
 1

Formal Validation of Fault Management Design Solutions
Corrina Gibson

Jet Propulsion Laboratory,
 California Institute of

Technology
4800 Oak Grove Drive
Pasadena, CA 91011

1-626-660-5107
corrina.l.gibson@jpl.nasa.gov

Robert Karban
European Southern

Observatory
Karl-Schwarzschild-Str. 2
85748 Garching, Germany

+498932006542
rkarban@eso.org

Luigi Andolfato
European Southern

Observatory
Karl-Schwarzschild-Str. 2
85748 Garching, Germany

+498932006796
landolfa@eso.org

John Day
Jet Propulsion Laboratory,

 California Institute of
Technology

4800 Oak Grove Drive
Pasadena, CA 91011

1-818-354-2026
john.c.day@jpl.nasa.gov

ABSTRACT
The work presented in this paper describes an approach used to
develop SysML modeling patterns to express the behavior of fault
protection, test the model’s logic by performing fault injection
simulations, and verify the fault protection system’s logical design
via model checking. A representative example, using a subset of
the fault protection design for the Soil Moisture Active-Passive
(SMAP) system, was modeled with SysML State Machines and
JavaScript as Action Language. The SysML model captures
interactions between relevant system components and system
behavior abstractions (mode managers, error monitors, fault
protection engine, and devices/switches). Development of a
method to implement verifiable and lightweight executable fault
protection models enables future missions to have access to larger
fault test domains and verifiable design patterns. A tool-chain to
transform the SysML model to jpf-Statechart compliant Java code
and then verify the generated code via model checking was
established. Conclusions and lessons learned from this work are
also described, as well as potential avenues for further research
and development.

Categories and Subject Descriptors
D.2.2 [SOFTWARE ENGINEERING]: Design Tools and
Techniques – State diagrams

D.2.3 [SOFTWARE ENGINEERING]: Software/Program
Verification – Assertion checkers, Model checking, Formal
methods, Validation

General Terms
Design, Theory, Verification.

Keywords
Model Checking, Java Pathfinder, SysML, Statechart, Fault
Protection

1. INTRODUCTION
The Soil Moisture Active Passive (SMAP) will provide global
measurements of soil moisture and its freeze/thaw state. These
measurements will be used to enhance understanding of processes
that link the water, energy and carbon cycles, and to extend the
capabilities of weather and climate prediction models. SMAP data
will also be used to quantify net carbon flux in boreal landscapes
and to develop improved flood prediction and drought monitoring
capabilities [8].

Highly complex systems, such as the SMAP Fault Protection
system [2], are difficult to develop, test, and validate using
traditional methods – Fault protection design has been prone to
human error and subject to limited multi-fault, multi-response
testing. Traditionally, responses are designed individually because
it is not feasible for humans to incorporate all combinations of

fault protection events in design or test without a model. It is also
expensive to use high fidelity test beds, limiting the scope of the
possible combined-response tests that can be performed. To
explore new model-based methods of testing and validating fault
protection, SMAP Fault Protection logical designs were used to
architect a representative SysML behavioral model that was used
to exploit fault injection testing and model checking capabilities.
Model checking provided a basis for checking fault protection
design against the defined failure space and enabled validation of
the logical design against domain specific constraints (for
example, during ascent the receiver should be on and the
transmitter should be off).

The model is transformed to run simulations, create artifacts to be
model checked, and to produce the final software implementation.

In order to gain confidence in the validation and verification of
the model based design and its implementation the following
questions must be addressed:

• Does the model represent the system?

• Do the generated artifacts for model checking represent
the model?

• Do the generated artifacts for model checking represent
the final software system implementation?

In the context of this paper, simulation is used to validate the
model against requirements. It is also assumed that the generated
artifacts for model checking represent the model. However, this
could be mitigated by comparing the simulation results with the
execution of the generated code for model checking. Finally, the
code used for model checking is not part of the final software
system implementation. Simulation of the model caught (initial
modeling and design translation) errors and provided the ability to
inject a variety of inputs to test many aspects of the model,
leading to confidence in the logical design of the model. It became
clear, as more error monitors and responses were added to the
model, that it would not be possible to manually run simulations
for all of the possible sequences of the model [1] – a model
checker is necessary to formally and exhaustively verify the
model for all possible sequences.

2. TOOLCHAIN
The tool-chain consists of: a UML modeling tool (MagicDraw
17.0.4) with SysML plugin and simulation environment (Cameo
Simulation Toolkit 17.0.4 which is based on Apache SCXML
Engine 0.9), a model-to-text transformation tool (COMODO), and
a model checker (JPF6 and JPF7).
MagicDraw is used to model and represent the system in terms of
collaborating Statecharts according to SysML 1.3. The model is

 2

exported in UML2 XMI 2.x format and then processed by
COMODO.

COMODO [4] is a platform independent tool to generate text
artifacts from SysML/UML models using Xpand/Xtend
technology. For example COMODO can transform SysML State
Machine models to Java code which is compliant with JPF’s
Statechart project (jpf-Statechart) and the final software
implementation for different platforms.
Statecharts XML (SCXML) is a W3C notation for control
abstraction defining the syntax and semantic for Statecharts
execution [7]. Apache Commons SCXML is one implementation
of SCXML.

3. MODELING FOR MODEL CHECKERS
An overview of SMAP model is provided in the following figure.
The SMAP Fault Protection Engine consists of an Error Monitor
Statechart and Response Statecharts. External signals from device
Statecharts, such as a reaction wheel, and the mode manager
Statechart are input to the Fault Protection Engine.

Figure 1: SMAP model.

Model checking state space is a valuable indicator for the
complexity of the model. Model checkers are computation and
memory intensive. After initial model checking runs were found
to take days to exhaustively check a small subset of the SMAP
Fault Protection system, it became apparent that model patterns
should aim at decreasing the state space. In an attempt to reduce
the state space, adjustments were made to the model architecture
and the Statechart representation of the fault protection system’s
response tiers and response queue.
Response tiers define the sequence of actions performed by fault
protection system responses. Each subsequent tier of a given
response attempts to mitigate a fault with different sets of actions.
If a response has more than one tier, subsequent tiers will not be

performed until prior tiers fail to mitigate the fault. The error
monitor that detects the fault must be re-tripped between each
subsequent tier. In cases where all tiers are executed and the fault
still exists, the response resets and re-executes its tiers (assuming
the response has not been masked).

When system responses are tripped by error monitors, they are
placed in the fault protection response queue based on priority:
High priority responses are placed in the front and low priority
responses are placed in the back. A set of activation rules
evaluates the response in the front of the queue and either allows
the response begin executing its tiers or, if the activation rules do
not pass, denies response execution and places the response back
into the queue.

The adjustments made to the model in order to reduce the state
space include: 1) Use of composite Statecharts with orthogonal
regions to define each behavior. It was verified that the state space
of a Statechart with orthogonal regions is equivalent to a flat state
machine since Statecharts are only a notational enhancement of
the state machines. However the Statechart representation is more
compact and the model is more readable; 2) Enumerations were
used for incrementing response tiers rather than integer values that
are incremented (the value of the tier variable is set in the effect
(opaque behavior) of the transitions that lead to each tier’s steps,
instead of the behavior of the tier state. Then guards on those
transitions ensure the correct tier is transitioned to based on the
tier variable value. This method, as opposed to an incrementor,
prohibits infinite counting (no tier ++) in JPF. An incrementor
essentially adds new states for each iteration in JPF so the
verification will fail due to memory shortage; and 3) Guards were
placed on transitions wherever possible. The difference in
computation time for a model with few guards compared with
another model of triple size with many guards was found to be a
factor of 5000 (see Table 2). Adding guards to most transitions
reduces the complexity of the system to be checked, limiting the
number of paths making it quicker to check.

The following simple Statechart with orthogonal regions provides
a straightforward example of a model checking application. The
correctness property inserted is to ensure that state B and state E
are never active at the same time: assert(inState(B) &&
!inState(E)).

Figure 2: JPF Model Checking Example

This Statechart is translated to Java using COMODO and the
correctness property has been inserted manually into the code as
shown in the following figure.

Figure 3: Inserting the Correctness Property

 3

When JPF was run, it instantly found a counterexample to the
assertion and output the error trace and performance statistics
shown in the following figure. Following trace #1, error #1 was
found because trace #1 defines an existing path that leads to B and
E being active together. The statistics show that there is no
elapsed time needed to perform this very basic model-checking
task.

Figure 4: JPF Output of Error Trace

The initial attempt at architecting the Fault Protection model did
not consider the limitations of the tool chain. The initial model
used complex elements and diagrams such as sequence diagrams,
nested logic (hidden If statements), complex state machine model
elements (e.g. decision nodes), and global variables. Simulation
artifacts began overtaking the model because of the complex
elements and nested logic. Additionally, the current version of the
SysML to Java code transformation tool is limited to interpreting
composite Statecharts, transition guards, signals, and opaque
behaviors. Thus, the model architecture was refactored to use
explicit logic and simple Statechart elements, leading to a much
cleaner and clearer architecture that can be simulated and model-
checked.
The fundamental drivers of the modeling task are patterns and
practices that lead to efficient model checking. Efficient in the
sense that the state space is reduced; the most important factor in
exhaustively checking a model within reasonable time as memory
and computation requirements grow with the state space. The goal
is to make checking of large system models a standard practice
that is accessible to a wider audience of engineers, is automated
and does not require highly specialized skills in order to produce
an optimal representation of the system and properties to be
checked.

Currently, JPF ignores internally generated signals so there is no
limit of the signals that can be sent from a state. JPF inherently
checks all combinations of events so no cases of the modeled
behavior are missed due to internally generated signals being
ignored in JPF, but many paths irrelevant for the specification of
the system behavior are explored. Guards are critical in keeping
the state space limited, but the ability for JPF to interpret signals
would be ideal for limiting the state space even more. Thus, a goal
to substantially reduce the state space is to further develop jpf-
Statechart to take into account the internal signals that are sent in
behaviors. One possible solution is to add boolean logic for
signals as guards on transitions so JPF doesn’t explore impossible
paths (Note: This solution can only be done at run-time and the
model checker must be able to distinguish between events that are
externally injected and events that are created by entry/do/exit
behaviors, i.e. internally injected). With this knowledge, the
model checker would have, for every state configuration, only a
limited number of events available when generating events during
transition exploration. For example in Figure 6, assuming that
signals s1, s2, s4, s5 are external events and s3, s6 are sent by the

behavior of state S1, while the signal s7 is sent by the behavior of
state S2, then the model checker could ignore signals s3 and s6
when the state configuration is {S2, S4}.

This demonstrates good modeling for model-checking practice:
Use guards to encode the knowledge of the model about internal
events. Without guards, the model checker would exhaustively
explore the complete state space, whereas in the final run-time
system the entire state space would never be checked since only a
limited number of events will occur at any given moment in time.
Adding guards that limit the number of possible transitions results
in a two-fold advantage. First, the state space that is explored is
drastically reduced, decreasing the time and memory used for
model checking. Second, including the guards in the final
implementation ensures the system will never end up in an
“unexpected” state if an out of order event occurs. In both cases
the complexity of the system is reduced, allowing the amount of
involved testing to be reduced and off-nominal behavior to be
limited (it is worthwhile to investigate how the introduction of
model checking affects traditional test strategies). It is important
to note that guards also help when doing an initial validation and
verification of the model using simulation. For example, In
multiple circumstances, the model could not be simulated after
adding a guard, which pointed out a model error or bug. The
guards also validate the modeler’s assumption on the behavior of
the model.
Multiple versions of the fault protection system’s response queue
were modeled in order to find a pattern that could be executed and
model checked. The response queue was initially modeled using
opaque behaviors with ‘if inState’ code inside of states – this
actually represents implicit Statechart states that cannot be
considered by jpf-Statecharts but only by JPF-Core, therefore
increasing the state space. Now the response queue is modeled
explicitly with multiple nested states and ‘inState’ guarded
transitions. It was found that both methods work for simulation
and JPF (because JPF can interpret the code inside of opaque
behaviors); however because the latter method is explicit (it does
not have hidden guards in the code) and limits the state space with
guarded transitions, it was chosen for the queue pattern.

4. MODEL TRANSFORMATION
During the model-checking phase of this project, the tool chain
from the SysML model to Java Pathfinder (JPF) model checker
was extended to support collaborating Statecharts, guards on
composite states, and opaque behaviors (transformed as
commented code).
The challenge was to find an adequate representation of the
SysML model in jpf-Statecharts terms. In SysML the behavior of
the system is described by a set of collaborating Statecharts
interacting via SysML ports, sending signals to each other, and
referencing other Statecharts’ states in guarded transitions. In jpf-
Statecharts, states are represented by Java classes, nested states by
nested Java classes and transitions by class methods. Parallel
regions are mapped to additional initial nodes and not to a
separate Java classes.

COMODO was modified to map the behavioral part of the SysML
model to a single system Statechart containing one orthogonal
region for each collaborating Statechart. Thus, the guards that
reference states in separate Statecharts in the SysML model will
reference states in a orthogonal region in the transformed model.
Due to the property that events are broadcast to all orthogonal
regions in a Statechart, a merged Statechart of orthogonal regions
accurately represents a collection of collaborating Statecharts.

 4

Consequently, the modeler must ensure that distinct Statecharts do
not use the same signal to trigger transitions unless they intend for
all of the transitions in the model with that signal to be triggered
independently of where the signal is intended to be consumed.
Additionally, the inState guards require the fully qualified name
so JPF knows where, in its merged Statechart, to find individual
states.

The following chart illustrates the process of model checking
from SysML model to JPF’s result.

Figure 5: Model Checking in Java Pathfinder

The current COMODO transformation to jpf-Statechart requires
manual intervention in the generated Java code. For example any
code from the model’s opaque behaviors are manually converted
to Java. Ports are commented because there is no concept of
interfaces between state machines in the transformed, merged
Statechart. Different syntax required to specify guards in
MagicDraw/Cameo and in jpf-Statecharts currently imposes a
limitation therefore the guard transformation has to be done
manually. The properties to be checked (in the form of assertions)
are also added manually and have, at the moment, no
representation in the SysML model.

If Java is the target platform for the final software implementation
and its structure is based on Statechart semantics, the JPF model
checker can be run on the final production code. For rigorous
validation and verification of the system, it is both efficient and
less prone to error if the model checker supports the final
implementation language. If an intermediate representation is
checked or the model is transformed to a model checking specifc
language (for example Promela), then one would have to verify
that the model checked representation is consistent with the final
implementation.

5. SYSTEM’S PROPERTIES
The following assertions are a subset of the properties to check
that were input into the transformed model
(SMAPFaultProtectionBehavior_v37) prior to running JPF. The
goal of model checking is to ensure that none of these logical
statements can be violated in the fault protection design. This
small set of assertions was formulated from rules stated in the
SMAP Mode Manager Functional Design Description (FDD) [3],
Mode Manager configuration tables, and SMAP Fault Protection
FDD.

Table 1: Example Model Checking Assertions
If in Idle Acs mode state, then in Test sytem mode
state OR Prelaunch system mode state

If in Safe RCS response state, then in Activation rules6
state

If in Reset monitor1 state, then in SBAND primary
transmitter OFF state AND SBAND backup
transmitter ON state OR SBAND primary transmitter
ON state AND SBAND backup transmitter OFF state

Assertions are a simple way to check logical behavior of the
system when executing a entry/so/exit behavior. Assertions are
limited to expressions that are valid at a given point in time in the
current state configuration. It would be useful to check temporal
expressions that can be formulated for the overall Statechart and
can contain operators to express temporal constraints.
With the currently available ‘isInActiveStates’ operator of jpf-
Statecharts, assertions on the current state configuration can be
formulated. However, we cannot assert certain paths or sequences
of Statechart execution, in particular when guards are used. If a
Statechart is created without guards the sequence of states is
determined by its transitions. The problem arises with multiple
guarded transitions that allow a state to be reached in different
ways. The objective is to validate that, in certain conditions, a
state can only be reached via a certain path. If the transitions are
guarded the path cannot be simply determined by the transitions.
In order to be able to assert certain paths, an additional operator,
‘wasInActiveStates’ can be introduced that queries the previous
state configuration and enables assertions to be made about the
path that leads to a certain state. For example, in Figure 6, S3 can
be reached from S5 and S6 via transitions. A ‘wasInActiveStates’
assertion could be put in a behavior of S3 that ensures that the
previous state was either S5 or S6, depending on some other
condition like being in another state in yet another region.

Figure 6 Multiple Paths to reach a state

Rather than implementing assertions manually into the generated
Java code, it is preferred to have the assertions and potential
temporal logic expressions modeled as constraints in the SysML
model and generate them during the model transformation. This
would ensure that all relevant information is in a single place, as
suggested by a model driven approach.

 5

6. Model Checking Results
The following results show the performance of JPF model
checkers for different sized models.

Table 2: JPF Results
Config. Notes Results

Intel Core2 Quad CPU
Q8400@ 2.66GHz
1.67Ghz, 8GB,
Windows 7, 64Bit,
Java 1.6.0_45 64Bit,
JPF6

Covered Statecharts: Sys Rsp,
RWA1, ErrMon, mode
manager. Assertion failure
was detected immediately.

of States: 81; # of
Transitions: 131; # of Guards:
33; # of Regions: 29;
Theoretical worst case state
space: 47443968

Elapsed time: 0 s;
States:new=7,visited=4,backtracked=4,
end=0; Search: maxDepth=7, constraints
hit=0; Choice generators:thread=3 (signal=0,
lock=1, shared ref=0), data=4; Heap:
new=1110, released=11, max live=1041, gc-
cycles=10; Instructions:22313; Max
memory:121MB; Loaded code: classes=156,
methods=1452

Intel Core2 Quad CPU
Q8400 @ 2.66GHz
1.67Ghz, 8GB,
Windows 7, 64Bit,
Java 1.6.0_45 64Bit,
JPF6

Covered Statecharts: SysRsp,
RWA1, ErrMon, mode
manager,. No errors detected.
Runs at moderate memory
consumption for almost
600hrs.Multi-threading would
definitely help.

of States: 81; # of
Transitions: 131; # ofGuards:
33; # ofRegions: 29;
Theoretical worst case state
space: 47443968

Elapsed time:35859 minutes 25
seconds;States: new=113246210,
visited=2439469581,
backtracked=2552715791, end=0; Search:
maxDepth=3391, constraints hit=0; Choice
generators: thread=3 (signal=0, lock=1,
shared ref=0), data=113246208; Heap:
new=1924286754, released=18, max
live=1252, gc-cycles=-1742251505;
Instructions: 6796413686932; Max memory:
4628MB; Loaded code: classes=171,
methods=1307

Intel Core 2 Quad
CPU Q8400 @
2.66GHz 1.67Ghz,
8GB, Windows 7,
64Bit, Java 1.6.0_45
64Bit, JPF6

The SMAP model v_37,

of States 177; # of
Transitions 307; # of Regions
68; # ofGuards 181;
Theoretical worst case state
space: 3028188240

Elapsed time: 00:00:28
states: new=12357, visited=21281,
backtracked=33638, end=0
search: maxDepth=35, constraints hit=0
choice generators: thread=11846 (signal=0,
lock=1, shared ref=1792), data=512
heap: new=4149, released=45, max
live=2130, gc-cycles=33638
instructions: 147635950
max memory: 81MB
loaded code: classes=268, methods=1597

Intel Core 2 Quad
CPU Q8400 @
2.66GHz 1.67Ghz,
8GB, Windows 7, 64
Bit, Java 1.7.0_40
64Bit, JPF 7 (r1141)

The SMAP model v_37

of States 177; # of
Transitions 307; # of Regions
68; # ofGuards 181;
Theoretical worst case state
space: 3028188240

elapsed time: 00:07:18
states: new=49284, visited=171905,
backtracked=221189, end=0
 search: maxDepth=32, constraints hit=0
 choice generators: thread=45189 (signal=0,
lock=1, shared ref=0), data=4096
 heap: new=29644, released=2517, max
live=2319, gc-cycles=221189
 instructions: 1858380973
 max memory: 353MB
 loaded code: classes=252, methods=1808

*Note: There is a significant difference when checking the SMAP model with JPF 6 and 7. This
requires further investigation.

An estimate of the worst case state space was computed for
Statecharts given in the above table simply by building the
product of the number of leave states of every region. This means
that every state in a region would have a transition to any other
state in the same region.

7. JVM Configuration
There are many applications where Java is used in High
Performance Computing (HPC) with often only marginal
reductions in performance w/r/t C or C++ [6]. However, the Java
Virtual Machine (JVM) requires some application specific tuning
in order to exploit its best performance. In particular in relation to
Just In Time compilation and the selected Garbage Collector
strategy. Model Checking can be considered as an HPC
application, in particular for large models with large state spaces.
At the moment the run-time options for Java used for JPF are:
java -d64 -server -XX:+UseParallelOldGC -XX:CompileThreshold=10000 -
XX:+AggressiveOpts -XX:+UseCompressedOops -XX:MaxNewSize=8g -
XX:NewSize=8g -Xms26g -Xmx26g -jar jpf-core\build\RunJPF.jar +shell.port=4242
../SUT.jpf -show –log

There was an attempt to run JPF on JPL’s Castor supercomputer
which consists of multi Intel Itanium CPUs and a Linux operating
system. Already with a small model, which took about 10 hours
on a Windows quad core machine, the execution on Castor took
about 40 hours. The main reason (which can also be found in
various internet forums) seems to come from a competition
between the Java garbage collector and the Linux paging
mechanism.

8. CONCLUSIONS AND FUTURE WORK
In addition to increasing the capabilities of the transformation tool
to make the SysML to text code process more automatic,
improvements to JPF-SC have been noted that would speed up the
model checking verification time as well as allow for a wider
range of SysML models to be checked.

The Cameo Simulation Toolkit, used to execute the model in this
project uses the Apache implementation of SCXML. jpf-
Statechart uses its own semantics for Statecharts and would need
to be rewritten to be compliant with SCXML so the suite of tools
used for this project is better aligned. jpf-Statechart should also be
64 bit compliant, have parallelized (multi-threaded) state space
exploration abilities so multi-core machines can be used
efficiently for model checking. Moreover, strategies to reduce the
state space (using information on internal and external events)
shall be investigated, as well as the capability to validate specific
paths and sequences in the Statechart execution
(wasInActiveStates). jpf-Statecharts should also support temporal
logic expressions which would allow to validate future state
configurations. For example, if the Statechart enters a Failure
Mode state it shall eventually end up in a Response state. Finally a
catalog of modeling patterns has to be created to support efficient
model checking.

9. ACKNOWLEDGMENTS
G. Holzmann, G. Watney[5], C. Havelund, P. Meakin, and P. Mehlitz. This research
was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration.

10. REFERENCES
[1] Andolfato, L. 2012. Model Checking applied to PRIMA STS Variable

Curvature Mirror prototype. ESO Technical Note

[2] Meakin, P. 2013. SMAP Project System Fault Protection FDD, initial release,
Jet Propulsion Laboratory D-61607.

[3] Meakin, P. 2013. SMAP Project System Modes and Configuration FDD, Rev
A, Jet Propulsion Laboratory D-61605.

[4] Andolfato, L., Chiozzi, G. Migliorini, N., Morales, C., ICALEPCS 2011. A
Platform Independent Framework for Statecharts Code Generation

[5] Watney, G. 2009. A model-based Architecture for a small flexible Fault
Protection System. American Institute of Aeronautics and Astronautics
Infotech at Aerospace Conference, 2009-2028.

[6] Amedro, B. et al. 2008. Current State of Java for HPC, INRIA Rapport
Technique Nr. 0353

[7] W3C. 2013. Statechart XML (SCXML): State Machine Notation for Control
Abstraction (www.w3.org/TR/scxml/)

[8] Soil Moisture Active Passive. Jet Propulsion Laboratory, California Institute of
Technology. http://www.jpl.nasa.gov/missions/details.php?id=5995

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00

 6

