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Our understanding of off-nominal behavior - failure modes and fault propagation - in 
complex systems is often based purely on engineering intuition; specific cases are assessed in 
an ad hoc fashion as a (fallible) fault management engineer sees fit. This work is an attempt 
to provide a more rigorous approach to this understanding and assessment by automating 
the creation of a fault management artifact, the Failure Modes and Effects Analysis (FMEA) 
through querying a representation of the system in a SysML model. This work builds off the 
previous development of an off-nominal behavior model for the upcoming Soil Moisture 
Active-Passive (SMAP) mission at the Jet Propulsion Laboratory. We further developed the 
previous system model to more fully incorporate the ideas of State Analysis, and it was 
restructured in an organizational hierarchy that models the system as layers of control 
systems while also incorporating the concept of “design authority”. We present software that 
was developed to traverse the elements and relationships in this model to automatically 
construct an FMEA spreadsheet. We further discuss extending this model to automatically 
generate other typical fault management artifacts, such as Fault Trees, to efficiently portray 
system behavior, and depend less on the intuition of fault management engineers to ensure 
complete examination of off-nominal behavior. 

I. Introduction 
 

HIS paper describes the work performed in the process of automating the generation of a Failure Modes and 
Effects Analysis (FMEA) document from a simple SysML model.  

This work arose as part of the effort to model off-nominal behavior, a component of the SMAP model-based 
systems engineering (MBSE) pilot program1. The beginnings of the work are rooted in the paper that was written by 
the off-nominal modeling team for the Infotech@Aerospace conference in June 2012. In the paper, a basic model 
was presented of the “Spinup and Orient” activity for the SMAP mission. This model included the sub-activities 
performed during Spinup and Orient, the components of the SMAP spacecraft responsible for performing these 
activities, and a State Effects Diagram (SED) detailing the relationships between the state variables that characterize 
these components. The paper also included a basic FMEA derived from this model. See Ref. 1 for a full account of 
this work. The FMEA in the paper was generated by tracing a set of relationships between the elements in the 
model. This tracing process was simple enough to be automated, and thus this task was undertaken.  

The work detailed below is a documentation of the final, SMAP “Spinup and Orient” model produced, and the 
python scripts used to generate an FMEA from that model. The concept of State Analysis played a key role in this 
work, as will be discussed in detail below. 

The SysML model was developed using the MagicDraw program from No Magic, version 17.0. The IMCE 
“State Analysis” (IMCE SA) Ontology was heavily used in this model. The version of this ontology used was 
current as of July 2012, and changes to that ontology may have developed since then. Apple’s Xcode was used for 
python scripting. It is assumed that the reader has some familiarity with SysML and MagicDraw in reading this. 
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II. Off-Nominal Ontology 
In the 2012 Infotech paper, an ontology was introduced for use in modeling off-nominal behavior1. This ontology 
underlies the final model developed, and is shown in Fig. 1. 

This ontology represents the elements and relationships that must be modeled in a system to sufficiently consider 
what happens in off-nominal situations. Here we see that components perform activities, which define goals, which 
constrain state variables, which in turn characterize components. A component is basically a physical item in the 
model. Examples might include a spacecraft bus, a reaction wheel, or a switch. Activities are things that those 
components do, in order to achieve goals. A goal is 
meant to be a constraint on a state variable (SV), 
keeping that state variable within a certain range or 
with certain values over a period of time. State 
variables are explained in depth in references 2 and 
3. They basically model the evolution over time of 
any parameter relevant for controlling the system. 
An example state variable might be the angular state 
of the spacecraft bus, including angular position, 
velocity, acceleration, and all other derivatives. The 
dividing line between a goal and an activity is 
slightly fuzzy at this point in time, but a useful way 
to think of it is that a goal uses activities to do its 
job of constraining a state variable. 

This ontology serves as a good basis for the 
necessary elements and relationships that must exist 
in the SMAP model for FMEA generation. 

 

III. System Layers 

A. Overview 
For the purposes of FMEA generation, a small part of the SMAP pilot model was taken and developed in more 

detail. This further development was based around a new set of organizational semantics that are described in detail 
below. These semantics, hereafter refered to as the “System Layers” hierarchy, largely arose in the attempt to adapt 
the State Analysis ontology developed in reference 2 to a system model being built from the ground up. The 
semantics reflect two important ideas:  

1) The distinction between “control system” and “system under control” established in State Analysis 
2) The idea, posited by the author, that one can partly organize a system model’s hierarchy around the division 

of labor and authority in a project. 
 

The first idea in the System Layers hierarchy is that a system can be thought of as a series of control layers. 
There is a strong distinction drawn between the control system and the system under control at each layer, with the 
control system for one layer becoming the system under control for the next. This separation between controller and 
“controlled” was strongly influenced by the discussions of control systems in both references 2 and 3. This layering 
allows the system architect to think of a command and data handling computer, for example, as a controller of a 
spacecraft, but also a system under control by operators on the ground. 

The second idea manifests itself as the concept of “design authority”. Within each system layer, the model 
elements are placed in the containment tree in such a way as to emphasize the idea that the overall system is 
designed from the bottom up, i.e. those engineers working on a subsystem are responsible for that subsystem alone, 
and only those working at the hierarchical layer above must worry about the connections between subsystems. This 
is a mapping of authority and labor to the structural layout within a system layer. 

The hierarchy for the SMAP FMEA model was constructed with both the ideas of layered control systems and 
design authority in mind. First, the concept of a single System Layer was developed to emphasize design authority. 
Second, this system layer was placed above lower system levels, for which it serves as a control system, and below 
higher levels, for which it serves as the system under control. These two ideas will be detailed in the sections below. 

 
 

 
Figure 1. The Off-nominal Ontology from Infotech 
2012.  
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B. A System Layer 
A single system layer is composed of multiple “rings”, as shown in Fig. 2. The SysML elements that these rings 

utilize will be discussed further below. As indicated in the diagram, the control ring “contains” the functional ring, 
which in turn contains the physical ring. The physical ring and the functional ring both serve as the system under 
control for the control ring. It’s emphasized again that these rings only represent one layer of the system, one step in 
its control hierarchy. The intent is that the physical ring of this layer then contains the control rings of lower layers, 
and the control ring of this layer will be contained in the physical ring of a higher layer. An example of this type of 
containment will be presented below.  

A key point about the 
rings in Fig. 2 is that the 
“contains” relationship 
implies authority of one ring 
over another, within the 
process of designing the 
system. The functional ring, 
or rather the engineers 
designing it, has 
responsibility for the 
integrity of its connections 
with the physical ring, and 
the same goes for the 
connections between the 
control ring and the 
functional ring (and, by 
“transitivity”, those between 
the control and physical 
rings). The physical ring can 
have knowledge of the 
connections that exist 
between it and the functional 

ring, but it cannot create or destroy such connections; that authority resides entirely in the functional ring. Note that 
this authority over the creation and destruction of connections is not actually enforced in MagicDraw; the author 
intends this to be an instruction for the actual users to follow. 

This concept is rooted strongly in the principle of work delegation. The engineers responsible for the physical 
ring are only responsible for designing that one ring. They need not worry what the functional ring uses the physical 
components for; those in charge 
of the functional ring have that 
responsibility. The control ring 
must ensure that its connections to 
both rings have integrity.  

An alternative view of these 
rings is shown in Fig. 3. Note that 
this is not a Venn Diagram; the 
rings are simply drawn around 
each other to illustrate the idea 
that one ring contains another, and 
the authority of a single ring is 
limited to the area that it contains.  

C. Rings in Detail 
 

1. Updated Ontology 
In order to explain the 

elements within the rings, we 
must first examine an updated 
version of the Off-nominal 

 
Figure 2. A System Layer, with its Physical, Functional, and Control Rings. 
 

 
Figure 3. Alternative Depiction of a System Layer and its Rings.  
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ontology from Fig. 1. The updated version is reflected in Fig. 4. 

This updated ontology reflects the semantics that are consistent with the System Layers hierarchy as well as the 
final version of the SMAP FMEA model.  The “Activity” element in Fig. 1 has been replaced with “Function”, in 
order to prevent confusion with the vanilla “Activity” element in UML and SysML. The “elaborates” relationship 
means that a goal can create other sub-goals in order to achieve its high level objective3. The State Variable (SV) 
“affects” relationship means that one SV has a physical relationship with another SV2. The “utilizes” relationship 
means that a function can utilize other functions in performing itself. The other relationships, between the elements, 
will be covered in more detail below. 

 
2. Physical Ring 

The physical ring contains all the physical components under control within this system layer. It is basically the 
structural decomposition of the part of system hierarchy within this layer, as detailed as the designer wishes to make 
that decomposition. An example decomposition might be  that the “Flight System” is composed of (or owns) both 
the “Spacecraft Bus” and the “Instrument”, as in the SMAP mission. 

 
3. Functional Ring 
The functional ring assigns “functions” to the components in the physical ring. Here we define a function to be a 
certain behavior designed into the system, which can be used to achieve multiple results. For instance, the function 
“Spin Up” can be used to spin up the instrument to different angular rates. Functions can thus be thought of like a C 
library; they’re the general purpose functions that are available in the system, and they can be called at operation, 
with context-dependent arguments, in order to achieve a certain result. Groups of functions are organized into 
“logical subsystems”, e.g. the thermal subsystem might be composed of multiple functions like “provide heat”, 
“open louvers”, and “maintain temperature”. 

These functions are “performedBy” components in the physical ring, as reflected in Fig. 4. These performedBy 
relationships can only be instantiated in the Functional ring, thus ensuring design authority is properly directed. This 
directionality is the reason why the relationship is not named “performs”. Note that in SysML the relationship is 
modeled as a dependency, and both the client and the supplier of that dependency know it exists (i.e. either a 
component or a function can be used as the starting point to trace along that dependency). However, only the 
Functional Ring can create the relationships.  

 
4. Control Ring 

The control ring is the control system for both the Physical and the Functional rings. It contains goals that are 
“achievedBy” functions, which means that the goals use functions to achieve their intent. This intent is modeled as a 
constraint on a single state variable. This constraint requires that the SV have the discrete value or stay within the 
value range specified by the goal over a specified time period. 

If “Functions” in the Functional Ring can be thought of as C library functions, then Goals can be thought of as 
the act of calling of those functions within a C program. Goals specify what the Function should actually achieve by 

 
 
Figure 4. Updated Off-nominal Ontology.  
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passing them arguments. For the function “Spinup”, a valid goal would be “Spinup Instrument to 3 RPM”, which 
specifies that the Instrument Angular Rate SV should be transitioned to and maintained at 3 RPM. 

The Control Ring can elaborate one Goal into other goals during operation3. This reflects the fact that in order to 
achieve a high-level goal, it might be necessary to achieve several low-level goals. 

In order for goals to constrain SVs, those SVs must be defined within the control ring. The SVs are thus 
specified within a State Analysis (SA) context that is defined within the control ring. This context is a basis for all 
the SVs to be used within this system layer; it creates a specific granularization of system states that are useful from 
the perspective of this control ring and stores these in a set of prototype SVs. It specifies the reference frames, the 
units, etc. for the measurement of these states. Using the prototypes in the analysis context, designers can create 
specific instances of state variables that characterize components and functions within the two lower rings in this 
system layer. “Physical State Variables” (PSVs) are those SVs that represent actual physical quantities or states, the 
real value of a state variable at a given time. “Knowledge State Variables” (KSVs) represent the control ring’s 
knowledge of those physical SVs. This division of state variable types follows ideas developed in2. The upshot of 
having these two types of SV instances is that the designer can model the pure physics of this system layer in the 
physical and functional rings with PSVs, and reason about the control ring’s observations of those physics with 
KSVs. 

D. Example System Layer 
Figure 5 provides an example system layer. This example is the same as the SMAP FMEA model discussed in 

detail in Part IV of this paper. 

The Physical ring features a decomposition of physical components, and the Functional ring lists several 
functions performed by those components. “RW” and “SCB” stand for Reaction Wheels and Spacecraft Bus, 
respectively. The Control ring features several goals, all listed under “Spinup and Orient”. Under the analysis 
context, there is a list of PSVs under “Sys Under Control” and a list of KSVs under “Control Sys”. As one example 
of a goal of the control ring, we have “Detumble SCB”, which is achievedBy the “Detumble” function, which is 
performedBy the “Spacecraft Bus” component (SCB). This goal constrains the PSV “SCB Ang State”, which 
characterizes “Spacecraft Bus”, and the control system observes through the corresponding KSV under “Control 
Sys”. 

 
Figure 5. Example System Layer - SMAP Flight System.  
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E. Multiple System Layers 
The single system layer above can be extended to a full system model by including other system layers above 

and below it in the hierarchy. Figure 6 illustrates how multiple layers can be used to build a full system from its 
most basic components to its top level. 

As can be seen, the control ring for one layer become part of the physical ring for the next layer up. The names 
in purple (e.g., Mission Sys, Flight Sys, Instr Motor, etc.) represent individual system layers. Within the green areas, 
the control rings, one can see various control systems, including the Mission Planning and Sequencing (MPS) and 
Ground Data System (GDS) teams as well as Managers, Science Teams, and the Congress at the very top level. 
Various goals are shown, including “Detumble SCB”, “Receive data on April 15” and “Observe Greenland”. The 
main point of this diagram is to illustrate that using the ideas in the System Layers hierarchy, one can divide a 
system structure into distinct layers that can developed and analyzed in depth without having to worry about the full 
scope of the system. The details of the interface between the control ring of one system layer and the physical ring 
have not been fully worked out at this point; the general idea is that a control system in one layer is just a physical 
component or a piece of software (a software component) at the next.  

F. Issues with the System Layers Hierarchy 
The System Layers hierarchy was devised as a convenient way to structure the containment of elements in the 

SMAP FMEA model. It seems to have some real advantages for organizing the system model and making it more 
coherent. That being said, there are some issues with this hierarchy that should be addressed. 

First, there is no one, true hierarchy. The choice of a hierarchy based on design authority and layered control 
systems makes sense for this application, but there are many ways of organizing a system into a hierarchy. Right off 
the bat, the mixing of the two ideas, design authority within the system layers and multiple control systems across 
layers, is a melding of two different hierarchies. One could also imagine modeling the system in terms of 
requirements definition, in which the top level system requirements are created first, some design is done on the 
system, requirements are refined to the subsystem level, some design is done on those subsystems, requirements are 
refined to assembly level, etc. In this case, it makes more sense to think of the system model as top-down rather than 
bottom-up (as is the System Layers hierarchy). There are many other equally valid hierarchies to use. Bob 
Rasmussen of JPL described it best in saying that a person exists in many hierarchies: work, family, friends, 
organizations, legal systems. In order to understand a person, one must look at all these different hierarchies at once. 

 
Figure 6. A Full System Constructed From Multiple System Layers.  
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However, for the purpose of creating an FMEA, the currently selected hierarchy works for the time being. The most 
important thing is that the hierarchy gives a system designer the latitude to design a system as it should be; i.e. the 
model should not force the design. 

Another issue with the current hierarchy is that the authority of the Functional ring over the Physical ring is 
rather arbitrary. The original idea was that in the design process, an engineer would decide first what components 
are necessary to have in a system layer, then delineate the functions that those components perform. However, it can 
be argued that from a requirements perspective a designer should first specify what functions a system layer should 
perform, then decide what components are necessary to achieve those functions, implying that the Physical ring has 
authority over/is outside the Functional ring. Perhaps it would be better if both rings were at the same level of 
authority, neither one being inside the other, but both of them were inside the Control ring. The final decision about 
what hierarchy is best here is left for future work. It is also conceivable to simply leave this decision to the designer. 

IV. Final SMAP FMEA Model 
 
The final SMAP FMEA model produced in SysML is fairly simple, but informative. It reflects all the ideas of 

the System Layers hierarchy outlined in Part II above, and constitutes an easily understood example of its 
application. The following sections discuss the model in detail in order to understand how to apply the FMEA 
generation script to it. Every effort was made to use stereotypes from the IMCE State Analysis (SA) and “mission” 
ontologies, though in certain cases, customized stereotypes had to be created..  

A. Containment Tree 
The containment tree for the model is where the structure provided by the System Layers hierarchy really shows 

its face.  Figure 7 shows the details of the tree. 
The whole model is contained within the package “State Analysis SMAP Example” (top left of Fig. 7). The 

model represents one full system layer, the same layer as that shown in Fig. 5. First we see the Control ring, named 
“Flight System Control”. The Functional ring is “Flight System Functional”, expanded in the top right, and the 
Physical ring is “Flight System Physical”, expanded on the bottom right. 

 

 
Figure 7. Containment Tree for Final Model.  
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1. Flight System Control : contents of the control ring 
Within the Control ring we see the “Spinup and Orient” package, which contains multiple packages, starting 

with “Detumble SC Bus”. The “Spinup and Orient” package represents the Activity of the same name that was taken 
from the original SMAP pilot model1. In the current model, it represents a “high-level” goal for the flight system 
Control ring: spinup and orient the spacecraft. Within the subpackages such as “Detumble SC Bus” (also high-level 
goals), we have specific goal instances, which are modeled as Use Cases, per the current version of the IMCE SA 
ontology. These goals are discussed in more detail in section IV.C.  

Within the Control ring we also see the package “State Variable Types”. This package holds multiple blocks that 
are all stereotyped as “state-analysis.StateVariable”, from the IMCE SA ontology. These blocks are the prototype 
SVs that are instanced in the Analysis Context also contained in the Control ring.  

We see the “Analysis Context” block as well, which is a SysML block stereotyped as “state-
analysis.StateAnalysisContext” from the IMCE SA ontology [2]. The analysis context is required to contain both a 
representation of the control system (“Control Sys”) and the system under control (“Sys Under Control”), which 
have the stereotypes “state-analysis.ControlSystem” and “state-analysis.SystemUnderControl”, respectively. The 
“Control Sys” block contains knowledge state variables (KSVs) and the and the “Sys Under Control” block contains 
physical state variables (PSVs). More detail on the analysis context follows in section IV.D. 

 
2. Flight System Functional : contents of the functional ring 

The functional ring contains the functions that are performed by this system layer. These functions are modeled 
as Activities, stereotyped as “mission.Function”s from the IMCE mission ontology. These activities have (hidden) 
dependency relationships pointing to components in the Physical ring, labeled as “performedBy”. This reflects the 
relationship in Fig. 4. Note that this is not an official stereotype from an IMCE SA ontology, it is simply a label on 
the dependency relation. 

No examples are provided in this model of how a function “utilizes” another function (per the ontology in Fig. 
4). However, this could be modeled with a simple dependency relationship between two functions, labeled with 
“utilizes”. 

 
3. Flight System Physical : contents of the physical ring 

The physical ring contains the decomposition of components in the system layer. All these components are 
modeled as blocks. The original desire was to apply the stereotype IMCE “mission.Component” to these blocks, but 
that stereotype can only be applied to 
classes; nonethless, that’s what these 
blocks represent. The “Composition” 
diagram of the physical ring is detailed 
in the following section.  

B. “Composition” diagram 
The composition diagram of the 

physical ring is shown in Fig. 8. 
This diagram is pretty simple. It 

just shows the “owns” (i.e. 
aggregation) relationships between 
components, which are inherent in the 
containment tree structure of the 
components in the physical ring in any 
case. 

 
Figure 8. Composition Diagram.  
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C. Goal Elaboration (GE) diagram 
The GE diagram describes how goal networks can be created through the “elaborates” relationship from Figre 4. 

An example GE from the “Spinup and Orient” package within the Control ring is shown in Fig. 9.  This GE is from 
the “Detumble SC Bus” package specifically. 

 

The bubbles in this diagram are use cases, stereotyped as “state-analysis.Goal”. These represent actual goals, 
whereas the “Spinup and Orient” and “Detumble SC Bus” packages are just high-level containers for these goals. 
This distinction between specific goals and “high-level” goals is a bit arbitrary, and should perhaps be modified for 
future use. Where exactly the goals are contained is not important when using the python FMEA generation script. 
The IMCE “state-analysis.prerequisite” relation is used here as a specific type of elaboration between two goals. In 
this case the “transition to” goal elaborates the “hold” goal; that is, the SV must transition to a state before it holds 
said state. These goals both have “achievedBy” relations with functions in the Functional ring. This relationship is 
necessary for tracing functions to goals in the FMEA.  

In addition the goals both own a constraint, which 
constrains one of the PSVs under “Sys Under Control” 
in the State Analysis Context in the Control ring.  These 
constraints are shown in the containment tree detail in 
Fig. 10. These constraints are instances of the 
“constrains” relationship in the ontology in Fig. 4. 

In the current model goals only constrain PSVs, 
because they are meant to constrain the physical 
behavior of the system. However, goals can also be 
levied on KSVs, in order to set limits on one’s 
knowledge of the state variables, as understood by the 
control system3. 

 
Figure 9. Goal Elaboration From "Detumble SC Bus" Package.  
 

 
Figure 10. Detail of Goal Constraints.  
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D. Analysis Context diagram 
The analysis context in the Control ring is detailed in 

the diagram in Fig. 11. 
As can be seen, the “Sys Under Control” and the 

“Control Sys” are both owned by the “Analysis Context” 
block. Their IMCE SA ontology stereotypes are visible 
at the tops of the blocks. The KSVs and PSVs exist as 
part properties underneath these two blocks. They are all 
instances of the SV prototypes under the “State Variable 
Types” package in the control ring, as seen on the left 
side of Fig. 7. These SV part properties have two types 
of relations going out, “characterizes” dependency 
relationships which point to components in the Physical 
ring, and IMCE “state-analysis.affects” relations that 
point to other SV part properties. Note though that 
affects relations should only be between PSVs, because 
they are meant to model physical relationships between 
the real SVs, not the KSVs observed by the control 
system. 

Also, the “Sys Under Control” “models” the “Flight System” block from the Physical ring. Perhaps there should 
also be a “models” relationship for the control system, but the semantics of this are not quite clear yet2. 

E. State Effects Diagram (SED) 
The SED is a diagram that conveniently illustrates the physical effects because state variables in a system, via 

their “affects” relationships2,3. The diagram can also be used to show how measurements and commands affect the 
SVs, but it is not used for the that purpose in the current model. The SED for the PSVs in the “Sys Under Control” is 
shown in Fig. 12.  

 
Figure 11. Analysis Context Diagram.  
 

 
Figure 12. System Under Control SED.  
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Note the affects relationships between all the PSVs, which use the IMCE “state-analysis.affects” relation. Also 
note the values in the brackets within the Angular State PSVs that are displayed in this diagram. These values come 
from the constraints under the goals in the Control ring (“transitioning” was unfortunately automatically included 
twice under the “Flight Sys Ang State PSV”, due to two goal elaborations having such a constraint on this PSV).  

The affects relationships present in Fig. 12 can easily be traced through the MagicDraw program’s OpenAPI 
interface. Starting at a given SV, one can thus find all the SVs that affect or are affected by the given one, allowing a 
systems engineer to trace physical effects through the model. This is the basic principle used to output the FMEA in 
Part V below.  

V. FMEA Generation  
A python script was written to interface with the MagicDraw API to generate an FMEA. Figure 13 shows the 

FMEA that is produced in running the scripts on the MagicDraw model.  
 The first column is “Component”, which is the component for which all of the failure modes are being listed. 
The column “Failure Mode” has all the failure modes, i.e. the negations of functions “performedBy” the component 
on the left. The third column is the goal “achievedBy” the functions negated in the second column. Multiple goals 
can be achievedBy a single function, hence multiple are listed under a single failure mode. A goal corresponds to the 
function to the left and up. The fourth column is the state variable constrained by the goal to its immediate left. 
Finally, the fifth and sixth column are the causes and effects of the failure mode, i.e. the SVs that affect or are 
affected by (respectively) this SV through “affects” relationships. For each SV constrained by a goal, there can be 
multiple causes and effects. The most immediate cause/effect is listed to right of the state variable, in the same row. 
Further causes/effects are listed immediately below, continuing until another constrained SV is reached and a new 
list starts. The causes/effects are traced through the model recursively, thus it is not necessarily so that one gets 
monotonically closer to a “root cause” or “ultimate effect” as one goes down the rows of causes/effects. 

This automatically-generated FMEA, while naturally much simpler than a full-blown FMEA done by a systems 
engineer on a current NASA or industry project, captures some of the essential features necessary for understanding 
how a failure propagates through a system. It identifies the way in which a component/function fails and traces this 
failure to other possible failure modes elsewhere in the system. The underlying network providing by SVs and state 
effects allows the disparate parts of the model to be linked through explicit relationships, rather than hidden in 
abstruse interface definitions spread out over many documents. 

VI. Conclusion 

A. Lessons Learned 
The concepts of System Layers and Design Authority as well as the example model detailed in this work present 

one possiblity for how systems engineers can organize a sysem model. These ideas represent the fact that the 
modeler cannot simply focus on detailed views of the model, e.g. structural diagrams, state charts, and sequence 
diagrams, and ignore the underlying structure of the “containment tree” (in SysML/MagicDraw) which organizes all 
these elements. That tree contains the vast majority of the actual information present in the model, and can be very 
powerful in representing how the different parts of the system connect to each other. Moreover, when a programmer 
interacts with the model to extract data from it, he or she is rarely, if ever, able to use the graphical information 

 
Figure 13. FMEA Output From Python Script.  
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contained in views and diagrams. Almost all data must be extracted from the structure of the model and the 
relationships between elements. For this reason, to only draw diagrams while ignoring the containment tree or 
overall structure of the model is to miss out on most of the benefits of modeling in the first place. 

A big lesson learned from this work is that a model is quite useful as a starting point for building off-nominal 
artifacts, but it’s very hard to capture all the information one normally finds in an FMEA in the model. A lot of the 
work done on FMEAs is engineering intuition; the fault protection engineer ponders what failure modes are possible 
for a component, and how faults can propagate through the system. When automating off-nominal artifact creation 
most of that intuition must be shifted into the model, adapting descriptions in prose to a set of relationships that exist 
in SysML. Often one finds that the SysML semantics simply aren’t rich enough, and a new way needs to be invented 
to represent a specific idea in the model. However, even if it’s difficult to capture all the necessary relationships in a 
model, those that are captured serve as a useful starting point for the fault protection engineer. The engineer is able 
to examine the auto-generated FMEA, see what’s missing, iterate on the model, auto-generate again, iterate, and so 
on, which helps ensure completeness of the model, as opposed to stopping at some arbitrary point because the 
system seems “analyzed enough”. 

The work on dividing up a system into layers, as detailed in Part III above, was very informative about how 
system structure should be represented. The arbitrary decision was made to have a Functional ring around a Physical 
ring, but it’s probably equally useful to have the Physical ring around the Functional ring. Though the structure 
presented here was considered useful for this instance, it’s not the “correct” hierarchy; there are many different 
hierarchies that are equally valid. The key is in finding where to stop developing general semantics for system 
modeling and allow the systems engineers on a specific project to choose how to represent their system. 

B. Work To Go 
In the course of this work, several questions arose that merit future investigation. These ideas are detailed briefly 

in the list below. 
1. Create final, useful definitions for “function” and “goal” that make sense in a state analysis context. Decide 

where these two elements belong in the model.  
2. Figure out what the proper relationship is between the Physical and Functional rings. Is the Physical ring 

truly subservient to the Functional ring, or vice versa? Or, should they both exist at the same hierarchical 
level? 

3. Determine where the state analysis context belongs in the model. Its current placement in the control ring 
seems to make sense, but it begs the question of whether or not there should be only one state analysis 
context for the entire system model, all layers included. At the current point the SED created from the state 
analysis context is rather flat, and doesn’t have much notion of crossing system layers. Should it indeed be 
able to cross layers? Should there be only one SED for the entire system model? 

4. Implement Success Tree and Fault Tree generation from the model. The automation of creating these 
artifacts will undoubtedly lead to more relations and detail in the model.  

5. Extend the SysML model to include multiple system layers, going further down than and higher above the 
Flight System layer. It would be good to start out with adding more detail to the Spacecraft Bus and 
Instrument, perhaps creating entirely separate layers for them. Also, it would be good to look at the ground 
system and mission system to see how they fit in. 

6. Add goal effects to the automatically generated FMEA by tracing effect SVs to the goals that constrain them. 
This would show how affected SVs can lead to failures in other places in the system. 
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