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Overview 

• High Rate RF Communications  
– Spacecraft System Bottlenecks  

– DSN Bottlenecks  

• Optical Communications Technology Demo  

• Navigation Technology Demo 
– Rendezvous in Mars orbit and related technologies 
– Autonomous aerobraking 
– ΔDOR at Ka-band 
– One-way radio metric tracking/Deep Space Atomic Clock 
– Ranging at optical frequencies 

• Disruption Tolerant Networking (DTN) Demo & Avionic Requirements 
– Flight segment 

– Ground segment 

• Summary 
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(X-band and Ka-band) 
 

Assumptions: 
•Science operations from 
01/29/19 – 01/29/21. 
•One 8-hour pass / day 
•DSN 34-m Beam Wave Guide 
(BWG) antenna 
•Coverage model for celestial 
body dynamics, spacecraft orbits 
and station locations 
•RF model for signal / noise 
environment (link quality) 
•End-to-end model for protocols 
and routing of network topology. 

• Data rates are a strong function of the Mars–
Earth range, which varies widely over the 
two-year synodic period. 

• Downlink data rates at Ka-band are typically 
10 times those at X-band  

Average Data Rate 
(kbps)  

Min Mean Max 

X-Band D/L 115.5 1756.5 9060.3 

X-Band U/L 315 2604 13169.7 

Ka-Band D/L 2127 22225 110505 
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(X-band and Ka-band) 

• Data volumes are, again, a strong function 
of the Mars–Earth range. 

• Downlink data volumes at Ka-band are 
typically ten times those at X-band  

Assumptions: 
• Same as previous. 

Daily Data Volume 
(Gb)  

Min Mean Max 

X-Band D/L 3.8 56.1 344 

X-Band U/L 9.9 83.4 505.0 

Ka-Band D/L 68.7 691 4140 
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Spacecraft System Bottlenecks 
• Current Command & Data Handling (C&DH) avionics limited to ~6 Msps throughput 

– Limitations will have to be relieved to realize Ka-band data rates 
• Current Solid State Recorders (SSR) have a capacity of ~160 Gb. 

– Will have to increase to accommodate daily Ka-band data volumes 
• Current radio of choice is the Small Deep Space Transponder (SDST): 

– Frequencies: Deep space S- or X-band, Ka-band 
– Uplink: 4 kbps (uncoded) 
– Downlink: 6 Msps (typically coded) 
– Encryption/decryption: None 
– Operates at the required frequencies 
– Can support lower downlink rates for links at large Mars-Earth range 
– Becomes a flight-side bottleneck at closer ranges on the downlink 
– Can only receive a very limited uplink rate (<< X-band link can support) 

• Next-Gen radio (albeit notional) is the Universal Space Transponder (UST):  
– Frequencies: Deep space S- or X-band, Ka-band 
– Uplink: 26 kbps (uncoded) up to 6 Msps (coded) 
– Downlink: ≥ 80 Msps (typically coded) 
– Bandwidth Efficient Modulation: Quadrature Phase Shift Keying (QPSK); Offset-QPSK or 

Gaussian Minimum Shift Keying (GMSK) 
– Encryption/decryption: Advanced Encryption Standard (AES) 
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Ground System Bottlenecks 
• For downlinks ≤ 26 Msps, current system throughput is sufficient 

– To triple the downlink rates (as seems likely) augmentation is in order 
• Deep Space Receiver/Telemetry Processor will need increased capacity 

– High-rate commercial receiver similar to the Near Earth Receiver/Telemetry Processor 
– Next generation wideband high-rate receiver being prototyped at JPL 

• Demodulators and decoders 
– Missions currently utilize BPSK/QPSK with convolutional, Reed–Solomon or Turbo codes 

• DSN currently supports convolutional and Reed Solomon codes at high data rates 
• Turbo codes have more gain – but are complex and hard to decode (a few Mbps limit) 

– Low Density Parity Check (LDPC) codes enable high rate decoding with high coding gain 
– At higher rates, channel allocations become filled requiring bandwidth-efficient modulation. 

• A likely option is Gaussian Minimum Shift Keying (GMSK) 
– New modulation and decoding techniques are recommended by CCSDS 

• Enhance performance as well as interoperability with other missions or service providers 
• Data received at DSN complexes must be sent back to JPL or some other specified destination 

– Commercial leased lines provided via NASA Integrated Services Network (NISN) 
– As data volumes increase, so must the leased line capacity – but no technology challenge 

• Above upgrades assume a link between a Mars 2018 orbiter and a single DSN 34m antenna 
– If two antennas are arrayed, then all numbers increase by 2x, and so on . . . 
– Remote sensing spacecraft, with modern instruments, can far exceed downlink capacity 
– Project requirements for arrayed passes can significantly enhance downlink performance  
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Lasercom Demonstration Architecture 
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(and Related Technologies) 

• 2018 Mars opportunity could demonstrate proximity operations, as well 
as rendezvous and docking in Mars orbit, all likely required for eventual 
Mars Sample Return 

– Updated version of MRO optical navigation camera could demonstrate 
autonomous navigation in Mars orbit by imaging Phobos or Deimos against 
background stars or by tracking landmarks on Martian surface 

– Optical navigation camera might also be able to produce science-quality 
mapping images of Phobos and Deimos 
 

• Orbiter could deploy pop-out (university?) cubesat with COTS release 
mechanism  

– Orbiter spacecraft would locate cubesat with optical navigation camera, to 
simulate search for sample capsule; rendezvous & docking would follow 

– Cubesat could demonstrate FEEP (field-effect electric propulsion) 
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Autonomous Aerobraking 

• Aerobraking atmospheric passes must occur at altitudes such that 
– Aerodynamic forces or heating rates are within spacecraft design limits 
– Aerodynamic effects are still sufficient to modify the orbit in a timely fashion 

 
• Given periapsis orbit accuracy requirements, along with the duration of 

the aerobraking process, an on board means of automating orbit 
determination and periapsis altitude control is desired. 

– Spacecraft accelerometer data will be an enabling capability 
 

• NASA activity, led by LaRC with JPL participation, is developing 
autonomous aerobraking techniques 
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Ka-Band ΔDOR Data 

• ΔDOR performance has likely been pushed as far as possible at X-band 
• Next significant advance will come by transitioning to Ka-band 
• Important spacecraft feature is Ka-band DOR tone at 120 to 160 MHz 

– MRO Ka-band downlink demo (2005) used DOR tone of 76 MHz 
– Results indicated that higher frequency DOR tone was needed to get Ka-band 

performance that surpasses X-band 
• Improved ΔDOR accuracy using Ka-band should be validated 

– When spacecraft enters Mars orbit, absolute accuracy of ΔDOR can be 
validated, using ephemeris of Mars as truth model 

– Future projects can then plan to use newly validated capability 
• S/C-S/C ΔDOR demo opportunities may exist, for spacecraft near Mars 
• 2018 orbiter might provide a Ka-band beacon for future Mars missions 
• Ka-band ΔDOR reduces key error sources of X-band ΔDOR 

– Reduce charged-particle errors by 15x (1/f2 frequency dependence) 
– Reduce thermal noise and ground electronics errors by 4x (increased B/W) 
– Reduce quasar position errors by 4x (more compact radio sources) 

• ΔDOR and telemetry should migrate to Ka-Band contemporaneously 
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Typical DSN ΔDOR Error Budget at X-Band 

From Border, J. S., Lanyi, G. E., and Shin, D. K., “Radiometric Tracking for Deep Space Navigation,” in Advances in the Astronautical Sciences: 
Guidance and Control 2008, Vol. 131, edited by M. E. Drews and R. D. Culp, Univelt, San Diego, 2008, pp. 309-328. 
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Deep Space Atomic Clock (DSAC) 

• Scheduled for Earth orbit flight (2015) as NASA Tech Demo Mission 
• A deep-space follow-on demo could be done with 2018 Mars orbiter 

– Mass and power would be reduced for more fully flight-ready instrument 
– Long-haul, as well as in situ, links could be demonstrated 

• Use of DSAC on Mars approach may reduce demand on DSN antennas 
– Tracking is typically continuous during last 45 days of Mars approach 
– Tracking in 2-way mode can accommodate single spacecraft per antenna 
– Tracking in 1-way (downlink only) mode can accommodate multiple spacecraft 

per antenna (MSPA), allowing antenna sharing among missions 
• Use of DSAC in Mars orbit can take full advantage of MSPA, allowing 

more extensive tracking coverage of each orbiting spacecraft 
– Enables improved orbit knowledge, better gravity field determination, 

improved radio science, and more accurate and robust aerobraking 
• 1-way Ka-band downlink (with DSAC) improves accuracy over 2-way, i.e., 

X-up/Ka-down tracking (eliminates higher intrinsic X-band error levels) 
• 1-way uplink (with DSAC) allows on-board radio-metric-based ‘auto-nav’ 

– Useful in various phases of general planetary missions 
– Radio-metrics, along with optical and inertial, would have broad applicability, 

desirable accuracy and robustness-to-mismodeling 
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Laser Ranging 

• Metric tracking for navigation should be derivable from deep space 
communication at optical frequencies 

• Lasercom on 2018 Mars Orbiter could allow demonstration of S/C-Earth 
terminal ranging at optical frequencies 

– Ranging capability can be added to current lasercom development for a 
modest incremental cost 

• S/C-S/C ranging demonstration could be done relative to other Mars 
orbiting S/C, if any are suitably equipped 

– Secondary spacecraft (e.g., cubesat) could be deployed for this purpose, with 
corner reflector 

• Scientific experiments could be carried out also to obtain 
– Improved estimate of post-Newtonian parameter gamma 
– Improved estimate of Martian ephemeris and 10-20 asteroidal masses 
– Improved Martian gravity field, yielding information on crustal structure and 

seasonal CO2 flow, from 
• 2-way laser ranging or 1-way laser range linked to DSAC 

– Note that latter gravity experiment could also be carried out with 
• 2-way Ka-band Doppler or 1-way Ka-band Doppler linked to DSAC 

– Inclusion of accelerometer could further improve gravity field determination 
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Flight Segment DTN Implementation 

• Integrate Interplanetary Overlay Network 
(ION) S/W with the avionic system (C&DH) 

– Re-use telecomm payload design 
• (no change from MRO and MAVEN)  

– Leverage existing ION software demonstrated 
on Deep Impact Network Experiment (DINET) 

– Require further integration with avionic S/W 
– Increased processing complexity and load on 

C&DH 
– Performance can be improved by 

implementing better storage management and 
hardware/firmware acceleration on the most 
tasked processes 

• Demonstrate DTN integration with avionic 
system 
 Acronym Definitions: 
BP = Bundle Protocol 
LTP = Licklider Transmission Protocol 
EP = Encapsulated Protocol 
TM/TC = Telemetry/Telecommand 
C&DH = Command & Data Handling 
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Ground Segment DTN Implementation 

• Option 1: At the MOC only 
– EP, LTP and BP process 

done by MOC 
– LTP ARQ acknowledgement 

is generated at the MOC 

Acronym Definitions: 
MOC = Mission Operations Center 
ARQ = Automatic Repeat Request 

• Option 2: LTP/BP at DSN; BP 
only at MOC 

– MOC processes Bundles 
that contain mission data 

– DSN performs framing, 
encapsulation, and LTP 
retransmission 
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Summary 

• The paper surveys communications and navigation technology 
advancements relevant to the design and flight of a 2018 Mars orbiter. 

– Advancements in RF communications, for both the spacecraft and 
ground ends (i.e., DSN) of the link. 

– Importance of a deep space optical communications demonstration. 

– Advances in navigation techniques, both Earth-based and applicable 
to proximity operations. 

– Validation of space networking benefits, within the context of DTN. 

• A 2018 mission is ‘made to order’ as a platform for advances described. 

• These developments would materially contribute to NASA’s long-term 
goals in science, exploration and technology development. 

• A 2018 Mars orbiter could reinvigorate the Mars program as well as 
provide a rationale for implementation of new capabilities that are 
important to future spacecraft as well as the future DSN.  
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