
Automated Generation of Fault Management Artifacts
from a Simple System Model

Andrew K. Kennedyi and John C. Dayii
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr. Pasadena, California, 91109

Our understanding of off-nominal behavior - failure modes and fault propagation - in
complex systems is often based purely on engineering intuition; specific cases are assessed in
an ad hoc fashion as a (fallible) fault management engineer sees fit. This work is an attempt
to provide a more rigorous approach to this understanding and assessment by automating
the creation of a fault management artifact, the Failure Modes and Effects Analysis (FMEA)
through querying a representation of the system in a SysML model. This work builds off the
previous development of an off-nominal behavior model for the upcoming Soil Moisture
Active-Passive (SMAP) mission at the Jet Propulsion Laboratory. We further developed the
previous system model to more fully incorporate the ideas of State Analysis, and it was
restructured in an organizational hierarchy that models the system as layers of control
systems while also incorporating the concept of “design authority”. We present software that
was developed to traverse the elements and relationships in this model to automatically
construct an FMEA spreadsheet. We further discuss extending this model to automatically
generate other typical fault management artifacts, such as Fault Trees, to efficiently portray
system behavior, and depend less on the intuition of fault management engineers to ensure
complete examination of off-nominal behavior.

I. Introduction

HIS paper describes the work performed in the process of automating the generation of a Failure Modes and
Effects Analysis (FMEA) document from a simple SysML model.

This work arose as part of the effort to model off-nominal behavior, a component of the SMAP model-based
systems engineering (MBSE) pilot program1. The beginnings of the work are rooted in the paper that was written by
the off-nominal modeling team for the Infotech@Aerospace conference in June 2012. In the paper, a basic model
was presented of the “Spinup and Orient” activity for the SMAP mission. This model included the sub-activities
performed during Spinup and Orient, the components of the SMAP spacecraft responsible for performing these
activities, and a State Effects Diagram (SED) detailing the relationships between the state variables that characterize
these components. The paper also included a basic FMEA derived from this model. See Ref. 1 for a full account of
this work. The FMEA in the paper was generated by tracing a set of relationships between the elements in the
model. This tracing process was simple enough to be automated, and thus this task was undertaken.

The work detailed below is a documentation of the final, SMAP “Spinup and Orient” model produced, and the
python scripts used to generate an FMEA from that model. The concept of State Analysis played a key role in this
work, as will be discussed in detail below.

The SysML model was developed using the MagicDraw program from No Magic, version 17.0. The IMCE
“State Analysis” (IMCE SA) Ontology was heavily used in this model. The version of this ontology used was
current as of July 2012, and changes to that ontology may have developed since then. Apple’s Xcode was used for
python scripting. It is assumed that the reader has some familiarity with SysML and MagicDraw in reading this.

i Systems Engineer, Systems Engineering Section, 4800 Oak Grove Drive M/S 301-490.
ii Technical Group Supervisor, Systems Engineering Section, 4800 Oak Grove Drive M/S 301-490, AIAA Senior
Member.

T

American Institute of Aeronautics and Astronautics

1

II. Off-Nominal Ontology
In the 2012 Infotech paper, an ontology was introduced for use in modeling off-nominal behavior1. This ontology
underlies the final model developed, and is shown in Fig. 1.

This ontology represents the elements and relationships that must be modeled in a system to sufficiently consider
what happens in off-nominal situations. Here we see that components perform activities, which define goals, which
constrain state variables, which in turn characterize components. A component is basically a physical item in the
model. Examples might include a spacecraft bus, a reaction wheel, or a switch. Activities are things that those
components do, in order to achieve goals. A goal is
meant to be a constraint on a state variable (SV),
keeping that state variable within a certain range or
with certain values over a period of time. State
variables are explained in depth in references 2 and
3. They basically model the evolution over time of
any parameter relevant for controlling the system.
An example state variable might be the angular state
of the spacecraft bus, including angular position,
velocity, acceleration, and all other derivatives. The
dividing line between a goal and an activity is
slightly fuzzy at this point in time, but a useful way
to think of it is that a goal uses activities to do its
job of constraining a state variable.

This ontology serves as a good basis for the
necessary elements and relationships that must exist
in the SMAP model for FMEA generation.

III. System Layers

A. Overview
For the purposes of FMEA generation, a small part of the SMAP pilot model was taken and developed in more

detail. This further development was based around a new set of organizational semantics that are described in detail
below. These semantics, hereafter refered to as the “System Layers” hierarchy, largely arose in the attempt to adapt
the State Analysis ontology developed in reference 2 to a system model being built from the ground up. The
semantics reflect two important ideas:

1) The distinction between “control system” and “system under control” established in State Analysis
2) The idea, posited by the author, that one can partly organize a system model’s hierarchy around the division

of labor and authority in a project.

The first idea in the System Layers hierarchy is that a system can be thought of as a series of control layers.
There is a strong distinction drawn between the control system and the system under control at each layer, with the
control system for one layer becoming the system under control for the next. This separation between controller and
“controlled” was strongly influenced by the discussions of control systems in both references 2 and 3. This layering
allows the system architect to think of a command and data handling computer, for example, as a controller of a
spacecraft, but also a system under control by operators on the ground.

The second idea manifests itself as the concept of “design authority”. Within each system layer, the model
elements are placed in the containment tree in such a way as to emphasize the idea that the overall system is
designed from the bottom up, i.e. those engineers working on a subsystem are responsible for that subsystem alone,
and only those working at the hierarchical layer above must worry about the connections between subsystems. This
is a mapping of authority and labor to the structural layout within a system layer.

The hierarchy for the SMAP FMEA model was constructed with both the ideas of layered control systems and
design authority in mind. First, the concept of a single System Layer was developed to emphasize design authority.
Second, this system layer was placed above lower system levels, for which it serves as a control system, and below
higher levels, for which it serves as the system under control. These two ideas will be detailed in the sections below.

Figure 1. The Off-nominal Ontology from Infotech
2012.

American Institute of Aeronautics and Astronautics

2

B. A System Layer
A single system layer is composed of multiple “rings”, as shown in Fig. 2. The SysML elements that these rings

utilize will be discussed further below. As indicated in the diagram, the control ring “contains” the functional ring,
which in turn contains the physical ring. The physical ring and the functional ring both serve as the system under
control for the control ring. It’s emphasized again that these rings only represent one layer of the system, one step in
its control hierarchy. The intent is that the physical ring of this layer then contains the control rings of lower layers,
and the control ring of this layer will be contained in the physical ring of a higher layer. An example of this type of
containment will be presented below.

A key point about the
rings in Fig. 2 is that the
“contains” relationship
implies authority of one ring
over another, within the
process of designing the
system. The functional ring,
or rather the engineers
designing it, has
responsibility for the
integrity of its connections
with the physical ring, and
the same goes for the
connections between the
control ring and the
functional ring (and, by
“transitivity”, those between
the control and physical
rings). The physical ring can
have knowledge of the
connections that exist
between it and the functional

ring, but it cannot create or destroy such connections; that authority resides entirely in the functional ring. Note that
this authority over the creation and destruction of connections is not actually enforced in MagicDraw; the author
intends this to be an instruction for the actual users to follow.

This concept is rooted strongly in the principle of work delegation. The engineers responsible for the physical
ring are only responsible for designing that one ring. They need not worry what the functional ring uses the physical
components for; those in charge
of the functional ring have that
responsibility. The control ring
must ensure that its connections to
both rings have integrity.

An alternative view of these
rings is shown in Fig. 3. Note that
this is not a Venn Diagram; the
rings are simply drawn around
each other to illustrate the idea
that one ring contains another, and
the authority of a single ring is
limited to the area that it contains.

C. Rings in Detail

1. Updated Ontology
In order to explain the

elements within the rings, we
must first examine an updated
version of the Off-nominal

Figure 2. A System Layer, with its Physical, Functional, and Control Rings.

Figure 3. Alternative Depiction of a System Layer and its Rings.

American Institute of Aeronautics and Astronautics

3

ontology from Fig. 1. The updated version is reflected in Fig. 4.

This updated ontology reflects the semantics that are consistent with the System Layers hierarchy as well as the
final version of the SMAP FMEA model. The “Activity” element in Fig. 1 has been replaced with “Function”, in
order to prevent confusion with the vanilla “Activity” element in UML and SysML. The “elaborates” relationship
means that a goal can create other sub-goals in order to achieve its high level objective3. The State Variable (SV)
“affects” relationship means that one SV has a physical relationship with another SV2. The “utilizes” relationship
means that a function can utilize other functions in performing itself. The other relationships, between the elements,
will be covered in more detail below.

2. Physical Ring

The physical ring contains all the physical components under control within this system layer. It is basically the
structural decomposition of the part of system hierarchy within this layer, as detailed as the designer wishes to make
that decomposition. An example decomposition might be that the “Flight System” is composed of (or owns) both
the “Spacecraft Bus” and the “Instrument”, as in the SMAP mission.

3. Functional Ring
The functional ring assigns “functions” to the components in the physical ring. Here we define a function to be a
certain behavior designed into the system, which can be used to achieve multiple results. For instance, the function
“Spin Up” can be used to spin up the instrument to different angular rates. Functions can thus be thought of like a C
library; they’re the general purpose functions that are available in the system, and they can be called at operation,
with context-dependent arguments, in order to achieve a certain result. Groups of functions are organized into
“logical subsystems”, e.g. the thermal subsystem might be composed of multiple functions like “provide heat”,
“open louvers”, and “maintain temperature”.

These functions are “performedBy” components in the physical ring, as reflected in Fig. 4. These performedBy
relationships can only be instantiated in the Functional ring, thus ensuring design authority is properly directed. This
directionality is the reason why the relationship is not named “performs”. Note that in SysML the relationship is
modeled as a dependency, and both the client and the supplier of that dependency know it exists (i.e. either a
component or a function can be used as the starting point to trace along that dependency). However, only the
Functional Ring can create the relationships.

4. Control Ring

The control ring is the control system for both the Physical and the Functional rings. It contains goals that are
“achievedBy” functions, which means that the goals use functions to achieve their intent. This intent is modeled as a
constraint on a single state variable. This constraint requires that the SV have the discrete value or stay within the
value range specified by the goal over a specified time period.

If “Functions” in the Functional Ring can be thought of as C library functions, then Goals can be thought of as
the act of calling of those functions within a C program. Goals specify what the Function should actually achieve by

Figure 4. Updated Off-nominal Ontology.

American Institute of Aeronautics and Astronautics

4

passing them arguments. For the function “Spinup”, a valid goal would be “Spinup Instrument to 3 RPM”, which
specifies that the Instrument Angular Rate SV should be transitioned to and maintained at 3 RPM.

The Control Ring can elaborate one Goal into other goals during operation3. This reflects the fact that in order to
achieve a high-level goal, it might be necessary to achieve several low-level goals.

In order for goals to constrain SVs, those SVs must be defined within the control ring. The SVs are thus
specified within a State Analysis (SA) context that is defined within the control ring. This context is a basis for all
the SVs to be used within this system layer; it creates a specific granularization of system states that are useful from
the perspective of this control ring and stores these in a set of prototype SVs. It specifies the reference frames, the
units, etc. for the measurement of these states. Using the prototypes in the analysis context, designers can create
specific instances of state variables that characterize components and functions within the two lower rings in this
system layer. “Physical State Variables” (PSVs) are those SVs that represent actual physical quantities or states, the
real value of a state variable at a given time. “Knowledge State Variables” (KSVs) represent the control ring’s
knowledge of those physical SVs. This division of state variable types follows ideas developed in2. The upshot of
having these two types of SV instances is that the designer can model the pure physics of this system layer in the
physical and functional rings with PSVs, and reason about the control ring’s observations of those physics with
KSVs.

D. Example System Layer
Figure 5 provides an example system layer. This example is the same as the SMAP FMEA model discussed in

detail in Part IV of this paper.

The Physical ring features a decomposition of physical components, and the Functional ring lists several
functions performed by those components. “RW” and “SCB” stand for Reaction Wheels and Spacecraft Bus,
respectively. The Control ring features several goals, all listed under “Spinup and Orient”. Under the analysis
context, there is a list of PSVs under “Sys Under Control” and a list of KSVs under “Control Sys”. As one example
of a goal of the control ring, we have “Detumble SCB”, which is achievedBy the “Detumble” function, which is
performedBy the “Spacecraft Bus” component (SCB). This goal constrains the PSV “SCB Ang State”, which
characterizes “Spacecraft Bus”, and the control system observes through the corresponding KSV under “Control
Sys”.

Figure 5. Example System Layer - SMAP Flight System.

American Institute of Aeronautics and Astronautics

5

E. Multiple System Layers
The single system layer above can be extended to a full system model by including other system layers above

and below it in the hierarchy. Figure 6 illustrates how multiple layers can be used to build a full system from its
most basic components to its top level.

As can be seen, the control ring for one layer become part of the physical ring for the next layer up. The names
in purple (e.g., Mission Sys, Flight Sys, Instr Motor, etc.) represent individual system layers. Within the green areas,
the control rings, one can see various control systems, including the Mission Planning and Sequencing (MPS) and
Ground Data System (GDS) teams as well as Managers, Science Teams, and the Congress at the very top level.
Various goals are shown, including “Detumble SCB”, “Receive data on April 15” and “Observe Greenland”. The
main point of this diagram is to illustrate that using the ideas in the System Layers hierarchy, one can divide a
system structure into distinct layers that can developed and analyzed in depth without having to worry about the full
scope of the system. The details of the interface between the control ring of one system layer and the physical ring
have not been fully worked out at this point; the general idea is that a control system in one layer is just a physical
component or a piece of software (a software component) at the next.

F. Issues with the System Layers Hierarchy
The System Layers hierarchy was devised as a convenient way to structure the containment of elements in the

SMAP FMEA model. It seems to have some real advantages for organizing the system model and making it more
coherent. That being said, there are some issues with this hierarchy that should be addressed.

First, there is no one, true hierarchy. The choice of a hierarchy based on design authority and layered control
systems makes sense for this application, but there are many ways of organizing a system into a hierarchy. Right off
the bat, the mixing of the two ideas, design authority within the system layers and multiple control systems across
layers, is a melding of two different hierarchies. One could also imagine modeling the system in terms of
requirements definition, in which the top level system requirements are created first, some design is done on the
system, requirements are refined to the subsystem level, some design is done on those subsystems, requirements are
refined to assembly level, etc. In this case, it makes more sense to think of the system model as top-down rather than
bottom-up (as is the System Layers hierarchy). There are many other equally valid hierarchies to use. Bob
Rasmussen of JPL described it best in saying that a person exists in many hierarchies: work, family, friends,
organizations, legal systems. In order to understand a person, one must look at all these different hierarchies at once.

Figure 6. A Full System Constructed From Multiple System Layers.

American Institute of Aeronautics and Astronautics

6

However, for the purpose of creating an FMEA, the currently selected hierarchy works for the time being. The most
important thing is that the hierarchy gives a system designer the latitude to design a system as it should be; i.e. the
model should not force the design.

Another issue with the current hierarchy is that the authority of the Functional ring over the Physical ring is
rather arbitrary. The original idea was that in the design process, an engineer would decide first what components
are necessary to have in a system layer, then delineate the functions that those components perform. However, it can
be argued that from a requirements perspective a designer should first specify what functions a system layer should
perform, then decide what components are necessary to achieve those functions, implying that the Physical ring has
authority over/is outside the Functional ring. Perhaps it would be better if both rings were at the same level of
authority, neither one being inside the other, but both of them were inside the Control ring. The final decision about
what hierarchy is best here is left for future work. It is also conceivable to simply leave this decision to the designer.

IV. Final SMAP FMEA Model

The final SMAP FMEA model produced in SysML is fairly simple, but informative. It reflects all the ideas of

the System Layers hierarchy outlined in Part II above, and constitutes an easily understood example of its
application. The following sections discuss the model in detail in order to understand how to apply the FMEA
generation script to it. Every effort was made to use stereotypes from the IMCE State Analysis (SA) and “mission”
ontologies, though in certain cases, customized stereotypes had to be created..

A. Containment Tree
The containment tree for the model is where the structure provided by the System Layers hierarchy really shows

its face. Figure 7 shows the details of the tree.
The whole model is contained within the package “State Analysis SMAP Example” (top left of Fig. 7). The

model represents one full system layer, the same layer as that shown in Fig. 5. First we see the Control ring, named
“Flight System Control”. The Functional ring is “Flight System Functional”, expanded in the top right, and the
Physical ring is “Flight System Physical”, expanded on the bottom right.

Figure 7. Containment Tree for Final Model.

American Institute of Aeronautics and Astronautics

7

1. Flight System Control : contents of the control ring
Within the Control ring we see the “Spinup and Orient” package, which contains multiple packages, starting

with “Detumble SC Bus”. The “Spinup and Orient” package represents the Activity of the same name that was taken
from the original SMAP pilot model1. In the current model, it represents a “high-level” goal for the flight system
Control ring: spinup and orient the spacecraft. Within the subpackages such as “Detumble SC Bus” (also high-level
goals), we have specific goal instances, which are modeled as Use Cases, per the current version of the IMCE SA
ontology. These goals are discussed in more detail in section IV.C.

Within the Control ring we also see the package “State Variable Types”. This package holds multiple blocks that
are all stereotyped as “state-analysis.StateVariable”, from the IMCE SA ontology. These blocks are the prototype
SVs that are instanced in the Analysis Context also contained in the Control ring.

We see the “Analysis Context” block as well, which is a SysML block stereotyped as “state-
analysis.StateAnalysisContext” from the IMCE SA ontology [2]. The analysis context is required to contain both a
representation of the control system (“Control Sys”) and the system under control (“Sys Under Control”), which
have the stereotypes “state-analysis.ControlSystem” and “state-analysis.SystemUnderControl”, respectively. The
“Control Sys” block contains knowledge state variables (KSVs) and the and the “Sys Under Control” block contains
physical state variables (PSVs). More detail on the analysis context follows in section IV.D.

2. Flight System Functional : contents of the functional ring

The functional ring contains the functions that are performed by this system layer. These functions are modeled
as Activities, stereotyped as “mission.Function”s from the IMCE mission ontology. These activities have (hidden)
dependency relationships pointing to components in the Physical ring, labeled as “performedBy”. This reflects the
relationship in Fig. 4. Note that this is not an official stereotype from an IMCE SA ontology, it is simply a label on
the dependency relation.

No examples are provided in this model of how a function “utilizes” another function (per the ontology in Fig.
4). However, this could be modeled with a simple dependency relationship between two functions, labeled with
“utilizes”.

3. Flight System Physical : contents of the physical ring

The physical ring contains the decomposition of components in the system layer. All these components are
modeled as blocks. The original desire was to apply the stereotype IMCE “mission.Component” to these blocks, but
that stereotype can only be applied to
classes; nonethless, that’s what these
blocks represent. The “Composition”
diagram of the physical ring is detailed
in the following section.

B. “Composition” diagram
The composition diagram of the

physical ring is shown in Fig. 8.
This diagram is pretty simple. It

just shows the “owns” (i.e.
aggregation) relationships between
components, which are inherent in the
containment tree structure of the
components in the physical ring in any
case.

Figure 8. Composition Diagram.

American Institute of Aeronautics and Astronautics

8

C. Goal Elaboration (GE) diagram
The GE diagram describes how goal networks can be created through the “elaborates” relationship from Figre 4.

An example GE from the “Spinup and Orient” package within the Control ring is shown in Fig. 9. This GE is from
the “Detumble SC Bus” package specifically.

The bubbles in this diagram are use cases, stereotyped as “state-analysis.Goal”. These represent actual goals,
whereas the “Spinup and Orient” and “Detumble SC Bus” packages are just high-level containers for these goals.
This distinction between specific goals and “high-level” goals is a bit arbitrary, and should perhaps be modified for
future use. Where exactly the goals are contained is not important when using the python FMEA generation script.
The IMCE “state-analysis.prerequisite” relation is used here as a specific type of elaboration between two goals. In
this case the “transition to” goal elaborates the “hold” goal; that is, the SV must transition to a state before it holds
said state. These goals both have “achievedBy” relations with functions in the Functional ring. This relationship is
necessary for tracing functions to goals in the FMEA.

In addition the goals both own a constraint, which
constrains one of the PSVs under “Sys Under Control”
in the State Analysis Context in the Control ring. These
constraints are shown in the containment tree detail in
Fig. 10. These constraints are instances of the
“constrains” relationship in the ontology in Fig. 4.

In the current model goals only constrain PSVs,
because they are meant to constrain the physical
behavior of the system. However, goals can also be
levied on KSVs, in order to set limits on one’s
knowledge of the state variables, as understood by the
control system3.

Figure 9. Goal Elaboration From "Detumble SC Bus" Package.

Figure 10. Detail of Goal Constraints.

American Institute of Aeronautics and Astronautics

9

D. Analysis Context diagram
The analysis context in the Control ring is detailed in

the diagram in Fig. 11.
As can be seen, the “Sys Under Control” and the

“Control Sys” are both owned by the “Analysis Context”
block. Their IMCE SA ontology stereotypes are visible
at the tops of the blocks. The KSVs and PSVs exist as
part properties underneath these two blocks. They are all
instances of the SV prototypes under the “State Variable
Types” package in the control ring, as seen on the left
side of Fig. 7. These SV part properties have two types
of relations going out, “characterizes” dependency
relationships which point to components in the Physical
ring, and IMCE “state-analysis.affects” relations that
point to other SV part properties. Note though that
affects relations should only be between PSVs, because
they are meant to model physical relationships between
the real SVs, not the KSVs observed by the control
system.

Also, the “Sys Under Control” “models” the “Flight System” block from the Physical ring. Perhaps there should
also be a “models” relationship for the control system, but the semantics of this are not quite clear yet2.

E. State Effects Diagram (SED)
The SED is a diagram that conveniently illustrates the physical effects because state variables in a system, via

their “affects” relationships2,3. The diagram can also be used to show how measurements and commands affect the
SVs, but it is not used for the that purpose in the current model. The SED for the PSVs in the “Sys Under Control” is
shown in Fig. 12.

Figure 11. Analysis Context Diagram.

Figure 12. System Under Control SED.

American Institute of Aeronautics and Astronautics

10

Note the affects relationships between all the PSVs, which use the IMCE “state-analysis.affects” relation. Also
note the values in the brackets within the Angular State PSVs that are displayed in this diagram. These values come
from the constraints under the goals in the Control ring (“transitioning” was unfortunately automatically included
twice under the “Flight Sys Ang State PSV”, due to two goal elaborations having such a constraint on this PSV).

The affects relationships present in Fig. 12 can easily be traced through the MagicDraw program’s OpenAPI
interface. Starting at a given SV, one can thus find all the SVs that affect or are affected by the given one, allowing a
systems engineer to trace physical effects through the model. This is the basic principle used to output the FMEA in
Part V below.

V. FMEA Generation
A python script was written to interface with the MagicDraw API to generate an FMEA. Figure 13 shows the

FMEA that is produced in running the scripts on the MagicDraw model.
 The first column is “Component”, which is the component for which all of the failure modes are being listed.
The column “Failure Mode” has all the failure modes, i.e. the negations of functions “performedBy” the component
on the left. The third column is the goal “achievedBy” the functions negated in the second column. Multiple goals
can be achievedBy a single function, hence multiple are listed under a single failure mode. A goal corresponds to the
function to the left and up. The fourth column is the state variable constrained by the goal to its immediate left.
Finally, the fifth and sixth column are the causes and effects of the failure mode, i.e. the SVs that affect or are
affected by (respectively) this SV through “affects” relationships. For each SV constrained by a goal, there can be
multiple causes and effects. The most immediate cause/effect is listed to right of the state variable, in the same row.
Further causes/effects are listed immediately below, continuing until another constrained SV is reached and a new
list starts. The causes/effects are traced through the model recursively, thus it is not necessarily so that one gets
monotonically closer to a “root cause” or “ultimate effect” as one goes down the rows of causes/effects.

This automatically-generated FMEA, while naturally much simpler than a full-blown FMEA done by a systems
engineer on a current NASA or industry project, captures some of the essential features necessary for understanding
how a failure propagates through a system. It identifies the way in which a component/function fails and traces this
failure to other possible failure modes elsewhere in the system. The underlying network providing by SVs and state
effects allows the disparate parts of the model to be linked through explicit relationships, rather than hidden in
abstruse interface definitions spread out over many documents.

VI. Conclusion

A. Lessons Learned
The concepts of System Layers and Design Authority as well as the example model detailed in this work present

one possiblity for how systems engineers can organize a sysem model. These ideas represent the fact that the
modeler cannot simply focus on detailed views of the model, e.g. structural diagrams, state charts, and sequence
diagrams, and ignore the underlying structure of the “containment tree” (in SysML/MagicDraw) which organizes all
these elements. That tree contains the vast majority of the actual information present in the model, and can be very
powerful in representing how the different parts of the system connect to each other. Moreover, when a programmer
interacts with the model to extract data from it, he or she is rarely, if ever, able to use the graphical information

Figure 13. FMEA Output From Python Script.

American Institute of Aeronautics and Astronautics

11

contained in views and diagrams. Almost all data must be extracted from the structure of the model and the
relationships between elements. For this reason, to only draw diagrams while ignoring the containment tree or
overall structure of the model is to miss out on most of the benefits of modeling in the first place.

A big lesson learned from this work is that a model is quite useful as a starting point for building off-nominal
artifacts, but it’s very hard to capture all the information one normally finds in an FMEA in the model. A lot of the
work done on FMEAs is engineering intuition; the fault protection engineer ponders what failure modes are possible
for a component, and how faults can propagate through the system. When automating off-nominal artifact creation
most of that intuition must be shifted into the model, adapting descriptions in prose to a set of relationships that exist
in SysML. Often one finds that the SysML semantics simply aren’t rich enough, and a new way needs to be invented
to represent a specific idea in the model. However, even if it’s difficult to capture all the necessary relationships in a
model, those that are captured serve as a useful starting point for the fault protection engineer. The engineer is able
to examine the auto-generated FMEA, see what’s missing, iterate on the model, auto-generate again, iterate, and so
on, which helps ensure completeness of the model, as opposed to stopping at some arbitrary point because the
system seems “analyzed enough”.

The work on dividing up a system into layers, as detailed in Part III above, was very informative about how
system structure should be represented. The arbitrary decision was made to have a Functional ring around a Physical
ring, but it’s probably equally useful to have the Physical ring around the Functional ring. Though the structure
presented here was considered useful for this instance, it’s not the “correct” hierarchy; there are many different
hierarchies that are equally valid. The key is in finding where to stop developing general semantics for system
modeling and allow the systems engineers on a specific project to choose how to represent their system.

B. Work To Go
In the course of this work, several questions arose that merit future investigation. These ideas are detailed briefly

in the list below.
1. Create final, useful definitions for “function” and “goal” that make sense in a state analysis context. Decide

where these two elements belong in the model.
2. Figure out what the proper relationship is between the Physical and Functional rings. Is the Physical ring

truly subservient to the Functional ring, or vice versa? Or, should they both exist at the same hierarchical
level?

3. Determine where the state analysis context belongs in the model. Its current placement in the control ring
seems to make sense, but it begs the question of whether or not there should be only one state analysis
context for the entire system model, all layers included. At the current point the SED created from the state
analysis context is rather flat, and doesn’t have much notion of crossing system layers. Should it indeed be
able to cross layers? Should there be only one SED for the entire system model?

4. Implement Success Tree and Fault Tree generation from the model. The automation of creating these
artifacts will undoubtedly lead to more relations and detail in the model.

5. Extend the SysML model to include multiple system layers, going further down than and higher above the
Flight System layer. It would be good to start out with adding more detail to the Spacecraft Bus and
Instrument, perhaps creating entirely separate layers for them. Also, it would be good to look at the ground
system and mission system to see how they fit in.

6. Add goal effects to the automatically generated FMEA by tracing effect SVs to the goals that constrain them.
This would show how affected SVs can lead to failures in other places in the system.

VII. Acknowledgement
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a

contract with the National Aeronautics and Space Administration. We wish to acknowledge the JPL Engineering
Science Directorate, and Office of the Chief Engineer, for providing enabling support for the performing the MBSE
pilot, and the technical support of Sandy Friedenthal, Steven Jenkins, Mitch Ingham and Kenny Donahue.

VIII. References
1Day, J., Donahue, K., Ingham, M., Kadesch, A., Kennedy, A.K., Post, E., “Modeling Off-Nominal Behavior in SysML”,

AIAA Infotech 2012. Garden Grove, CA. June 2012.

American Institute of Aeronautics and Astronautics

12

2Bennett, M.B., Ingham, M., Jenkins, S., Karban, R., Rouquette, N., Wagner, D.A., “An Ontology for State Analysis:
Formalizing the Mapping to SysML”, IEEE Aerospace Conference. Big Sky, MT. 2012.

3Ingham, M., Rasmussen, R., Bennett, M., and Moncada, A., “Engineering Complex Embedded Systems with State Analysis
and the Mission Data System”, AIAA Intelligent Systems Technical Conference. Chicago, IL. September 2004.

American Institute of Aeronautics and Astronautics

13

	I. Introduction
	II. Off-Nominal Ontology
	III. System Layers
	A. Overview
	B. A System Layer
	C. Rings in Detail
	1. Updated Ontology
	2. Physical Ring
	3. Functional Ring
	4. Control Ring

	D. Example System Layer
	E. Multiple System Layers
	F. Issues with the System Layers Hierarchy

	IV. Final SMAP FMEA Model
	A. Containment Tree
	1. Flight System Control : contents of the control ring
	2. Flight System Functional : contents of the functional ring
	3. Flight System Physical : contents of the physical ring

	B. “Composition” diagram
	C. Goal Elaboration (GE) diagram
	D. Analysis Context diagram
	E. State Effects Diagram (SED)

	V. FMEA Generation
	VI. Conclusion
	A. Lessons Learned
	B. Work To Go

	VII. Acknowledgement
	VIII. References

