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Basics of Atmospheric (Re)entry

Important trends

Density: ρatm ∝ exp(−h)

Drag:

D =
1
2
ρatmV2CDAsc

Heating:

q̇ ∝ ρatmV3

Use the atmosphere to slow down (w.r.t. planet/moon surface)

But descending tends to make you speed up!

Max heating occurs a bit after the point where the two are equal
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A survey of unexpected reentry results

Columbia:

Image credit: Szewczyk, N. J., Mancinelli, R. L.,
McLamb, W., Reed, D., Blumberg, B. S., and
Conley, C. A. “Caenorhabditis elegans Survives
Atmospheric Breakup of STS-107, Space Shuttle
Columbia.”, Astrobiology. 2005, Vol. 5, 1-16

Mir:

http://www.eagletribune.com/latestnews/
x1912985329/NASA-Amesbury-rock-came-from-
Soviet-spacecraft, accessed June 15, 2013

Cosmos 954: (with a nuclear
reactor on board!)

Image credit: Patera, R. P. and Ailor, W. H. “The
realities of reentry disposal.” Advances in
Astronautical Sciences, 1998. Vol. 99,
pp. 1059–1071, Figure 5
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Some less well-known reentry incidents
Survey continued

Stardust: heat shield appeared to have been dramatically over-designed

Freedom 7 (John Glenn): Decided to reenter with retro rockets attached

Zond 5 and Zond 8: Missed skip re-entry after circumlunar flight; 20+ g
max acceleration

Vostok 1: Service module failed to
detach and spherical reentry
vehicle; large oscillations but pilot
remained conscious

Image credit: SiefkinDR (Creative
Commons, RKK Energiya Museum)
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“Usual” breakup pattern for (unprotected) reentry
Why don’t we see more very thin debris?

Image credit: Patera, R. P. and Ailor, W. H. “The realities of reentry disposal.” Advances in Astronautical
Sciences, 1998. Vol. 99, pp. 1059–1071, Figure 4

But the Mylar blankets are pulled down to a lower altitude than they would
normally be if they reentered alone.
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What it means for small (small == thin) spacecraft
Small mass like O(10 mg)

Acceleration at max heating (amax) stays about constant

mscamax =
1
2
ρatmV2AscCD

(sc = spacecraft, atm = atmospheric)

That means the atmospheric density (ρatm) at which maximum heating occurs is
proportional to the mass of the spacecraft.

The mass is about msc = ρscAsctsc where tsc is the thickness.

Max heating:

q̇max ∝ ρatmV3 ∝ tsc

Heating is proportional to spacecraft thickness.

Furthermore, it occurs at very low densities, O(10−8 kg/m3)
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What can you do with small satellites in the upper
atmosphere? Can you enter?

planet/moon surface

middle atmosphere

lower atmosphere

upper atmosphere

exosphere reentry trajectory

remote sensing effective
in this altitude range
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Alternatives. . .
Some favorable aspects of chip-scale atmospheric sensors

Spacecraft with “air-breathing” electric propulsion, balloons, remote
sensing, larger entry probes

Advantages of chip-scale atmospheric entry sensors:

Cheap and light; easy to get to
other planets/moons

Distributed in situ atmospheric
measurements

Greater risk tolerance: higher
degree of failure may be
allowable

Provide indirect data just from
their trajectory
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What about other atmospheres?
Motivation for larger, more capable satellites

Very small (1 cm × 1 cm × 0.03 mm) chip-scale
spacecraft are great for entry.
Image credit: Atchison, J. A. and Manchester, Z. R. and Peck,
M. A. “Microscale Atmospheric Re-Entry Sensors.” International
Planetary Probe Workshop. 2010. “Sprite,” slide 7.

But communication is more challenging away from Earth

Chip-scale to mothership

Mothership orbit

Mothership to Earth

Titan
Chip-scale to mothership

Mothership to Earth

Mothership orbit

Justifies larger spacecraft . . . if you can get them to enter.
Chip-Scale Planetary Entry, ISSC 2013 9/23
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Free molecular aerothermodynamics
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specular:
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has random velocity

diffuse:

Essentials:
Molecules are sparse enough
that they impact the surface
with their full velocity (i.e. they
don’t interact with each other)

Most of them (85-100%)
reflect off in equilibrium with
the surface

Important effect for thin bodies
because it creates a force
along the surface

Specular reflections don’t
transfer any heat!
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Atmospheres of the Solar System
Thank you, Voyager 2! Lindal, G. F. et al. “The Atmosphere of X: Analysis of Voyager Radio
Occultation Measurements.” 1981-19992

0 50 100 150 200 250 300
10–20

10–15

10–10

10–5

100

105

Altitude, h [km]

A
tm

os
ph

er
ic

 d
en

si
ty

, ρ
 [

kg
/m

3 ]

Earth

Mars

Venus Jupiter

Titan

Saturn

Neptune

Uranus

Chip-Scale Planetary Entry, ISSC 2013 11/23



Chip-Scale
Planetary Entry

Dalle and
Spangelo

Introduction

Motivation

Flight Mechanics

Flat Plate Results

Conclusions 1

Improved Design

Conclusions 2

Acknowledgments

What makes an atmosphere hard (or easy) to enter?

You might think that a thick atmosphere is helpful, but really that just
means that everything happens at a higher altitude.

Initial velocity is the most important driver:

Vorbit = Rplanet

√
gsurface

Rplanet +h

Why does velocity mater so much for heating? q̇ ∝ ρatmV3

rotation rate: 

inertial velocity
airspeed: V –  (R + h)

altitude, h

R

A planet’s rotation can also be very
important.

Especially for the gas planets (which
rotate really fast, ∼once per 10 hrs)

Chip-Scale Planetary Entry, ISSC 2013 12/23
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Sample results for Earth
Tumbling, credit-card–scale (1mm thickness) and chip-scale (0.032 mm thickness)
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Ok, what about Titan?
Easy from orbit, but a mothership in Titan orbit is hard
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Superorbital Titan entry example
Even a credit-card–scale satellite can make it, but window is narrow
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Conclusions so far. . .

Can maybe survive entry for Earth, Venus, Mars, and
Titan with tumbling if thickness < about 0.05 mm

Not feasible even in optimistic assumptions if thickness
is about 1 mm

Except for Titan!

Chip-Scale Planetary Entry, ISSC 2013 16/23
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Aerodynamic stabilization
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Angle of attack during entry into
Titan’s atmosphere, initialized
from a Saturn orbit.

Goes to high drag (α close to
90◦), but takes a long time to
damp.

Doesn’t dampen if initial rotation
exceeds ∼10◦ per second

Similar behavior observed for “ballistic entry
vehicles” (warheads):

Image credit: Platus, D. H., “Ballistic Re-entry
Vehicle Flight Dynamics.” Journal of Guidance.
1982. Vol. 5 pp. 4–16
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Passive lift?

this side is heavier

this side provides lift

center of mass

direction of airflow
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Results: credit-card–scale (1mm thickness)
Bank angle = 180◦ =⇒ lift force points down
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Results: chip-scale (1cm × 1cm × 0.032mm)
Bank angle = 180◦ =⇒ lift force points down
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Conclusions

Aerodynamic stabilization decreases heating

Possible to stabilize in a lifting (or “dunking”) orientation
with a shifted center of mass

Dampens initial rotation rates up to about 10 deg/s

Martian entry is possible if starting from orbit and
thickness < 0.05 mm

Each atmosphere except Jupiter is feasible with some
minor heat shielding (aerogel?)

Used fairly conservative assumptions, except that
probably cannot start in a circular equatorial orbit for the
gas planets

Chip-Scale Planetary Entry, ISSC 2013 21/23
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I really had no idea where the results would take us
in the design space.

What I thought initially: Where it went:

Thank you for your time!

Questions?
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