and request constraint visualization reports. 
Sequence Architecture 
Spitzer employs a “master” and “slave” sequence 
architecture wherein the master sequence controls the 
behavior of the overall sequence load, spawning slave 
sequences at appropriate times. There may be one or many 
master sequences per week, but only one master may be 
executing at a time. Slaves may be as small as one AOR or 
can be several AORs, IERs, or other activities packaged 
together. Spitzer also uses a set of functions called 
sequence blocks, which are parameterized, reusable 
relative-timed sequences. Parameterization allows 
execution of the block to occur differently with each use. 
Blocks may accept parameters, return values, or both, and 
— when loaded into a virtual machine (VM) engine — 
may be used by the master or slave sequences in AORs, 
IERs or SERs. To solve certain VM storage issues, there 
may also be a construct called the slave library. This is 
similar to a block library but contains only single-use 
activities at the AOR and IER level. Slave sequences may 
contain all the commanding necessary for the execution of 
their activities or they may call blocks from the block 
library and slaves from the slave library. 



Before any request can be executed in 
flight, it must first be packaged into 
logical units that will control the timing 
and structure of the plan. In SIRPASS, 
the bundling of requests into this 
structure is called sequence packaging. 
There are several sequence packaging 
structures used in the mission, but one 
structure predominates the nominal 
mission phase. 

Packaging is based upon a series of 
rules which determine which types of 
requests can co-exist in the same 
sequence and which must be in separate 
sequences. For the purposes of 
packaging, the following types of 
requests exist: 

• Fixed-Target AORs 
• Moving-Target (Absolute) 

AORs 
• Power-Transition IERs 
• Other IERs 
• True SERs 
• Pseudo SERs 

 A graphical representation of the rule set is shown in 
Figure 6. In addition to packaging according to the 
compatibility of adjacent request types, the packaging of 
sequences was also constrained by the need to keep slave 
library sizes compatible with flight system requirements. 
For instance, a single VM module is limited to storing 
80,000 bytes of command codes. The AIRE system is 
responsible for estimating the number of command codes 
required by a request, and SIRPASS factors in a running 
total of packaged command codes when determining if 
additional requests can be packaged in the current module. 
Other module-related packaging restrictions include limits 
on string storage and total number of VM instructions. 

Spitzer Development and Testing 
Development of SIRPASS began in 1997 with the 
selection of Plan-IT II as the core science planner system. 
During development, SIRPASS was used for a number of 
reference mission studies and in testing of the Spitzer 
ground data system both at the SSC and at JPL. In many 
ways, the development of SIRPASS mirrored the 
development of the mission system, and many of the 
capabilities of SIRPASS were developed to aid in the 
development and testing of the mission system. 

The Model Parameter extension, for instance, was used 
during the planning of the initial phases of the mission to 
globally adjust the duration of IOC activities as part of a 
worst-case scenario designed to place an upper bound on 

the length of IOC. During an extensive period of learning 
how to operate the Spitzer Spike module, the Model 
Parameter extension was used to define and enforce Spike 
performance parameters; parameterized studies were 
performed to characterize the performance of the system 
under different sets of underlying assumptions about 
instrument ordering, maximum instrument campaign 
length, etc. These types of studies continued throughout the 
mission as the performance of the observatory changed 
over time and the population characteristics of the 
proposed observations also changed. 

Command and Data Handling 
Early in ground testing of Spitzer’s Command and Data 
Handling (C&DH) subsystem, it was discovered that the 
Fast Uplink/Downlink Card (FULDL) was not capable of 
reliably processing transfer frames for downlink at 2.2 
Mbps, Spitzer’s highest data rate, nominally scheduled for 
use during the prime mission. As a result, the C&DH team 
created the Storage Unit (SU), a data structure holding 
sixteen transfer frames. The on-board data storage 
overhead associated with SUs was minor and so did not 
invalidate SIRPASS’s data models. However, SUs and 
certain idiosyncratic behavior of the flight data storage 
subsystem necessitated the use of extra ground analysis 
tools to ensure that on-board data storage was not 
exceeded. Tools were developed to track on-board data 
storage usage and procedures were developed to free on-
board storage space when the associated data had been 
received and processed on the ground (Sarrel et al. 2006). 

 
Figure 6. Request Packaging is a Pairwise Function 



SIRPASS was extended to help make this process more 
manageable, but a completely satisfying solution was never 
achieved. The resulting system was a balance between 
process and tool support and will likely remain so until the 
end of the Spitzer mission. 

Flight Operations Experience 
Experience in operating the flight system invariably leads 
to changes in procedures and capabilities that are reflected 
in changes to ground tools. The manner in which these 
changes are accommodated is often determined by time, 
budget and the flexibility of the automated systems being 
used to support mission operations. 

Slewing Efficiency 
Due to several operational requirements such as solar 
avoidance and solar panel illumination, Spitzer is 
constrained at all times to point the telescope no closer 
than 82.5 degrees toward and no further than 120 degrees 
away from the Sun. This defines the Operational Pointing 
Zone (OPZ) of the Observatory. The OPZ was reduced by 
2.5 degrees in January 2004, which allowed for an increase 
in the maximum slew rates used by Observatory. 

Nominal Operations 
It was during the Nominal Operations mission phase that 
the science operations team discovered the potential for 
bright objects to leave latent images on the instrument 
sensors. To alleviate the effects, it was decided that 
observations of bright objects should be placed 
immediately before downlink activities. The definition of a 
bright object was complicated. Latent 
images were caused by a combination of 
factors including the inherent brightness of 
the observed target, the selection of 
instrument modes and the duration of the 
observation. The science instrument teams 
defined the requirements of a special 
software module to be run during 
observation expansion and resource 
estimation that would flag bright objects at 
the SSC. The flags were then available to 
SIRPASS for use in scheduling the 
observations in locations on the timeline 
that were unlikely to cause problems for 
subsequent observations. Because the 
population of bright object observations 
was thought to be low, it was decided to not 
offer special automated tools for scheduling 
such observations. Instead, bright object 
observations are brought to the attention of 
the schedulers and are placed on the 

timeline manually early in the STS process, often before 
other observations are added to the timeline. New bright 
object observations can also be identified later in the 
scheduling process, making scheduling bright object 
observations a somewhat iterative process. 

Extended Mission and Warm Mission 
The observatory operated extremely well and efficiently 
throughout its nearly 5-year 9-month cryogenic lifetime 
from launch on 25 August 2003 until the helium was 
exhausted on 15 May 2009. Without helium, radiative 
cooling allowed the mirror and cryostat temperatures to 
stabilize at about 26 K, too warm for operation of either 
IRS or MIPS, but sufficiently cold for IRAC observations 
at 3.6 and 4.5 µm (Mahoney et al. 2010). SIRPASS was 
able to accommodate the new Warm Mission phase with 
minimal change by eliminating the use of IRAC instrument 
windows and by changing the layout of the software 
interface to remove display space devoted to MIPS and 
IRS. 

Spitzer Observing Efficiency 
For the purpose of accounting, we categorize efficiency as 
the sum of the amount of time spent executing science 
observations, calibrating science instruments and slewing 
between science targets, as a fraction of all observatory 
time. As shown in Figure 7, beyond the initial “learning 
curve” of operations and not-withstanding spacecraft 
anomalies that halt all science activities, Spitzer has 
achieved efficiency ratings of 90% to 95%. 

 
Figure 7. Spitzer Efficiency Through May 2008 



What the Future Holds 
SIRPASS performance was originally designed with a 500-
request per week timeline and an operations process that 
took four weeks to shepherd one weeks’ worth of 
observations through the entire planning, scheduling, 
sequencing, and uplink process with a staff of four 
schedulers at the SSC. As of this writing, during the Warm 
Mission, the scheduling process is occurring over two-
week intervals using a staff of three schedulers. Over the 
course of the mission to date, Spitzer has returned over 
12.5TB of science data and executed over 78,000 
observations over 63,000 hours. Although most weeks 
have fewer than 500 observations, SIRPASS has scheduled 
some weeks with up to 600 observations and others with as 
few as 60 observations. 

In late 2013, spacecraft operational constraints must 
change for the mission to continue. At this time the 
geometry between Spitzer, Earth, and the sun would cause 
a violation of the current OPZ when the spacecraft 
attempts to point its high-gain antenna (HGA) towards 
Earth for downlink. Considering the narrow beam-width of 
the HGA, if the OPZ were left unchanged downlinks 
would not be possible after the 30° limit was reached. 
Therefore when this limit is reached the OPZ will be 
expanded to 38° in pitch for downlinks only. All other 
OPZ constraints will remain unchanged and all science 
observations shall remain inside the original OPZ 
constraints (Mahoney et al. 2012). Before approving the 
change in OPZ limits, the spacecraft engineering team first 
have to perform tests to characterize and model the 
Observatories thermal and pointing sensor performance 
during dwells beyond the current limits. 

Conclusions and Lessons Learned 
As a wise man once said, “The unexamined life is not 
worth living.” On that basis, in this section we take a look 
at the life of the Spitzer Space Telescope project through 
the lens of SIRPASS, from its initial development through 
its use today in Spitzer’s Extended (Warm) Mission. 

First off, many software and process design choices are 
made in the context of assumptions that seem reasonable at 
the time. However, when those assumptions eventually 
change and the design choice is revisited, it is not unusual 
to find that it is very costly to change the design and 
implementation to accommodate the change in assumption. 
There are a number of reasons for this, including the build-
up of process and software external to the system under 
consideration that result in a ripple effect expanding from 
the original system to many other linked systems. 
Sometimes simply knowing that a “limit” is not truly a 
limit, but a current knowledge boundary, can help drive a 
design that can more easily accommodate a chance to the 

limit. I refer to this as the “Here be Dragons” effect, a 
phrase used to denote unexplored areas on medieval maps. 

Secondly, don’t be surprised — or shocked — at the 
longevity of any piece of software or hardware used in 
mission operations. Budgetary and safety constraints will 
invariably lead to limits a project’s ability to upgrade 
ground data system hardware and software. Personnel 
turnover (including, but not limited to, terminations, 
promotions and death) will change the cost / schedule / risk 
equations used to determine whether to keep, scrap or 
modify any single piece of software or hardware. Plan for 
the full range of possibilities: your software may never get 
used in operations (for example, in the case of a launch 
failure) or it may be used for far longer than you ever 
anticipated. When balancing development priorities and 
design, consider three longevity cases: failure to launch, 
nominal mission duration, and order-of-magnitude mission 
duration. In the case of Spitzer, the nominal mission 
duration was 2.7 years, so the “order-of-magnitude” 
mission duration would be about 27 years. Considering the 
longevity of spacecraft, Voyager being a case in point with 
mission duration of over 35 years, Spitzer mission duration 
of 27 years is not completely whacky. 

As flight projects age, the cost of maintaining a high-
fidelity integration and test facility for ground software 
becomes costly and is often an early target for the 
inevitable budget cuts that are associated with extended 
mission operations. Differences between operations and 
integration and test environments can cause false positives 
during regression testing of ground software. It is often the 
case that the highest fidelity test environment is the 
operations environment itself. When designing software 
systems, consider the possibility of testing the systems on a 
“non-interference” basis within the operations 
environment. For instance, designing a “global switch” that 
prohibits the writing of data to operations data stores, but 
instead simulates the operation without affecting any 
operations system. A software system so isolated can be 
safely tested in an operations environment. Another 
approach is to consider the strategic addition of test assets 
to an operations environment. For instance, a replicated 
database running on a test server in the operations 
environment can act as a stand-in for the operations 
database in many cases. 

As originally envisioned, the Spitzer uplink process was 
to be executed by a single, integrated team, the Integrated 
Mission Planning and Scheduling Team (IMPST). The 
prototype for IMPST was the Mars Pathfinder scheduling 
team which, using MPF Plan-IT, created sequences for the 
Mars Pathfinder lander and processed those sequences 
through the complete uplink process. In 2001, at or around 
project Critical Design Review (CDR), it was decided to 
split the Spitzer uplink process between two teams, one at 
the SSC that would be responsible for assembling the 



spacecraft sequences, and one at the Jet Propulsion 
Laboratory that would be responsible for detailed modeling 
of the sequences and conversion to binary products for 
transmission to the spacecraft. 

Virtual Machine Language 
In 1999, the Spitzer project adopted the use of Virtual 
Machine Language (VML), a procedural sequencing 
language that offered a number of advancements over more 
traditional declarative sequencing languages, including the 
support for conditional branching and function block return 
values (Grasso 2003). VML, although in its early stages of 
development as a flight system component, was seen as a 
much better approach to accommodating Spitzer’s non-
deterministic execution due to slew-and-settle 
uncertainties, than the more traditional sequence execution 
approaches (Grasso and Lock 2008). Given the rich set of 
traditional programming language capabilities offered by 
VML, one might be excused for thinking that the proper 
course of action would be to adopt this new style of 
procedural sequencing for Spitzer. However, our ground 
tool capability for verification and validation was no match 
for the advanced capabilities of VML, and we found that if 
we used the full complement of VML capabilities on 
board, we would have no fast and effective way of 
modeling the flight system behavior on the ground. 
Therefore, it was decided to severely limit our use of 
advanced VML capabilities in ways that 1) could be 
reasonably modeled on the ground, and 2) could be shown 
to provide improvements in system operability without 
undue complexities. It is often a wiser course of action to 
restrain the whole-hearted adoption of new technology for 
a more measured and balanced approach. 

One early use of VML was in avoiding the over-filling 
of spacecraft mass memory, a situation that would have 
consequences for spacecraft safing procedures. Each AOR 
was expressed in VML with a logical wrapper that 
compared a ground-generated estimate of the data volume 
generated by the AOR against the flight system’s record of 
remaining free memory. If the comparison revealed 
insufficient free memory, the observation was skipped. 
Since this observation skipping behavior was consistent 
with the overall operations concept for the telescope, no 
special accommodations for modeling and verification 
were required on the ground. The skipped AOR was 
simply repeated at a later time. To date, only 10 to 20 
AORs have been skipped in this way, and a subsequent 
update to AOR definitions has replaced the original logic 
with new logic that will skip individual data collection 
events (DCEs) within an AOR rather than skipping the 
entire AOR. 
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