

Scheduling Spitzer: The SIRPASS Story

David S. Mittman
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Mail Stop 301-250D

Pasadena, California 91109-8099
David.S.Mittman@jpl.nasa.gov

Robert Hawkins
Space Telescope Science Institute

3700 San Martin Drive
Baltimore, Maryland 21218-2410

rhawkins@stsci.edu

Abstract
NASA’s Spitzer Space Telescope was launched on August
25, 2003 from Florida’s Cape Canaveral Air Force Base.
Drifting in a unique Earth-trailing orbit around the Sun,
Spitzer sees an optically invisible universe dominated by
dust and stars. Since 1997, the Spitzer Integrated Resource
Planning and Scheduling System (SIRPASS) has helped
produce spacecraft activity plans for the Spitzer Space
Telescope. SIRPASS is used by members of the
Observatory Planning and Scheduling Team to plan,
schedule and sequence the Telescope from data made
available to them from the science and engineering
community. Because of the volume of data that needs to be
scheduled, SIRPASS offers a variety of automated assistants
to aid in this task. This paper will describe the functional
elements of the SIRPASS software system — emphasizing
the role that automation plays in the system — and will
highlight lessons learned for the software developer from a
decade of Spitzer Space Telescope operations experience.

Introduction
In this introductory section, we describe the project
environment in which the Spitzer Integrated Resource
Planning and Scheduling System (SIRPASS) was
developed and used in operations. We include high-level
descriptions of the Spitzer project, spacecraft facility, and
both flight- and ground-based systems; much detail has
been excluded, but can be found by consulting the
references cited in the text.

Spitzer Space Telescope
The Spitzer Space Telescope (Werner et al. 2004) is the
fourth and final of NASA’s great observatories, designed

Copyright 2013. All rights reserved.

to take images and spectra of astronomical objects in the
infrared. Spitzer consists of a spacecraft, a 0.85-meter
telescope and three cryogenically cooled science
instruments: the Infrared Array Camera (IRAC), the
Infrared Spectrograph (IRS), and the Multiband Imaging
Photometer for Spitzer (MIPS), as shown in Figure 1.

Launched from Cape Canaveral, Florida, on
August 25, 2003, the mission plan called for a 60-day In-
Orbit Checkout (IOC) followed by a 30-day Science
Verification (SV) phase. Spitzer employed an innovative
warm launch architecture: the telescope is located outside
the cryostat — rather than being encapsulated within it —
and was at ambient temperature at Launch. The telescope
baffle was cooled by helium vented from the cryostat, a
resource that lasted until May 2009 and gave the spacecraft
nearly 5.5 years of prime mission lifetime. After
exhausting its supply of helium, Spitzer became too warm
to conduct scientifically useful observations using either
IRS or MIPS, but was still sufficiently cold to perform
some IRAC observations. Spitzer was designed to perform
scientifically useful observations for at least 2.5 years, but
continues to do so almost ten years after launch.

Spitzer is in an earth-trailing solar orbit, slowly drifting
away from Earth at rate of approximately 0.64 AU every
five years. Although this orbit was chosen primarily for
thermal and launch mass considerations, it also vastly
improves the simplicity and efficiency of operations. As a
cryogenically cooled spacecraft, Spitzer is constrained to
keep its solar arrays and sun shield pointed toward the Sun
by restricting its ability to pitch and roll. As a result of
these pointing restrictions, Spitzer can only observe targets
within a narrow annulus that rotates about the sun once per
year, but ends up covering all inertial targets for at least 40
days each year.

the LRP, this information is folded together with the
information about the AORs in the SODB to produce a
Baseline Instrument Campaign (BIC) for an extended
period of time (usually one year) that allocates windows of
time when each of the three instruments is planned to be
available for observations.

Once a BIC is established, the LRP also allocates what
are called plan windows for each observation. The LRP
function of SIRPASS — provided by the Spitzer Spike
subsystem — assigns “plan windows” to each request in
the SODB by intersecting target visibility as a function of
time with the availability of a particular instrument (per the
BIC), and any constraints associated with the observations.
For example, constraints may include requests by
observers to acquire data on specific dates, in a specific
order, or at specified time intervals. Plan windows allow
the scheduler to identify which science requests are
available to schedule in the given time period. Plan
window updates are usually done once per week in order to
keep pace with the frequent modifications and additions to
observing programs in the SODB, as well as to take into
account observations that have been scheduled.

Filling each week on the observatory timeline with
engineering and science activities consistent with the BIC
is the responsibility of the STS process. SIRPASS uses a
variant of the Greedy algorithm to produce an optimized
schedule of science observations (Samson 1998). The SSC
Director approves the weekly schedule and then the
sequence files are transferred to the MST at JPL for
generation of command products, Mission Manager
approval, and uplink to the spacecraft for execution (Barba
et al. 2006).

Spitzer Integrated Resource Planning and
Scheduling System

SIRPASS (Figure 2) is the last known adaptation of the
Plan-IT II planning and sequencing tool first developed by
William “Curt” Eggemeyer in the 1980s (Eggemeyer et al.
1997). The Galileo, Mars Pathfinder and DATA-CHASER
(Chien 1999) flight projects each used subsequent versions
of Plan-IT II as part of their planning and scheduling
systems. The lead author developed the Plan-IT II

Figure 2. SIRPASS

adaptations for both Mars Pathfinder and the Spitzer Space
Telescope.

SIRPASS is an interactive software application for the
planning and scheduling of Spitzer activities. The
application is designed to be a software-based assistant to
the members of the OPST, who are experts in the planning
and scheduling of Spitzer observations. The application is
a Decision Support System that provides an integrated
platform for assessing the quality of Spitzer scheduling
options. The application aids in scheduling instrument
selection, assigns schedule times to specific observation
requests, and generates stored sequence products destined
for execution on Spitzer.

Plan-IT II Core
SIRPASS is an adaptation of Plan-IT II, a JPL-developed
spacecraft activity planning software application. The
Plan-IT II software application has a long history of use at
the Jet Propulsion Laboratory, including use on the Mars
Pathfinder and Galileo projects. Plan-IT II supports the
modeling of spacecraft activities and their impacts upon a
variety of resources. Because the Plan-IT II software
architecture utilizes a highly object-oriented design, the
core software can be easily extended for specific
scheduling problem domains. Plan-IT II is developed in
Allegro CL, a dynamic object-oriented development
environment for ANSI Common Lisp from Franz, Inc.

Spitzer Science Planning Interactive Knowledge
Environment
A survey of astronomical observatory planning and
scheduling tools conducted in 1998 identified Spike as
having the greatest degree of applicability to the difficult
scheduling problem presented by the Spitzer Space
Telescope. Similarities between the Hubble Space
Telescope (HST) and Spitzer, including characteristics of
the astronomer observer community, made Spike — first
developed for HST — the natural choice for providing the
required LRP function in SIRPASS.
Introduction to Spike
Effective utilization of space-based resources such as
astronomical observatories is critical to supporting
NASA’s mission of advancing and communicating
scientific knowledge and understanding of the Earth, the
solar system, and the universe. Part of the success of the
HST mission has been the creation of systems that allow
HST to achieve high science efficiency. HST has been able
to supersede the pre-launch predicted efficiency of 35%
with average efficiencies up to 50% during normal
operations, with peaks into the 55% range (Adler and
Workman 2008). A significant portion of this increase is
due to ground system support software and operational
improvements that were developed post-launch (Hawkins

2009). Spike is one of the major software components that
contributed to this increased efficiency (Johnston and
Miller 1994). Over its 20+ years of development, Spike has
evolved significantly, and has been applied successfully to
a number of astronomic missions, in addition to Spitzer.
History of Spike According to Hubble
HST is a general-purpose space observatory that provides
support for near-infrared, visible, and ultraviolet
frequencies. In contrast to Spitzer, HST’s Low Earth Orbit
(LEO) dominates the scheduling of observations. The two
major constraining factors that LEO contributes to HST
scheduling are that the target cannot be observed when
occulted by the Earth or near the bright Earth limb, and, in
addition, HST may not observe when passing over the
South Atlantic Anomaly (SAA). Aside from the LEO, the
main physical constraint on HST observations is that the
target selected by the observer must not be scheduled
within a minimum angular separation from the sun or
moon. Finally, a user can place other requirements on an
observation including absolute time windows and roll
angles for observations, as well as timing and roll links
relative to other observations.

The first five years of experience using Spike to support
service mode LRP illustrated three criteria that were
recognized as important for service mode observing plans:
Efficiency, Stability and Mutability (Kramer 2000). During
those first five years of operations, Spike produced plans
that were not successful in meeting these three criteria. The
plans that Spike produced led to low efficiency short-term
schedules, were unstable, and were very resistant to
incremental change. The first Spike LRP planned
observations to weeklong bins for input to a short-term
scheduler. By design these bins had to be well
oversubscribed so that there would be an adequate mix for
the scheduler. This frequently meant that half of the
observations planned for a given week’s bin would get
bumped to another bin, once the schedule for the week was
generated, which was frustrating for both scheduling staff
and observers.

To address these problems, Spike was redesigned to
incorporate a new planning and scheduling operations
concept using “plan windows,” which are typically 4–8
week windows that are a subset of the observation’s
constraint windows (Giuliano 1998). A plan window
represents a best effort commitment to schedule in the
window. Plan windows from different observations can
overlap and the windows for a single observation can be
non-contiguous. Spitzer Spike was based upon this model,
rather than the original bin-based model that other missions
had used.

Adapting Spike
Spitzer Space Telescope
Initial development of Spitzer Spike focused on one of the
primary differences in the Spitzer mission – the sequential
nature of instrument usage described above. This led to the
development of an extension to the Spike plan window
concept, “instrument windows.”

Instrument window campaigns (the BIC) were
constructed using a layered strategy. This strategy focused
on placing the most constrained “absolute time”
observations on the timeline first, which output a skeleton
BIC determined by these windows. The second step was to
fill gaps between these based on a variety of criteria,
including desired window size and the defined ordering
described previously. Finally, the remaining observations
were given plan windows where their constraint windows
intersected appropriate instrument windows, modifying the
BIC only when necessary. (Kramer, 2000)
James Webb Space Telescope (JWST)
The JWST will be a large, infrared-optimized space
telescope, designed to find and study the first galaxies that
formed after the Big Bang. JWST will have infrared
sensitive detectors and a 6.5-meter segmented primary
mirror that allows it to also look through interstellar dust
clouds to see and study the formation of stars and planets.
The telescope will have a lifetime of 5 to 10 years and will
be placed about 1.5 million km from Earth in an orbit
around one of the semi-stable Lagrange points in the Earth-
Sun system (L2).

JWST has many similarities to both HST and Spitzer.
Like HST, JWST will be operated in service mode, have
similar observer constraints and allow some parallelism in
instrument usage. More akin to Spitzer, JWST will be
optimized for infrared observation, and not have the highly
constraining earth orbit. JWST is also limited by non-
replaceable resources and not repairable, like Spitzer, so
optimization of resource usage will be a key focus of LRP.

Development of JWST Spike began after most work on
Spitzer was concluded. Our experiences with Spitzer
clarified some concepts in software design related to
specializing the HST code base for new missions and
helped us focus the early JWST work an a re-architecting
of Spike (Giuliano 2011) to allow for more coherent
Object Oriented design, and further extension for future
missions.
Far Ultraviolet Spectroscopic Explorer (FUSE)
FUSE was launched into a low Earth orbit on June 24,
1999, and was designed to perform high-resolution far
ultraviolet spectroscopy. FUSE was similar to HST in LEO
dynamics, but also had many physical constraints that
differentiated it from HST (some of which were only
apparent well after launch).

The initial FUSE Spike implementation was developed
prior to the advent of the plan window concept discussed
above, and thus used the bin-based problem solving
capabilities of Spike (Calvani et al. 2004). This version of
FUSE Spike used many “repair based” algorithms from the
Spike toolkit (Johnston and Miller 1994). Due to issues
discovered after in-orbit checkout, a new constraint on
reducing the number of slews across the orbital plane
needed to be put in place. Since the generic algorithms
weren’t easily tunable to handle this problem, early LRPs
had to be developed by hand, rather than in Spike.
Eventually, the Spike team developed a Campaign
Scheduler for FUSE that was loosely based on the concept
that had originally been deployed for Spitzer to build the
BIC, despite the two missions being implemented using
different core Spike models. For FUSE, “hemisphere
campaigns” were laid out, around highly constrained
observations, in a similar fashion to the instrument
campaigns of Spitzer.
Spike Lessons Learned
The Campaign Scheduling concept developed for Spitzer
proved to be a very useful concept for LRP, and was
deployed successfully for FUSE, as described above.

Throughout the development of Spike, we have noted
that missions never end up being “as planned” and that one
should develop with post-launch change in mind (Johnston
and Miller 1994) and (Hawkins 2009). This was
highlighted in our experience with Spitzer just as it was
with HST and FUSE: post-launch, we found that, at times,
the mission requirements weren’t quite as expected pre-
launch, or that manual overrides were necessary due to
some wrinkle (or bug) that wasn’t anticipated. Examples
include manual instrument campaign overrides and new
“instruments” (not physical but virtual).

Plan-IT II Adaptation
SIRPASS, the Spitzer adaptation of Plan-IT II,
incorporates a full complement of system-level models and
activities. The software includes activity type definitions
for all of the approved Spitzer request types, models for
each resource whose utilization impacts the schedule, and a
variety of integrated models and interfaces that support the
tasks and decisions required of the OPST. LRP is
supported by the Spitzer Spike module from STScI along
with a variety of reports that detail the often-complex
constraint relationships between requests. STS, which
forms the majority of the week-by-week OPST tasks, is
facilitated through the use of an automated scheduling
algorithm derived from the HST scheduling operations.
Finally, SIRPASS supports the weekly production of
formal schedule review and stored sequence products.

Development Environment
SIRPASS is implemented following the ANSI Common
Lisp standard using Allegro CL, version 8.2, from Franz,
Inc. The integrated development environment includes the
XEmacs editor, incremental compilation, dynamic linking
and loading of shared libraries, foreign function interfaces
to C and other languages, and runtime patching. An
Allegro-supplied ODBC module, AODBC, which supports
either the version 2.0 or the version 3.0 ODBC definitions,
manages connections to the SODB. Source code is
configuration managed at the SSC using CVS, the
Concurrent Versions System.
Plan-IT II Extensions
SIRPASS uses a number of available extensions to the
Plan-IT II core system to support its Spitzer functionality.
The SIRPASS team developed many of these extensions as
generally useful extensions to the core system, including:

CSPICE: Provides access to NAIF CSPICE Toolkit
functionality for calculating light time between Earth and
spacecraft for timing downlink and uplink activities and for
converting between NAIF body IDs and names. Access to
additional CSPICE capabilities is available through
bindings to the SpiceZfc library.

DSMS: Provides access to JPL’s Deep Space Mission
System artifacts, such as Command Definition Language
files containing Spitzer’s Command Dictionary, definitions
of DSN complex and antenna resources, and DSN schedule
files such as Station Allocation Files and Viewperiod Files.
The DSMS extension also provides the capability to save
Plan-IT II activity schedules in Spacecraft Activity Type
File (SATF) and Spacecraft Activity Sequence File (SASF)
formats.

Emacs: Provides additional Allegro CL XEmacs IDE
integration with Plan-IT II for editing files as part of the
planning and scheduling process and for scripting and
otherwise controlling Plan-IT II from a programmable
editor.

Flat: Provides support for reporting planning and
scheduling information in CSV and other flat file formats
for integration with common spreadsheet analysis
software.

Gnuplot: Provides access to the popular graphing utility
for plotting arbitrary planning data such as time series data
or other data types.

HTML: Provides support for producing many types of
planner output in HTML format, including Plan-IT II
reference documentation, timeline summary and activity
detail information.

Model Parameter: An extension for defining models and
the parameters that influence their evaluation. Includes
support for runtime modification of the parameter values
and automatic reevaluation of the model. The end-user can

model different operations scenarios by saving and loading
predefined sets of parameter values.

Reports: A windowed report-generating system that
supports nicely formatted columnar reports with headers
and footers. Reports can be viewed on screen, refreshed
with updated data, saved to text files, and printed to
PostScript printers. Adapters can easily define new reports,
and many reports allow for end-user customization of
content and layout.

Test: An extension of the Allegro CL test harness to
support interactive and scripted unit testing and reporting
for Plan-IT II and adapted systems.
Integrated Models
In order to obtain accurate predictions in support of
efficient scheduling, SIRPASS includes a number of
independently developed models.

 The Spitzer Slew Model: An efficient schedule allocates
no more time than necessary to the slewing of the telescope
from one location to the next. Should too little time be
allocated to slewing, the telescope would be in danger of
not finishing an observation before an established deadline.
The Pointing Control System (PCS) slew model brings the
on-board control algorithms into the realm of the ground
data system, enabling a variety of ground-based software
applications to accurately predict Spitzer slew times. Slew
time, and the time it takes to settle upon a target, is non-
deterministic, and therefore the PCS slew model provides a
best guess as to the actual time these activities will take
during on-orbit execution. The slew model is implemented
in the C language and integrated into SIRPASS.

 The Spitzer PCRS Catalog Tool: The Spitzer Pointing
Calibration and Reference Sensor (PCRS) Star Catalog
Tool is ground-based software used in the Spitzer Uplink
Process to select appropriate stars from the PCRS Guide

Figure 3. Plotting Slew Order

Star Catalog (GSC). PCCRS allows Spitzer to obtain more
accurate pointing by referencing the locations of well-
known stars. PCRS calibration activities must be
performed periodically during the schedule. In order to not
significantly decrease the efficiency of the schedule,
SIRPASS uses the Spitzer PCRS Catalog Tool to select a
calibration star that is close to the scheduled slew path.

 The Spitzer Spike Module: SIRPASS supports the LRP
process through its integration of a Spitzer-adapted Spike
from STScI. Spitzer Spike operates in one of two major
modes. In both modes, Spitzer Spike calculates a Plan
Window for each request. A Plan Window is a series of
time intervals where a request may be scheduled. The
request’s Plan Window is consistent with the BIC and all
constraints in which the request participates. In some cases,
the Plan Window is empty indicating that the request
cannot be scheduled.

Although Spitzer Spike can produce an optimal BIC
from a set of provided requests, the provided BIC is often
difficult to justify due to its somewhat uneven allocation of
time between instruments and its tendency to occasionally
drop an instrument out of regular rotation. Instead of using
the Spitzer Spike mode that produces a BIC, the OPST
instead handcrafts a BIC for the second major Spitzer
Spike mode, which utilizes the provided BIC as input to
the LRP process.

The Mars Pathfinder Heritage Data Model: Several
recent spacecraft have inherited the Mars Pathfinder (MPF)
telemetry model that is partially based upon the
Consultative Committee for Space Data Systems (CCSDS)
concept of Application Process Identifiers (APIDs),
wherein an APID is associated with an onboard application
process that generates telemetry. For instance, packets
designated as APID 20 for Spitzer contain IRAC
instrument data (from AORs and IERs) specified by the
ground to be sent first (for instance, calibration data). All
downlink data are packetized and assigned to APID
queues, from which data is downlinked in FIFO (first in
first out) order.

Within a single downlink session, APIDs are prioritized
according to a two-dimensional priority matrix called a
Downlink Priority Table (DPT). The DPT is used to make
sure the most important data gets in the front of the
downlink stream, regardless of when it is acquired, with
the proviso that downlink from individual queues is FIFO.
In the DPT, APIDs can be assigned to completely override
others in priority (that is to say, completely prevent other
APIDs from getting any downlink so long as any data is
left in the higher priority APID), or they can be assigned to
share a priority level on a percentage-of-bits basis.
Different downlink sessions can be governed by different
DPTs, and within limits, the DPT organization is
negotiable, although generally once a set of DPTs is tested,
it is not modified during flight (Mars Pathfinder 1996).

The algorithms for applying a DPT to a volume of data
categorized into APIDs is a general one, and applicable to
most missions that have adopted the convention. The
Spitzer model for APID/DPT use is essentially unchanged
from the Mars Pathfinder implementation. The APID/DPT
specification format is simple, however the system-level
effects of the specification are often not fully understood
until some flight experience has been gained through
normal operations and, possibly, safe-mode or standby
operations. Where the APID/DPT system becomes highly
complex is in its effects on activity-specific data
downlinks. The APID/DPT system makes it difficult to
answer questions such as “when does data from activity X
arrive on the ground” and there are currently no scheduling

tools available which can satisfy a constraint expressed in
the form “schedule this activity so that its data arrives on
the ground no later than time X.”
Observer-Imposed Constraints
Spitzer allows observers to request constraints on their
observations. Because observer-imposed constraints —
combined with operational constraints such as target
visibility and telescope roll limitations — make it more
difficult to schedule observations in an efficient manner, it
is essential that observers keep constraints to a minimum.
It is recognized that some scientific programs can only be
accomplished through use of observer-imposed constraints;
however, Spitzer makes it a priority to ensure that these

Figure 3. Request Constraints

constraints are thoroughly and soundly justified in the
observing proposal.

SIRPASS supports a constraint language similar to that
defined by the Space Telescope Science Institute. The
constraints (Figure 3) available to observers are:

Chain, an ordered, uninterruptible group: The AORs
will be executed in the order specified with no
interruptions in the chain. The chain may not exceed the
maximum allowable duration for a single AOR.

Sequence, an ordered, interruptible group: A sequence
constraint is similar to, but less stringent than, a chain
constraint. The AORs will be executed in the order
specified and a duration in which they should be completed
is specified. The sequence constraint should only be used
when the science requires sequential ordering of the AORs.
For AORs in which the order of observation is not
important, a “group-within” constraint should be used
instead of a sequence constraint.

Group-within: A group-within constraint specifies that a
group of AORs will be executed within a specific length of
time but with no particular starting date or time constraint.
Once the first AOR has been executed, the rest of the
AORs in the group will begin within the specified time
interval. They may be executed in any order within the
time interval. This is similar to a sequence constraint, but
the observations may be executed in any order.

Time-window: Time-window constraints consist of
defining a window or series of windows for the start time
of an AOR. If the open and close times of the window are
specified to be identical for a moving target, then the AOR
will be scheduled as an absolute time observation at that
time, and will be executed at that time or no more than
three seconds later. Spitzer’s scheduling architecture
generally operates on relative time; inertial target AORs
will simply run one after the other. Timing constraints for
inertial target AORs are macroscopic (days, weeks,
months), not microscopic (seconds, minutes, hours).

Follow-on: A follow-on constraint executes the “follow-
on” AOR within a specified time range after a particular
initial AOR has been executed. (In other words, from the
end of the first AOR body to the beginning of the second
AOR body.) Follow-on constraints are useful for periodic
observations of a target where the interval between
observations is relatively short (hours to a small number of
days).

Shadow: The shadow constraint is a special case of the
follow-on constraint, and is used to obtain background
measurements for moving targets. The primary AOR is
executed as specified. The shadow AOR will be executed
to repeat the track of the primary observation. The selected
AOR parameters must be identical in the two AORs. The
shadow may be executed before or after the primary AOR.
Note that the shadow does not re-observe the target at a

later date, but rather the background of the primary
observation (Spitzer Space Telescope 2012).

These observer-imposed constraints — along with
spacecraft and operations constraints — are considered
during both LRP and STS processes. During LRP, Spitzer
Spike considers constraints while generating rough plan
windows for requests that are consistent with the BIC;
during STS, SIRPASS performs detailed, recursive tree-
walking time arithmetic to calculate the schedulable time
interval for each constrained request.
Science Operations Database
The Science Operations Database (SODB) at the SSC
stores information about all requests for Spitzer
observations. The SODB is central to all science operations
and contains a summary of all tracking and status
information related to a given request. SIRPASS obtains
information about requests for observations from the
SODB and provides schedule and status updates to the
SODB. The SODB interface was a major new addition to
SIRPASS.

The SODB classifies requests for observations into three
categories:

Astronomical Observation Request (AOR): A request to
observe a target using one of Spitzer’s eight observing
modes. Observers generate AORs by providing parameters
to one of eight Astronomical Observation Templates.
AORs are used for science observations and most
instrument calibration activities.

Instrument Engineering Request (IER): A request to
operate a Spitzer instrument in a way that cannot be
accomplished through one of the Astronomical
Observation Templates. Spitzer engineers use IERs to
perform instrument operations in a way that is not
available to observers, generating some IERs by
parameterizing Instrument Engineering Templates (for
example, some instrument calibration requests). Other
IERs are fixed sequences that do not require
parameterization (for example, instrument turn-on and
shut-down).

Spacecraft Engineering Request (SER): A request to
perform a spacecraft activity not requiring the use of
instruments (for example, data downlink). Spacecraft
engineers generate some SERs by parameterizing complex
activity templates (for example, Wide Angle Sun Sensor
calibrations), while other SERs are fixed sequences that do
not normally require parameterization (for example, data
downlink).

We can categorize the information stored by the SODB
thusly:

General: Includes title, program and observer
affiliations, comments, instrument, and observation type.

Resource Estimates: Includes predicts of execution
duration and telemetry data volume.

calculates a cost for scheduling each available unscheduled
request at that time and selects the least costly activity to
start at that scheduled time. The process continues until all
available unscheduled requests have been scheduled, or no
additional available unscheduled requests can be
scheduled. The cost for scheduling a specific request at a
specific time is the sum of several terms; each term is
multiplied by its own coefficient and scaling factor.
Amongst the terms used are costs associated with slewing
to the target from the previously established location on the
sky, a (very high) cost for breaking a chain constraint,
costs associated with how much overall time is left to
schedule the request and whether or not the request is
considered highly constrained. Evaluating the cost formula
yields a single number, and the request with the lowest cost
number is selected for scheduling at the considered time.

Because the scheduling of different weeks occurs in
parallel, the scheduling process emphasizes the need for
OPST members to communicate impacts to the schedule to
those team members scheduling adjacent weeks.
Scheduling a request in week n may result in its follow-on
request needing to be scheduled in week n+1. When this
occurs, it is termed a “must go” request in week n+1;
SIRPASS supports this process by generating “must go”
and other constraint-related reports as part of the
scheduling process. Should constraints need to be broken,
constraint waivers can be obtained from the SSC’s
Observer Support Team.
Scheduling Rules
SIRPASS extended the Plan-IT II core with a new way to
instantiate activities on the timeline: the New Activity by
Rule command. The user invokes the New Activity by
Rule command on any number of predefined activity types,
and SIRPASS arranges for Adapter-supplied rules to be
applied in a predetermined order.

For example, during the Nominal mission, schedulers
used the New Activity by Rule command to schedule
Cryogenic Telescope Assembly (CTA) makeup heater
commands according to a complex model of thermal
performance. Early in the mission, spacecraft engineers
made rules designed to keep the telescope at a steady
temperature, and the CTA makeup heater-scheduling rule
ensured that heater levels were switched each time an
instrument was powered on or off. Later in the nominal
mission, engineers decided that on-board cryogen could be
more efficiently utilized if there were a single pulse of
heater use (which caused the cryogen to sublimate and on
its escape through the shroud of the telescope, cool the

baffle) followed by a period where the telescope’s
temperature was allowed to float. For simplicity,
parameterization of scheduling rules was not exposed
through the operations interface, but rules could be
adjusted to accommodate temporary changes in desired
behavior.

Scheduling rules were also available for data
accountability housekeeping, IRU calibrations, momentum
desaturation, downlink, and star tracker pointing reference
calibrations.
Decision Support Tools
The ViewingZones tool was developed by Mark Garcia, a
JPL Mission Planner, and provides a quick way to
visualize the complex relationship between the OPZ, Earth
and other important celestial bodies, and the observation
targets for a given Period of Autonomous Operations
(PAO), the schedule time between downlinks. The
ViewingZone tool is written in Quick, a scriptable
interactive, programmable desktop calculator that is part of
the Mission Analysis Software Library (MASL) tools suite
developed by JPL’s Mission Analysis Section, and a
precursor to the current MONTE system.

SIRPASS includes many other decision support tools,
including time calculators, schedule content summary
reports and request constraint visualization reports.
Sequence Architecture
Spitzer employs a “master” and “slave” sequence
architecture wherein the master sequence controls the
behavior of the overall sequence load, spawning slave
sequences at appropriate times. There may be one or many
master sequences per week, but only one master may be
executing at a time. Slaves may be as small as one AOR or
can be several AORs, IERs, or other activities packaged
together. Spitzer also uses a set of functions called
sequence blocks, which are parameterized, reusable
relative-timed sequences. Parameterization allows
execution of the block to occur differently with each use.
Blocks may accept parameters, return values, or both, and
— when loaded into a virtual machine (VM) engine —
may be used by the master or slave sequences in AORs,
IERs or SERs. To solve certain VM storage issues, there
may also be a construct called the slave library. This is
similar to a block library but contains only single-use
activities at the AOR and IER level. Slave sequences may
contain all the commanding necessary for the execution of
their activities or they may call blocks from the block
library and slaves from the slave library.

Before any request can be executed in
flight, it must first be packaged into
logical units that will control the timing
and structure of the plan. In SIRPASS,
the bundling of requests into this
structure is called sequence packaging.
There are several sequence packaging
structures used in the mission, but one
structure predominates the nominal
mission phase.

Packaging is based upon a series of
rules which determine which types of
requests can co-exist in the same
sequence and which must be in separate
sequences. For the purposes of
packaging, the following types of
requests exist:

• Fixed-Target AORs
• Moving-Target (Absolute)

AORs
• Power-Transition IERs
• Other IERs
• True SERs
• Pseudo SERs

 A graphical representation of the rule set is shown in
Figure 6. In addition to packaging according to the
compatibility of adjacent request types, the packaging of
sequences was also constrained by the need to keep slave
library sizes compatible with flight system requirements.
For instance, a single VM module is limited to storing
80,000 bytes of command codes. The AIRE system is
responsible for estimating the number of command codes
required by a request, and SIRPASS factors in a running
total of packaged command codes when determining if
additional requests can be packaged in the current module.
Other module-related packaging restrictions include limits
on string storage and total number of VM instructions.

Spitzer Development and Testing
Development of SIRPASS began in 1997 with the
selection of Plan-IT II as the core science planner system.
During development, SIRPASS was used for a number of
reference mission studies and in testing of the Spitzer
ground data system both at the SSC and at JPL. In many
ways, the development of SIRPASS mirrored the
development of the mission system, and many of the
capabilities of SIRPASS were developed to aid in the
development and testing of the mission system.

The Model Parameter extension, for instance, was used
during the planning of the initial phases of the mission to
globally adjust the duration of IOC activities as part of a
worst-case scenario designed to place an upper bound on

the length of IOC. During an extensive period of learning
how to operate the Spitzer Spike module, the Model
Parameter extension was used to define and enforce Spike
performance parameters; parameterized studies were
performed to characterize the performance of the system
under different sets of underlying assumptions about
instrument ordering, maximum instrument campaign
length, etc. These types of studies continued throughout the
mission as the performance of the observatory changed
over time and the population characteristics of the
proposed observations also changed.

Command and Data Handling
Early in ground testing of Spitzer’s Command and Data
Handling (C&DH) subsystem, it was discovered that the
Fast Uplink/Downlink Card (FULDL) was not capable of
reliably processing transfer frames for downlink at 2.2
Mbps, Spitzer’s highest data rate, nominally scheduled for
use during the prime mission. As a result, the C&DH team
created the Storage Unit (SU), a data structure holding
sixteen transfer frames. The on-board data storage
overhead associated with SUs was minor and so did not
invalidate SIRPASS’s data models. However, SUs and
certain idiosyncratic behavior of the flight data storage
subsystem necessitated the use of extra ground analysis
tools to ensure that on-board data storage was not
exceeded. Tools were developed to track on-board data
storage usage and procedures were developed to free on-
board storage space when the associated data had been
received and processed on the ground (Sarrel et al. 2006).

Figure 6. Request Packaging is a Pairwise Function

SIRPASS was extended to help make this process more
manageable, but a completely satisfying solution was never
achieved. The resulting system was a balance between
process and tool support and will likely remain so until the
end of the Spitzer mission.

Flight Operations Experience
Experience in operating the flight system invariably leads
to changes in procedures and capabilities that are reflected
in changes to ground tools. The manner in which these
changes are accommodated is often determined by time,
budget and the flexibility of the automated systems being
used to support mission operations.

Slewing Efficiency
Due to several operational requirements such as solar
avoidance and solar panel illumination, Spitzer is
constrained at all times to point the telescope no closer
than 82.5 degrees toward and no further than 120 degrees
away from the Sun. This defines the Operational Pointing
Zone (OPZ) of the Observatory. The OPZ was reduced by
2.5 degrees in January 2004, which allowed for an increase
in the maximum slew rates used by Observatory.

Nominal Operations
It was during the Nominal Operations mission phase that
the science operations team discovered the potential for
bright objects to leave latent images on the instrument
sensors. To alleviate the effects, it was decided that
observations of bright objects should be placed
immediately before downlink activities. The definition of a
bright object was complicated. Latent
images were caused by a combination of
factors including the inherent brightness of
the observed target, the selection of
instrument modes and the duration of the
observation. The science instrument teams
defined the requirements of a special
software module to be run during
observation expansion and resource
estimation that would flag bright objects at
the SSC. The flags were then available to
SIRPASS for use in scheduling the
observations in locations on the timeline
that were unlikely to cause problems for
subsequent observations. Because the
population of bright object observations
was thought to be low, it was decided to not
offer special automated tools for scheduling
such observations. Instead, bright object
observations are brought to the attention of
the schedulers and are placed on the

timeline manually early in the STS process, often before
other observations are added to the timeline. New bright
object observations can also be identified later in the
scheduling process, making scheduling bright object
observations a somewhat iterative process.

Extended Mission and Warm Mission
The observatory operated extremely well and efficiently
throughout its nearly 5-year 9-month cryogenic lifetime
from launch on 25 August 2003 until the helium was
exhausted on 15 May 2009. Without helium, radiative
cooling allowed the mirror and cryostat temperatures to
stabilize at about 26 K, too warm for operation of either
IRS or MIPS, but sufficiently cold for IRAC observations
at 3.6 and 4.5 µm (Mahoney et al. 2010). SIRPASS was
able to accommodate the new Warm Mission phase with
minimal change by eliminating the use of IRAC instrument
windows and by changing the layout of the software
interface to remove display space devoted to MIPS and
IRS.

Spitzer Observing Efficiency
For the purpose of accounting, we categorize efficiency as
the sum of the amount of time spent executing science
observations, calibrating science instruments and slewing
between science targets, as a fraction of all observatory
time. As shown in Figure 7, beyond the initial “learning
curve” of operations and not-withstanding spacecraft
anomalies that halt all science activities, Spitzer has
achieved efficiency ratings of 90% to 95%.

Figure 7. Spitzer Efficiency Through May 2008

What the Future Holds
SIRPASS performance was originally designed with a 500-
request per week timeline and an operations process that
took four weeks to shepherd one weeks’ worth of
observations through the entire planning, scheduling,
sequencing, and uplink process with a staff of four
schedulers at the SSC. As of this writing, during the Warm
Mission, the scheduling process is occurring over two-
week intervals using a staff of three schedulers. Over the
course of the mission to date, Spitzer has returned over
12.5TB of science data and executed over 78,000
observations over 63,000 hours. Although most weeks
have fewer than 500 observations, SIRPASS has scheduled
some weeks with up to 600 observations and others with as
few as 60 observations.

In late 2013, spacecraft operational constraints must
change for the mission to continue. At this time the
geometry between Spitzer, Earth, and the sun would cause
a violation of the current OPZ when the spacecraft
attempts to point its high-gain antenna (HGA) towards
Earth for downlink. Considering the narrow beam-width of
the HGA, if the OPZ were left unchanged downlinks
would not be possible after the 30° limit was reached.
Therefore when this limit is reached the OPZ will be
expanded to 38° in pitch for downlinks only. All other
OPZ constraints will remain unchanged and all science
observations shall remain inside the original OPZ
constraints (Mahoney et al. 2012). Before approving the
change in OPZ limits, the spacecraft engineering team first
have to perform tests to characterize and model the
Observatories thermal and pointing sensor performance
during dwells beyond the current limits.

Conclusions and Lessons Learned
As a wise man once said, “The unexamined life is not
worth living.” On that basis, in this section we take a look
at the life of the Spitzer Space Telescope project through
the lens of SIRPASS, from its initial development through
its use today in Spitzer’s Extended (Warm) Mission.

First off, many software and process design choices are
made in the context of assumptions that seem reasonable at
the time. However, when those assumptions eventually
change and the design choice is revisited, it is not unusual
to find that it is very costly to change the design and
implementation to accommodate the change in assumption.
There are a number of reasons for this, including the build-
up of process and software external to the system under
consideration that result in a ripple effect expanding from
the original system to many other linked systems.
Sometimes simply knowing that a “limit” is not truly a
limit, but a current knowledge boundary, can help drive a
design that can more easily accommodate a chance to the

limit. I refer to this as the “Here be Dragons” effect, a
phrase used to denote unexplored areas on medieval maps.

Secondly, don’t be surprised — or shocked — at the
longevity of any piece of software or hardware used in
mission operations. Budgetary and safety constraints will
invariably lead to limits a project’s ability to upgrade
ground data system hardware and software. Personnel
turnover (including, but not limited to, terminations,
promotions and death) will change the cost / schedule / risk
equations used to determine whether to keep, scrap or
modify any single piece of software or hardware. Plan for
the full range of possibilities: your software may never get
used in operations (for example, in the case of a launch
failure) or it may be used for far longer than you ever
anticipated. When balancing development priorities and
design, consider three longevity cases: failure to launch,
nominal mission duration, and order-of-magnitude mission
duration. In the case of Spitzer, the nominal mission
duration was 2.7 years, so the “order-of-magnitude”
mission duration would be about 27 years. Considering the
longevity of spacecraft, Voyager being a case in point with
mission duration of over 35 years, Spitzer mission duration
of 27 years is not completely whacky.

As flight projects age, the cost of maintaining a high-
fidelity integration and test facility for ground software
becomes costly and is often an early target for the
inevitable budget cuts that are associated with extended
mission operations. Differences between operations and
integration and test environments can cause false positives
during regression testing of ground software. It is often the
case that the highest fidelity test environment is the
operations environment itself. When designing software
systems, consider the possibility of testing the systems on a
“non-interference” basis within the operations
environment. For instance, designing a “global switch” that
prohibits the writing of data to operations data stores, but
instead simulates the operation without affecting any
operations system. A software system so isolated can be
safely tested in an operations environment. Another
approach is to consider the strategic addition of test assets
to an operations environment. For instance, a replicated
database running on a test server in the operations
environment can act as a stand-in for the operations
database in many cases.

As originally envisioned, the Spitzer uplink process was
to be executed by a single, integrated team, the Integrated
Mission Planning and Scheduling Team (IMPST). The
prototype for IMPST was the Mars Pathfinder scheduling
team which, using MPF Plan-IT, created sequences for the
Mars Pathfinder lander and processed those sequences
through the complete uplink process. In 2001, at or around
project Critical Design Review (CDR), it was decided to
split the Spitzer uplink process between two teams, one at
the SSC that would be responsible for assembling the

spacecraft sequences, and one at the Jet Propulsion
Laboratory that would be responsible for detailed modeling
of the sequences and conversion to binary products for
transmission to the spacecraft.

Virtual Machine Language
In 1999, the Spitzer project adopted the use of Virtual
Machine Language (VML), a procedural sequencing
language that offered a number of advancements over more
traditional declarative sequencing languages, including the
support for conditional branching and function block return
values (Grasso 2003). VML, although in its early stages of
development as a flight system component, was seen as a
much better approach to accommodating Spitzer’s non-
deterministic execution due to slew-and-settle
uncertainties, than the more traditional sequence execution
approaches (Grasso and Lock 2008). Given the rich set of
traditional programming language capabilities offered by
VML, one might be excused for thinking that the proper
course of action would be to adopt this new style of
procedural sequencing for Spitzer. However, our ground
tool capability for verification and validation was no match
for the advanced capabilities of VML, and we found that if
we used the full complement of VML capabilities on
board, we would have no fast and effective way of
modeling the flight system behavior on the ground.
Therefore, it was decided to severely limit our use of
advanced VML capabilities in ways that 1) could be
reasonably modeled on the ground, and 2) could be shown
to provide improvements in system operability without
undue complexities. It is often a wiser course of action to
restrain the whole-hearted adoption of new technology for
a more measured and balanced approach.

One early use of VML was in avoiding the over-filling
of spacecraft mass memory, a situation that would have
consequences for spacecraft safing procedures. Each AOR
was expressed in VML with a logical wrapper that
compared a ground-generated estimate of the data volume
generated by the AOR against the flight system’s record of
remaining free memory. If the comparison revealed
insufficient free memory, the observation was skipped.
Since this observation skipping behavior was consistent
with the overall operations concept for the telescope, no
special accommodations for modeling and verification
were required on the ground. The skipped AOR was
simply repeated at a later time. To date, only 10 to 20
AORs have been skipped in this way, and a subsequent
update to AOR definitions has replaced the original logic
with new logic that will skip individual data collection
events (DCEs) within an AOR rather than skipping the
entire AOR.

Acknowledgement
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration. The authors wish
to gratefully acknowledge the contributions of William
“Curt” Eggemeyer, Laurence Kramer, and Tatiana Goldina
to the creation of SIRPASS.

References
Adler, D. S. and Workman, W. M. III. 2008. Maximizing
Scientific Return for the Hubble Space Telescope in a Post-SM4
World. In Observatory Operations: Strategies, Processes, and
Systems II. Proceedings of SPIE (7016). Bellingham,
Washington: SPIE.
Barba, S. J.; Garcia, L. J.; McElroy, D. B.; Mittman, D. S.;
O’Linger, J. C.; and Tyler, S. R. 2006. Planning and Scheduling
the Spitzer Space Telescope. In Observatory Operations:
Strategies, Processes, and Systems. Proceedings of SPIE (6270).
Bellingham, Washington: SPIE.
Barba, S. J.; Garcia, L. J.; Levine, D. A.; McElroy, D. B.;
Mittman, D. S.; O’Linger, J. C.; and Tyler, S. R. 2005. Spitzer
Space Telescope Observatory Planning and Scheduling Team.
Proceedings of the IEEE Aerospace Conference. Manhattan
Beach, CA: IEEE Aerospace Conferences.
Bliss, D. A.; Voskanian, V.; and Weise, T. 2006. Spitzer Space
Telescope Sequencing Operations Software, Strategies, and
Lessons Learned. SpaceOps: Rome, Italy.
Calvani, H. M.; Berman, A. F.; Blair, W. P.; Caplinger, J. R.;
England, M. N.; and Roberts, B. A. 2004. The Evolution of the
FUSE Spike Long Range Planning System. In Proceedings of the
Fourth International Workshop on Planning and Scheduling for
Space. Darmstadt, Germany.
Chien, S.; Rabideau, G.; Willis, J.; and Mann, T. 1999.
Automating Planning and Scheduling of Shuttle Payload
Operations. Artificial Intelligence Journal 114:239-255.
Eggemeyer, W. C.; Grenander, S. U.; Peters, S. F.; and Amador,
A. V. 1997. Long Term Evolution of a Planning and Scheduling
Capability for Real Planetary Applications. In Proceedings of the
First Workshop on Planning and Scheduling for Space. Oxnard,
California.
Giuliano, M.; Hawkins, R.; and Rager, R. 2011. A Status Report
on the Development of the JWST Long Range Planning System.
In Proceedings of the Seventh International Workshop on
Planning and Scheduling for Space. Darmstadt, Germany.
Giuliano, M. 1998. Achieving Stable Observing Schedules in an
Unstable World. In Astronomical Data Analysis Software and
Systems VII, 271-274. San Francisco, California: Astronomical
Society of the Pacific.
Grasso, C. A. and Lock, P. d. 2008. VML Sequencing: Growing
Capabilities over Multiple Missions. SpaceOps: Heidelberg,
Germany.
Grasso, C. A. 2003. Techniques for Simplifying Operations Using
VML (Virtual Machine Language) Sequencing on Mars Odyssey
and SIRTF. Proceedings of the IEEE Aerospace Conference.
Manhattan Beach, CA: IEEE Aerospace Conferences.

Hawkins, R. E.; Jordan, I. J. E.; and Giuliano, M. E. 2009.
Applying Lessons Learned in Planning and Scheduling the
Hubble Space Telescope to the James Webb Space Telescope. In
Proceedings of the Sixth International Workshop on Planning
And Scheduling for Space. Pasadena, California.
Johnston, M. D. and Miller, G. E. 1994. Spike: Intelligent
Scheduling of Hubble Space Telescope Observations. Intelligent
Scheduling, Fox, M. and Zweben, M. eds. San Francisco,
California: Morgan Kaufmann Publishers.
Kramer, L. A. 2000. Generating a Long Range Plan for a New
Class of Astronomical Observatories. In Proceedings of the
Second International Workshop on Planning and Scheduling for
Space. San Francisco, California.
Laine, S.; Silbermann, N. A.; Rebull, L. M.; and Storrie-
Lombardi, L. J. 2006. Spitzer Space Telescope Proposal Process.
In Observatory Operations: Strategies, Processes, and Systems II.
Proceedings of SPIE (6270). Bellingham, Washington: SPIE.
Mahoney, W. A.; Effertz, M. J.; Fisher, M. E.; Garcia, L. J.;
Hunt, J. C. Jr.; Mannings, V.; McElroy, D. B.; and Scire, E. 2012.
Spitzer Operations: Scheduling the Out Years. In Observatory
Operations: Strategies, Processes, and Systems IV, Peck, A. B.;
Seaman, R. L.; and Comeron, F., eds. Proceedings of SPIE
(8448). Bellingham, Washington: SPIE.
Mahoney, W. A.; Garcia, L. J.; Hunt, J. Jr.; McElroy, D. B.;
Mannings, V.; Mittman, D. S.; O’Linger, J. C.; Sarrel, M.; and
Scire, E. 2010. Spitzer Warm Mission Transition and Operations.
In Observatory Operations: Strategies, Processes, and Systems
III, Silva, D. R.; Peck, A. B.; and Soifer, B. T., eds. Proceedings
of SPIE (7737). Bellingham, Washington: SPIE.
Mahoney, W. A.; Comeau, S.; Garcia, L. J.; McElroy, D. B.;
Mittman, D. S.; O’Linger, J. C.; and Tyler, S. R. 2008. Spitzer
Scheduling Challenges: Cold and Warm. In Observatory
Operations: Strategies, Processes, and Systems II. Proceedings of
SPIE (7016). Bellingham, Washington: SPIE.
Mars Pathfinder. 1996. Mars Pathfinder & Mars '96 Lander
Science Opportunities (website), http://mars.jpl.nasa.gov/MPF/
nasa/pipfaq.html. California Institute of Technology, Jet
Propulsion Laboratory, Pasadena, California.
Miller, G. E. and Stanley, P. 1998. Applying the Lessons Learned
from HST Operations to New Missions. Observatory Operations
to Optimize Scientific Return. In Observatory Operations to
Optimize Scientific Return. Proceedings of SPIE (3349).
Bellingham, Washington: SPIE.
Samson, R. J. 1998. Greedy Search Algorithm Used in the
Automated Scheduling of Hubble Space Telescope Activities. In
Observatory Operations to Optimize Scientific Return.
Proceedings of SPIE (3349). Bellingham, Washington: SPIE.
Sarrel, M. A.; Carrion, C.; and Hunt, J. C. Jr. 2006. Managing the
On-Board Data Storage, Acknowledgement and Retransmission
System for Spitzer. SpaceOps: Rome, Italy.
Sasaki, T.; Kosugi, G.; Hawkins, R. E.; Kawai, J. A.; and
Kusumoto, T. 2004. Observation Scheduling Tools for Subaru
Telescope. In Optimizing Scientific Return for Astronomy
through Information Technologies. Proceedings of SPIE (5493).
Bellingham, Washington: SPIE.
Skinner, D. L. 1989. QUICK, An Interactive Software
Environment for Engineering Design. In Proceedings of the 7th
Computers in Aerospace Conference: Monterey, California.

Spitzer Space Telescope. 2013. NASA Spitzer Space Telescope
(website), http://www.spitzer.caltech.edu. California Institute of
Technology, Jet Propulsion Laboratory, Pasadena, California.
Spitzer Space Telescope. 2012. Warm Spitzer Observer’s Manual
(website), http://ssc.spitzer.caltech.edu/warmmission/propkit/
som/. California Institute of Technology, Jet Propulsion
Laboratory, Pasadena, California.
Spitzer Space Telescope. 2011. Spitzer Telescope Handbook
(website), http://irsa.ipac.caltech.edu/data/SPITZER/docs/spitzer
mission/missionoverview/spitzertelescopehandbook/. California
Institute of Technology, Jet Propulsion Laboratory, Pasadena,
California.
Tyler, S. R., O’Linger, J. C.; Comeau, S.; Garcia, L. J.; Mahoney,
W. A.; McElroy, D. B.; and Mittman, D. S. 2008. Rapid
Replacement of Spitzer Space Telescope Sequences, Targets of
Opportunity and Anomalies. In Observatory Operations:
Strategies, Processes, and Systems II. Proceedings of SPIE
(7016). Bellingham, Washington: SPIE.
Werner, M. W.; Roellig, T. L.; Low, F. J.; Rieke, G. H.;
Rieke, M.; Hoffmann, W. F.; …and Cruikshank, D. P. 2004. The
Spitzer Space Telescope Mission. In Astrophysical Journal
Supplement Series, 154:1–9. American Astronomical Society:
Washington, D.C.

