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ABSTRACT 
The work presented in this paper describes an approach used to 
develop SysML modeling patterns to express the behavior of fault 
protection, test the model’s logic by performing fault injection 
simulations, and verify the fault protection system’s logical design 
via model checking. A representative example, using a subset of 
the fault protection design for the Soil Moisture Active-Passive 
(SMAP) system, was modeled with SysML State Machines and 
JavaScript as Action Language. The SysML model captures 
interactions between relevant system components and system 
behavior abstractions (mode managers, error monitors, fault 
protection engine, and devices/switches). Development of a 
method to implement verifiable and lightweight executable fault 
protection models enables future missions to have access to larger 
fault test domains and verifiable design patterns. A tool-chain to 
transform the SysML model to jpf-Statechart compliant Java code 
and then verify the generated code via model checking was 
established. Conclusions and lessons learned from this work are 
also described, as well as potential avenues for further research 
and development. 

Categories and Subject Descriptors 
D.2.2 [SOFTWARE ENGINEERING]: Design Tools and 
Techniques – State diagrams 

D.2.3 [SOFTWARE ENGINEERING]: Software/Program 
Verification – Assertion checkers, Model checking, Formal 
methods, Validation 

General Terms 
Design, Theory, Verification. 

Keywords 
Model Checking, Java Pathfinder, SysML, Statechart, Fault 
Protection 

1. INTRODUCTION 
The Soil Moisture Active Passive (SMAP) will provide global 
measurements of soil moisture and its freeze/thaw state. These 
measurements will be used to enhance understanding of processes 
that link the water, energy and carbon cycles, and to extend the 
capabilities of weather and climate prediction models. SMAP data 
will also be used to quantify net carbon flux in boreal landscapes 
and to develop improved flood prediction and drought monitoring 
capabilities [8]. 

Highly complex systems, such as the SMAP Fault Protection 
system [2], are difficult to develop, test, and validate using 
traditional methods – Fault protection design has been prone to 
human error and subject to limited multi-fault, multi-response 
testing. Traditionally, responses are designed individually because 
it is not feasible for humans to incorporate all combinations of 

fault protection events in design or test without a model. It is also 
expensive to use high fidelity test beds, limiting the scope of the 
possible combined-response tests that can be performed. To 
explore new model-based methods of testing and validating fault 
protection, SMAP Fault Protection logical designs were used to 
architect a representative SysML behavioral model that was used 
to exploit fault injection testing and model checking capabilities. 
Model checking provided a basis for checking fault protection 
design against the defined failure space and enabled validation of 
the logical design against domain specific constraints (for 
example, during ascent the receiver should be on and the 
transmitter should be off).   

The model is transformed to run simulations, create artifacts to be 
model checked, and to produce the final software implementation.  

In order to gain confidence in the validation and verification of 
the model based design and its implementation the following 
questions must be addressed: 

• Does the model represent the system? 

• Do the generated artifacts for model checking represent 
the model?  

• Do the generated artifacts for model checking represent 
the final software system implementation?  

In the context of this paper, simulation is used to validate the 
model against requirements. It is also assumed that the generated 
artifacts for model checking represent the model. However, this 
could be mitigated by comparing the simulation results with the 
execution of the generated code for model checking. Finally, the 
code used for model checking is not part of the final software 
system implementation. Simulation of the model caught (initial 
modeling and design translation) errors and provided the ability to 
inject a variety of inputs to test many aspects of the model, 
leading to confidence in the logical design of the model. It became 
clear, as more error monitors and responses were added to the 
model, that it would not be possible to manually run simulations 
for all of the possible sequences of the model [1] – a model 
checker is necessary to formally and exhaustively verify the 
model for all possible sequences.  

2. TOOLCHAIN 
The tool-chain consists of: a UML modeling tool (MagicDraw 
17.0.4) with SysML plugin and simulation environment (Cameo 
Simulation Toolkit 17.0.4 which is based on Apache SCXML 
Engine 0.9), a model-to-text transformation tool (COMODO), and 
a model checker (JPF6 and JPF7). 
MagicDraw is used to model and represent the system in terms of 
collaborating Statecharts according to SysML 1.3. The model is 
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exported in UML2 XMI 2.x format and then processed by 
COMODO.  

COMODO [4] is a platform independent tool to generate text 
artifacts from SysML/UML models using Xpand/Xtend 
technology. For example COMODO can transform SysML State 
Machine models to Java code which is compliant with JPF’s 
Statechart project (jpf-Statechart) and the final software 
implementation for different platforms. 
Statecharts XML (SCXML) is a W3C notation for control 
abstraction defining the syntax and semantic for Statecharts 
execution [7]. Apache Commons SCXML is one implementation 
of SCXML. 

3. MODELING FOR MODEL CHECKERS 
An overview of SMAP model is provided in the following figure. 
The SMAP Fault Protection Engine consists of an Error Monitor 
Statechart and Response Statecharts. External signals from device 
Statecharts, such as a reaction wheel, and the mode manager 
Statechart are input to the Fault Protection Engine.  

 
Figure 1: SMAP model. 

Model checking state space is a valuable indicator for the 
complexity of the model. Model checkers are computation and 
memory intensive. After initial model checking runs were found 
to take days to exhaustively check a small subset of the SMAP 
Fault Protection system, it became apparent that model patterns 
should aim at decreasing the state space. In an attempt to reduce 
the state space, adjustments were made to the model architecture 
and the Statechart representation of the fault protection system’s 
response tiers and response queue. 
Response tiers define the sequence of actions performed by fault 
protection system responses. Each subsequent tier of a given 
response attempts to mitigate a fault with different sets of actions. 
If a response has more than one tier, subsequent tiers will not be 

performed until prior tiers fail to mitigate the fault. The error 
monitor that detects the fault must be re-tripped between each 
subsequent tier. In cases where all tiers are executed and the fault 
still exists, the response resets and re-executes its tiers (assuming 
the response has not been masked).  

When system responses are tripped by error monitors, they are 
placed in the fault protection response queue based on priority: 
High priority responses are placed in the front and low priority 
responses are placed in the back. A set of activation rules 
evaluates the response in the front of the queue and either allows 
the response begin executing its tiers or, if the activation rules do 
not pass, denies response execution and places the response back 
into the queue.  

The adjustments made to the model in order to reduce the state 
space include: 1) Use of composite Statecharts with orthogonal 
regions to define each behavior. It was verified that the state space 
of a Statechart with orthogonal regions is equivalent to a flat state 
machine since Statecharts are only a notational enhancement of 
the state machines. However the Statechart representation is more 
compact and the model is more readable; 2) Enumerations were 
used for incrementing response tiers rather than integer values that 
are incremented (the value of the tier variable is set in the effect 
(opaque behavior) of the transitions that lead to each tier’s steps, 
instead of the behavior of the tier state. Then guards on those 
transitions ensure the correct tier is transitioned to based on the 
tier variable value. This method, as opposed to an incrementor, 
prohibits infinite counting (no tier ++) in JPF. An incrementor 
essentially adds new states for each iteration in JPF so the 
verification will fail due to memory shortage; and 3) Guards were 
placed on transitions wherever possible. The difference in 
computation time for a model with few guards compared with 
another model of triple size with many guards was found to be a 
factor of 5000 (see Table 2). Adding guards to most transitions 
reduces the complexity of the system to be checked, limiting the 
number of paths making it quicker to check. 

The following simple Statechart with orthogonal regions provides 
a straightforward example of a model checking application. The 
correctness property inserted is to ensure that state B and state E 
are never active at the same time: assert(inState(B) && 
!inState(E)).  

 
Figure 2: JPF Model Checking Example 

This Statechart is translated to Java using COMODO and the 
correctness property has been inserted manually into the code as 
shown in the following figure. 

 
Figure 3: Inserting the Correctness Property 
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When JPF was run, it instantly found a counterexample to the 
assertion and output the error trace and performance statistics 
shown in the following figure. Following trace #1, error #1 was 
found because trace #1 defines an existing path that leads to B and 
E being active together. The statistics show that there is no 
elapsed time needed to perform this very basic model-checking 
task. 

 
Figure 4: JPF Output of Error Trace 

The initial attempt at architecting the Fault Protection model did 
not consider the limitations of the tool chain. The initial model 
used complex elements and diagrams such as sequence diagrams, 
nested logic (hidden If statements), complex state machine model 
elements (e.g. decision nodes), and global variables. Simulation 
artifacts began overtaking the model because of the complex 
elements and nested logic. Additionally, the current version of the 
SysML to Java code transformation tool is limited to interpreting 
composite Statecharts, transition guards, signals, and opaque 
behaviors. Thus, the model architecture was refactored to use 
explicit logic and simple Statechart elements, leading to a much 
cleaner and clearer architecture that can be simulated and model-
checked. 
The fundamental drivers of the modeling task are patterns and 
practices that lead to efficient model checking. Efficient in the 
sense that the state space is reduced; the most important factor in 
exhaustively checking a model within reasonable time as memory 
and computation requirements grow with the state space. The goal 
is to make checking of large system models a standard practice 
that is accessible to a wider audience of engineers, is automated 
and does not require highly specialized skills in order to produce 
an optimal representation of the system and properties to be 
checked. 

Currently, JPF ignores internally generated signals so there is no 
limit of the signals that can be sent from a state. JPF inherently 
checks all combinations of events so no cases of the modeled 
behavior are missed due to internally generated signals being 
ignored in JPF, but many paths irrelevant for the specification of 
the system behavior are explored. Guards are critical in keeping 
the state space limited, but the ability for JPF to interpret signals 
would be ideal for limiting the state space even more. Thus, a goal 
to substantially reduce the state space is to further develop jpf-
Statechart to take into account the internal signals that are sent in 
behaviors. One possible solution is to add boolean logic for 
signals as guards on transitions so JPF doesn’t explore impossible 
paths (Note: This solution can only be done at run-time and the 
model checker must be able to distinguish between events that are 
externally injected and events that are created by entry/do/exit 
behaviors, i.e. internally injected). With this knowledge, the 
model checker would have, for every state configuration, only a 
limited number of events available when generating events during 
transition exploration. For example in Figure 6, assuming that 
signals s1, s2, s4, s5 are external events and s3, s6 are sent by the 

behavior of state S1, while the signal s7 is sent by the behavior of 
state S2, then the model checker could ignore signals s3 and s6 
when the state configuration is {S2, S4}. 

This demonstrates good modeling for model-checking practice: 
Use guards to encode the knowledge of the model about internal 
events. Without guards, the model checker would exhaustively 
explore the complete state space, whereas in the final run-time 
system the entire state space would never be checked since only a 
limited number of events will occur at any given moment in time. 
Adding guards that limit the number of possible transitions results 
in a two-fold advantage. First, the state space that is explored is 
drastically reduced, decreasing the time and memory used for 
model checking. Second, including the guards in the final 
implementation ensures the system will never end up in an 
“unexpected” state if an out of order event occurs. In both cases 
the complexity of the system is reduced, allowing the amount of 
involved testing to be reduced and off-nominal behavior to be 
limited (it is worthwhile to investigate how the introduction of 
model checking affects traditional test strategies). It is important 
to note that guards also help when doing an initial validation and 
verification of the model using simulation. For example, In 
multiple circumstances, the model could not be simulated after 
adding a guard, which pointed out a model error or bug. The 
guards also validate the modeler’s assumption on the behavior of 
the model. 
Multiple versions of the fault protection system’s response queue 
were modeled in order to find a pattern that could be executed and 
model checked.  The response queue was initially modeled using 
opaque behaviors with ‘if inState’ code inside of states – this 
actually represents implicit Statechart states that cannot be 
considered by jpf-Statecharts but only by JPF-Core, therefore 
increasing the state space. Now the response queue is modeled 
explicitly with multiple nested states and ‘inState’ guarded 
transitions. It was found that both methods work for simulation 
and JPF (because JPF can interpret the code inside of opaque 
behaviors); however because the latter method is explicit (it does 
not have hidden guards in the code) and limits the state space with 
guarded transitions, it was chosen for the queue pattern. 

4. MODEL TRANSFORMATION 
During the model-checking phase of this project, the tool chain 
from the SysML model to Java Pathfinder (JPF) model checker 
was extended to support collaborating Statecharts, guards on 
composite states, and opaque behaviors (transformed as 
commented code). 
The challenge was to find an adequate representation of the 
SysML model in jpf-Statecharts terms. In SysML the behavior of 
the system is described by a set of collaborating Statecharts 
interacting via SysML ports, sending signals to each other, and 
referencing other Statecharts’ states in guarded transitions. In jpf-
Statecharts, states are represented by Java classes, nested states by 
nested Java classes and transitions by class methods. Parallel 
regions are mapped to additional initial nodes and not to a 
separate Java classes.  

COMODO was modified to map the behavioral part of the SysML 
model to a single system Statechart containing one orthogonal 
region for each collaborating Statechart. Thus, the guards that 
reference states in separate Statecharts in the SysML model will 
reference states in a orthogonal region in the transformed model.  
Due to the property that events are broadcast to all orthogonal 
regions in a Statechart, a merged Statechart of orthogonal regions 
accurately represents a collection of collaborating Statecharts. 
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Consequently, the modeler must ensure that distinct Statecharts do 
not use the same signal to trigger transitions unless they intend for 
all of the transitions in the model with that signal to be triggered 
independently of where the signal is intended to be consumed. 
Additionally, the inState guards require the fully qualified name 
so JPF knows where, in its merged Statechart, to find individual 
states.  

The following chart illustrates the process of model checking 
from SysML model to JPF’s result. 

 
Figure 5: Model Checking in Java Pathfinder 

The current COMODO transformation to jpf-Statechart requires 
manual intervention in the generated Java code. For example any 
code from the model’s opaque behaviors are manually converted 
to Java. Ports are commented because there is no concept of 
interfaces between state machines in the transformed, merged 
Statechart. Different syntax required to specify guards in 
MagicDraw/Cameo and in jpf-Statecharts currently imposes a 
limitation therefore the guard transformation has to be done 
manually. The properties to be checked (in the form of assertions) 
are also added manually and have, at the moment, no 
representation in the SysML model. 

If Java is the target platform for the final software implementation 
and its structure is based on Statechart semantics, the JPF model 
checker can be run on the final production code. For rigorous 
validation and verification of the system, it is both efficient and 
less prone to error if the model checker supports the final 
implementation language. If an intermediate representation is 
checked or the model is transformed to a model checking specifc 
language (for example Promela), then one would have to verify 
that the model checked representation is consistent with the final 
implementation. 

5. SYSTEM’S PROPERTIES 
The following assertions are a subset of the properties to check 
that were input into the transformed model 
(SMAPFaultProtectionBehavior_v37) prior to running JPF. The 
goal of model checking is to ensure that none of these logical 
statements can be violated in the fault protection design. This 
small set of assertions was formulated from rules stated in the 
SMAP Mode Manager Functional Design Description (FDD) [3], 
Mode Manager configuration tables, and SMAP Fault Protection 
FDD.  

Table 1: Example Model Checking Assertions 
If in Idle Acs mode state, then in Test sytem mode 
state OR Prelaunch system mode state 

If in Safe RCS response state, then in Activation rules6 
state 

If in Reset monitor1 state, then in SBAND primary 
transmitter OFF state AND SBAND backup 
transmitter ON state OR  SBAND primary transmitter 
ON state AND SBAND backup transmitter OFF state 

Assertions are a simple way to check logical behavior of the 
system when executing a entry/so/exit behavior. Assertions are 
limited to expressions that are valid at a given point in time in the 
current state configuration. It would be useful to check temporal 
expressions that can be formulated for the overall Statechart and 
can contain operators to express temporal constraints. 
With the currently available ‘isInActiveStates’ operator of jpf-
Statecharts, assertions on the current state configuration can be 
formulated. However, we cannot assert certain paths or sequences 
of Statechart execution, in particular when guards are used. If a 
Statechart is created without guards the sequence of states is 
determined by its transitions. The problem arises with multiple 
guarded transitions that allow a state to be reached in different 
ways. The objective is to validate that, in certain conditions, a 
state can only be reached via a certain path. If the transitions are 
guarded the path cannot be simply determined by the transitions. 
In order to be able to assert certain paths, an additional operator, 
‘wasInActiveStates’ can be introduced that queries the previous 
state configuration and enables assertions to be made about the 
path that leads to a certain state. For example, in Figure 6, S3 can 
be reached from S5 and S6 via transitions. A ‘wasInActiveStates’ 
assertion could be put in a behavior of S3 that ensures that the 
previous state was either S5 or S6, depending on some other 
condition like being in another state in yet another region. 

 
Figure 6 Multiple Paths to reach a state 

Rather than implementing assertions manually into the generated 
Java code, it is preferred to have the assertions and potential 
temporal logic expressions modeled as constraints in the SysML 
model and generate them during the model transformation. This 
would ensure that all relevant information is in a single place, as 
suggested by a model driven approach. 
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6. Model Checking Results 
The following results show the performance of JPF model 
checkers for different sized models.  

Table 2: JPF Results 
Config. Notes Results 

Intel Core2 Quad CPU 
Q8400@ 2.66GHz 
1.67Ghz, 8GB, 
Windows 7, 64Bit, 
Java 1.6.0_45 64Bit, 
JPF6 

Covered Statecharts: Sys Rsp, 
RWA1, ErrMon, mode 
manager. Assertion failure 
was detected immediately. 

# of States: 81; # of 
Transitions: 131; # of Guards: 
33; # of Regions: 29; 
Theoretical worst case state 
space: 47443968 

Elapsed time: 0 s; 
States:new=7,visited=4,backtracked=4, 
end=0; Search: maxDepth=7, constraints 
hit=0; Choice generators:thread=3 (signal=0, 
lock=1, shared ref=0), data=4; Heap: 
new=1110, released=11, max live=1041, gc-
cycles=10; Instructions:22313; Max 
memory:121MB; Loaded code: classes=156, 
methods=1452 

Intel Core2 Quad CPU 
Q8400 @ 2.66GHz 
1.67Ghz, 8GB, 
Windows 7, 64Bit, 
Java 1.6.0_45 64Bit, 
JPF6 

Covered Statecharts: SysRsp, 
RWA1, ErrMon, mode 
manager,. No errors detected. 
Runs at moderate memory 
consumption for almost 
600hrs.Multi-threading would 
definitely help. 

# of States: 81; # of 
Transitions: 131; # ofGuards: 
33; # ofRegions: 29; 
Theoretical worst case state 
space: 47443968 

Elapsed time:35859 minutes 25 
seconds;States: new=113246210, 
visited=2439469581, 
backtracked=2552715791, end=0; Search:             
maxDepth=3391, constraints hit=0; Choice 
generators:  thread=3 (signal=0, lock=1, 
shared ref=0), data=113246208; Heap: 
new=1924286754, released=18, max 
live=1252, gc-cycles=-1742251505; 
Instructions: 6796413686932; Max memory: 
4628MB; Loaded code: classes=171, 
methods=1307 

 

Intel Core 2 Quad 
CPU Q8400 @ 
2.66GHz 1.67Ghz, 
8GB, Windows 7, 
64Bit, Java 1.6.0_45 
64Bit, JPF6 

The SMAP model v_37,  

# of States 177; # of 
Transitions 307; # of Regions 
68; # ofGuards 181; 
Theoretical worst case state 
space: 3028188240   

Elapsed time: 00:00:28 
states: new=12357, visited=21281, 
backtracked=33638, end=0 
search: maxDepth=35, constraints hit=0 
choice generators: thread=11846 (signal=0, 
lock=1, shared ref=1792), data=512 
heap: new=4149, released=45, max 
live=2130, gc-cycles=33638 
instructions: 147635950 
max memory: 81MB 
loaded code: classes=268, methods=1597 

Intel Core 2 Quad 
CPU Q8400 @ 
2.66GHz 1.67Ghz, 
8GB, Windows 7, 64 
Bit, Java 1.7.0_40 
64Bit, JPF 7 (r1141) 

The SMAP model v_37 

# of States 177; # of 
Transitions 307; # of Regions 
68; # ofGuards 181; 
Theoretical worst case state 
space: 3028188240 

elapsed time: 00:07:18 
states: new=49284, visited=171905, 
backtracked=221189, end=0 
 search: maxDepth=32, constraints hit=0 
 choice generators: thread=45189 (signal=0, 
lock=1, shared ref=0), data=4096 
 heap: new=29644, released=2517, max 
live=2319, gc-cycles=221189 
 instructions: 1858380973 
 max memory: 353MB 
 loaded code: classes=252, methods=1808  

*Note: There is a significant difference when checking the SMAP model with JPF 6 and 7. This 
requires further investigation. 

An estimate of the worst case state space was computed for 
Statecharts given in the above table simply by building the 
product of the number of leave states of every region. This means 
that every state in a region would have a transition to any other 
state in the same region. 

7. JVM Configuration 
There are many applications where Java is used in High 
Performance Computing (HPC) with often only marginal 
reductions in performance w/r/t C or C++ [6]. However, the Java 
Virtual Machine (JVM) requires some application specific tuning 
in order to exploit its best performance. In particular in relation to 
Just In Time compilation and the selected Garbage Collector 
strategy. Model Checking can be considered as an HPC 
application, in particular for large models with large state spaces. 
At the moment the run-time options for Java used for JPF are: 
java -d64 -server -XX:+UseParallelOldGC -XX:CompileThreshold=10000 -
XX:+AggressiveOpts -XX:+UseCompressedOops -XX:MaxNewSize=8g -
XX:NewSize=8g -Xms26g -Xmx26g -jar jpf-core\build\RunJPF.jar +shell.port=4242 
../SUT.jpf -show –log 

There was an attempt to run JPF on JPL’s Castor supercomputer 
which consists of multi Intel Itanium CPUs and a Linux operating 
system. Already with a small model, which took about 10 hours 
on a Windows quad core machine, the execution on Castor took 
about 40 hours. The main reason (which can also be found in 
various internet forums) seems to come from a competition 
between the Java garbage collector and the Linux paging 
mechanism. 

8. CONCLUSIONS AND FUTURE WORK 
In addition to increasing the capabilities of the transformation tool 
to make the SysML to text code process more automatic, 
improvements to JPF-SC have been noted that would speed up the 
model checking verification time as well as allow for a wider 
range of SysML models to be checked.  

The Cameo Simulation Toolkit, used to execute the model in this 
project uses the Apache implementation of SCXML. jpf-
Statechart uses its own semantics for Statecharts and would need 
to be rewritten to be compliant with SCXML so the suite of tools 
used for this project is better aligned. jpf-Statechart should also be 
64 bit compliant, have parallelized (multi-threaded) state space 
exploration abilities so multi-core machines can be used 
efficiently for model checking. Moreover, strategies to reduce the 
state space (using information on internal and external events) 
shall be investigated, as well as the capability to validate specific 
paths and sequences in the Statechart execution 
(wasInActiveStates). jpf-Statecharts should also support temporal 
logic expressions which would allow to validate future state 
configurations. For example, if the Statechart enters a Failure 
Mode state it shall eventually end up in a Response state. Finally a 
catalog of modeling patterns has to be created to support efficient 
model checking. 
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