
Model-Based Verification and Validation of the SMAP
Uplink Processes

M. Omair Khan

Jet Propulsion Laboratory,
California Institute of

Technology,
4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-3469
Mohammed.O.Khan@jpl.nasa.gov

Gregory F. Dubos
Jet Propulsion Laboratory,

California Institute of
Technology,

4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-0318
Gregory.F.Dubos@jpl.nasa.gov

Joseph Tirona
Jet Propulsion Laboratory,

California Institute of
Technology,

4800 Oak Grove Dr.
Pasadena, CA 91109

818-393-8203
Joseph.F.Tirona@jpl.nasa.gov

Shaun Standley
Jet Propulsion Laboratory,

California Institute of
Technology,

4800 Oak Grove Dr.
Pasadena, CA 91109

818-393-0936
Shaun.P.Standley@jpl.nasa.gov

Abstract— Model-Based Systems Engineering (MBSE) is being
used increasingly within the spacecraft design community because
of its benefits when compared to document-based approaches. As
the complexity of projects expands dramatically with continually
increasing computational power and technology infusion, the time
and effort needed for verification and validation (V&V) increases
geometrically. Using simulation to perform design validation with
system-level models earlier in the life cycle stands to bridge the
gap between design of the system (based on system-level
requirements) and verifying those requirements/validating the
system as a whole.

This case study stands as an example of how a project can
validate a system-level design earlier in the project life cycle than
traditional V&V processes by using simulation on a system
model. Specifically, this paper describes how simulation was
added to a system model of the Soil Moisture Active-Passive
(SMAP) mission’s uplink process.

Also discussed are the advantages and disadvantages of the
methods employed and the lessons learned; which are intended to
benefit future model-based and simulation-based V&V
development efforts.

TABLE OF CONTENTS
1. INTRODUCTION .. 1
2. CASE STUDY / THESIS STATEMENT 2
3. DESCRIPTION OF THE UPLINK PROCESS 2
4. DETAILED DESCRIPTION OF MODEL
(IMPLEMENTATION) ... 3
5. LESSONS LEARNED .. 7
6. SUMMARY ... 8
ACKNOWLEDGEMENTS .. 8
REFERENCES .. 8
BIOGRAPHIES ... 9

1. INTRODUCTION

System verification and validation at the Jet Propulsion
Laboratory (JPL) is performed on the flight system during
assembly, test, and launch operations (ATLO) on flight system
testbeds with the associated simulation and support equipment
(SSE), and on software simulators and other models of the
system. For many years, we have been following the axioms

that test is the preferred method of verification, and that we
must test in the way that we intend to fly, and then fly the
mission in the way that we have tested. These are worthy
ideals to aspire to, but are increasingly difficult to meet in a
time of ever more demanding missions, rapidly expanding
processor capability, increasing software complexity, and
decreasing resources for testing. For example, lightweight
flexible structures interacting with system actuators, systems in
planetary environments, and entry, descent, and landing
scenarios are near impossible to test thoroughly at the system
level.

Spacecraft generally spend a year or two in system integration,
and test time with the flight system is so limited that it is
difficult to perform more than a handful of nominal and faulted
mission cases. System testbeds are available earlier and for
longer, but their behavior cannot be compared to and certified
against the flight system until the project is well into system
validation testing (the right hand side of the Project
Development V model [1]), where there is a large schedule and
resource impact to mitigate problems that may arise.

Early use of highly capable, high fidelity software simulators,
such as Work Station Test Set (WSTS) [2], are a major
mitigation to the V&V problem, but adding ever more test
resources to verify incomplete requirement sets for ever more
complex spacecraft in ever more complex environments is not
enough. We would like to do a better job of articulating the
architecture of the system earlier in the project lifecycle, as
well as validating that it can do the job before ever committing
to hardware or software (like WSTS), and relying more on
system models for verification and validation once the system
is built. The Model-Based System Engineering approach of
‘build the model, verify the model, build the system to realize
the model, validate the system against the model’ offers a way
of getting a higher quality, lower cost result in the
development of complex space systems. This study explored
the utility of simulations generated directly from SysML
models in validating operations concepts and scenarios early in
the project lifecycle.

As part of the JPL Integrated Model-Centric Engineering and
model-based V&V framework, we are exploring ways of
integrating more model-based techniques in our systems

 1

engineering work [4, 5], in particular performing system
validation earlier in the lifecycle. One such method is to build
a project model (comprised of a ground system, flight system,
and associated subsystems), using the Systems Modeling
Language (SysML), to a sufficient level of detail to validate
operations scenarios and run early versions of operational
readiness tests against the model. Advantages of such a
model-based technique is not only the possibility of running
simulations generated directly from the same models that
express the architecture and design, but also the possibility of
validating such models using formal methods [8] to obtain a
far more detailed assurance that the design was valid for the
expected range of conditions, and under all combinations of
input parameters.

We are also intrigued by the possibilities of model re-use
between different flight projects. Although initial model
development is a significant task, the value of the effort will
most likely be realized over several subsequent project
development cycles. For spacecraft built using subsystem
designs and architectural patterns that endure for several
missions, major elements of the behavior models are also
reusable. Although we do not yet have data on the effort it
takes to change models to accommodate modifications in
system design from mission to mission, it is clear that models
for widely used standards (such as CCSDS) and common
elements of missions’ design (such as JPL’s Multi-Mission
System Architecture Platform, MSAP) will produce re-usable
elements.

2. CASE STUDY / THESIS STATEMENT
This work involved creating a static model of the uplink
system for the Soil Moisture Active and Passive (SMAP)
spacecraft [3] using SysML, and generating a simulation
directly from the model. The techniques and similar tools have
been used before to model and simulate components of the
spacecraft’s avionics subsystem [4]. A similar methodology
was used to model the uplink system, using newer tools and
going into greater levels of detail. The intent was to build a
functioning uplink simulation that could initially be used to
validate the structure of the commands in successive deliveries
of the SMAP spacecraft command database, and subsequently
be integrated into a more generalized project model/simulation
to account for spacecraft uplink processes.

Taking the elements of the command database and
‘transmitting’ them from a rudimentary ground system model,
having the spacecraft model ‘receive’ and parse the SMAP
Consultative Committee for Space Data Structure (CCSDS) [6]
command structure correctly, routing the commands to the
correct sequence engines then having them ‘execute’, and
having corrupted commands be rejected by the modeled
avionics with the correct error response would validate the
uplink component of a later project-level model. In the current
work, the CCSDS reception, parsing, and error detection
aspects of the uplink process were validated via a system
model-based simulation approach.

It was also intended that the static SysML model of the uplink
system would be the subject of a model checking exercise –
translating the SysML model to PROMELA [9], expressing the

constraints and requirements on the system in computation tree
logic, and proving the model met the requirements of the
system; but regrettably this had to be left as a future task.
Overall, this case study was an important step on our road to
expressing architecture and design in models, validating those
models early in the lifecycle with directly derived simulations
and formal methods, building systems in accordance with the
models, and performing the bulk of our V&V directly on the
models. The intent of such an approach is to save ATLO
testing time and resources for verifying hardware
workmanship and performing a limited set of tests designated
for model validation.

3. DESCRIPTION OF THE UPLINK PROCESS
The uplink process includes: the generation of commands, the
radiation of these commands to the spacecraft, and their
interpretation and execution by the flight system avionics.

First, the Mission Operations System (MOS) personnel input
commands (like “flip a relay” or “cool boot the system”) from
a mission-specific Command Dictionary and use the Ground
Data System (GDS) to transmit them to the spacecraft. These
commands are formatted in a way that is consistent with the
principles and recommendations formulated by the
international Consultative Committee for Space Data Systems
(CCSDS).

Each actual command only accounts for a small fraction of the
contents of the final uplink message that gets transmitted to the
spacecraft. Additional data is prepended and appended to the
command in order to: ensure proper delineation of different
units of data, help characterize the contents of the message and
ensure space-link security.

Tele-command transfer frames are the basic data units that
allow the transmission of user data to the spacecraft through
the space data link [6]. Following the CCSDS
recommendations, each transfer frame is encoded in
elementary units called codeblocks that contain spacecraft
command instructions, as well as additional bits used for error
detection and correction. This provides protection against
errors and corruptions that may occur over the space link.
Multiple series of codeblocks are then encapsulated in a
Communications Link Transmission Unit (CLTU), which
provides a method for synchronizing the bit streams during
reception [7]. Figure 1 illustrates a possible CCSDS structure
of the uplink data, with each CLTU being delimited on both
ends by fixed bit sequences called ‘start sequence’(s) and ‘tail
sequence’(s). Finally, a command load (or command file) is
defined as a contiguous bit stream containing several CLTUs.
It starts with an ‘acquisition sequence’ containing various bits
that enables the antenna in the spacecraft’s telecom subsystem
to acquire bit synchronization. It ends with an ‘idle sequence’
containing various bits that ensures that the antenna can
maintain bit synchronization when no CLTUs are being
transmitted.

 2

The simulation environment can be thought of as a traditional
script that is distributed among the various entities and
diagrams in a system model. Although it can be quite different
from traditional script writing at first glance, the methodology
works just like a very large code with lots of function calls to
hold it all together. The job of the simulation engine is to
interpret the paths described in the various state machine
(STM) and activity diagrams and walk through the logic in
these diagrams while executing the code within each activity
node along the way. Most SysML realization software
packages have their own simulation plug-ins and work in a
similar manner as described above.

We implemented our simulation engine per the methodology
shown in Figure 4. Values properties on blocks are used a
means for reading and writing changing variables during the
runtime environment. They serve as one of the primary means
of maintaining persistence in the model as the activity nodes
are run as a series of independent-runtime environments. STM
and activity diagrams represent the code architecture dispersed
among the activity nodes as operator/function calls, where
SysML artifacts (e.g. decision nodes, merges, etc.) can be used
as if statements and for loops. Specific to our implementation
we used opaque behavior and opaque actions as a means to
insert code into the simulation using either JPython or
Javascript syntax. As the simulation activates each of these
activity nodes, it executes the underlying code. The ports and
connectors on IBDs serve as a method to pass information
between the underlying behaviors on each block in the system
model.

This methodology was primarily used as it follows the SysML
patterns that the system model is based on. Additionally, it
allows the user to visualize and quantize what the static system
model is trying to represent. This is especially important when
dealing with a very complicated process like uplink – in this
case a simulation enables quantitative and qualitative
understanding of a design.

Figure 4 - Model to Simulation Conversion Methodology

Modeling Entity Simulation Implementation

Values Properties on Blocks Global Variables

State Machine & Activity
Diagrams

Code Architecture

Opaque Behaviors &
Actions

Operators / Function Calls

Ports/Connectors on Internal
Block Diagrams

Module / Library / Super
Class Interactivity

Details of model

Selected details of the model are shown in the figures below.
Figure 5 is analogous to Figure 3 above; except that it is the
actual IBD used in the simulation. Aspects that make Figure 5
vary are behavior diagrams overlaid onto the structural
diagrams, which allow the user to track things like higher and
lower-level processes running simultaneously during runtime

and multiplicities of objects reflecting redundancy in the
system.

Figure 5 is the diagram intended for users to watch during live
simulations, to see where the “command” is in the system at
any given point in time. This is a useful view because when a
problem is found with the command or processing routine, the
simulation highlights which subsystem is currently active and
what operation it is performing. This helps in validating the
model against the SMAP system, and eventually with testing
responses to new commands.

Figure 5 – Detailed SMAP Simulation IBD

Figure 6 is a state machine diagram (STM) controlling the
command generation process. Starting with a request for the
user to input a single (or list of) command(s), it invokes a
series of other activity diagrams to encapsulate said commands
into proper CCSDS format and sends them to the GDS for
transfer to the flight system model.

Figure 7 shows the last activity invoked by the state machine
represented in Figure 6. It takes the “U/L Msg” (Uplink
Message) stored in a value property within the “MOS” section
of the model and puts it on the “U/L Msg Out” port (seen as
the only port leaving “MOS” in Figure 5) to simulate sending
it to the GDS.

In Figure 7, the “Read Self” action is an artifact of the
simulation, and is a visual equivalent to explicitly declaring a
variable in “code”. There are very few places where such
“artifacts” are needed for simulation purposes. One advantage
of simulation (discussed in further detail in the next section) is
that the “overhead” involved with testing the system using
MBV&V is on the order of variable declaration and dragging
and dropping actions onto diagrams, which is far less work
than developing high fidelity simulators such as WSTS [2] or a
system test-bed.

 4

Figure 6 - Uplink Message Generation Process (Depicted as

a STM)

Figure 8 shows the TIF’s logic modeled as a STM. Because of
the nature of FPGAs, its logic was not difficult to capture in
the model since functionality is hard-wired into the board and
was well defined in design documentation. Figure 8 also
highlights how the STM was used to model a looping
mechanism in the simulation (acting like a “for-loop”). The
key advantage of using STMs over activity diagrams (with
respect solely to the execution of the simulation engine) is that
loops are permissible in STMs, while they are less
straightforward in activity diagrams.

Figure 9 shows a diagram of the first activity invoked by the
state machine represented in Figure 8 to run commands
through the logic wired onto the TIF. While each action
contains several embedded lines of code to manipulate the data
flowing through the various subsystems during the simulation,
the layout of the diagram and the titles of the actions suffice to
convey the behaviors associated with each action. In
summary, conveying this level of detail via the use of diagrams
presents a major benefit: when a command is not executed
successfully by FSW or by hardware on the spacecraft, there is
a visual pointer that pinpoints the problem in the
model/simulation.

Figure 7 - Send Uplink Message Activity Diagram

Figure 11 is a testament to the levels of abstraction that can be
built into the behavioral model of the system. As seen in
Figure 8, one of the activities called by the “Process next
codeblock” state is the activity called “Handle codeblock”.
Since this process is made up of several distinct processes, it
was not recommended to place both of these complex
processes onto the same diagram for sake of clarity.

Figure 10 takes this level of abstraction to even greater detail.
When the action ‘Place in the Buffer’ in Figure 11 is executed,
the simulation checks for uncorrectable errors per the logic and
code in Figure 10 and displays them to the user.

Analogous to creating function calls in traditional
programming, Figure 11 is meant for those viewers not
directly concerned by the logic behind the FPGA and mostly
interested in knowing whether or not “codeblocks were
handled correctly”. Part of the beauty of modeling tools with
metadata and relationships lies in the unlimited number of the
levels of abstraction that can be captured based on stakeholder
needs and resources.

Another scenario in which abstraction is a key advantage is the
case where a modeler inherits a large amount of code from a
previous simulation. If this is a known quantity or if the
project does not have the desire/resources to model certain
parts of a system, these “black boxes” allow the project to
focus only on modeling parts of the system that are of interest,
while leveraging existing models. Because each behavior
modeled has well-defined inputs and outputs (as well as logic
that describes how data is being manipulated), it can be used in
any model that adheres to those interface specifications.

Figure 12 represents an STM modeling the FSW portion of the
spacecraft. Every time codeblocks are placed into the memory
buffer, FSW is tasked with retrieving the data (from either
buffer A or B). Upon gathering data from the memory buffer,
FSW will reconstruct and check the data message for errors. If
the data holds valid, FSW would then queue the command for
execution, as seen in Figure 13.

 5

Figure 8 – TIF State Machine Diagram

Figure 9 – TIF Command Reception Behavior

Figure 10 - Placing Codeblocks in the Buffer

 6

Figure 11 – TIF Codeblock Handling Behavior

Figure 12 - FSW Data Retrieval Behavior

Figure 13 – FSW Frame Set Construction Activation

Behavior

5. LESSONS LEARNED

Compared to other simulation techniques relying exclusively
on code, the use of a SysML-based simulation greatly
enhanced the transparency and readability of the overall logical
flow. Indeed, SysML enabled the organization of the entire
simulation into distinct and well-identified behaviors
containing individual pieces of executable code. As illustrated
by several figures in the previous section, this offers any
newcomer to the project a high-level view of the processes
being simulated, regardless of their familiarity with the lower-
level code. Transparency is also improved during the execution

of the simulation, since behaviors become highlighted as they
run, giving the end-user the chance to better comprehend the
simulation runtime sequences. This feature is not only critical
during debugging of the model, but also for qualitative
validation (via visualizing the order that distinct operations are
performed) of the overall uplink process. The simulation
engine used to perform these simulations was completely off-
the-shelf, and required only that the modelers learn how to use
the program.

Another major advantage in running a simulation via a SysML
model is the tight association between the structural model of
the system (outlined in BDD’s and IBD’s) and the behavioral
model of the system (outlining functionality and logic in
STM’s, activity diagrams, and parametric diagrams). This
powerful combination of structure and behavior within the
same environment provides an interesting means to reflect
recent design changes and capture their impact on the behavior
of the system. The logic of one or more modeled processes can
be re-validated as new elements get added to the design (or
modified).

During the development of the uplink model, various sections
were modeled concurrently and independently, and unit tested
before the end-to-end model was assembled. Development of
the model therefore mimicked development of the actual
hardware, in that lower level components are fabricated
separately before being integrated as a functioning system. This
process also provided model validation, guaranteeing the input
and output data interfaces for each distinct subsystem model
were consistent. The simulation provides an additional means to
expose discrepancies between inputs and outputs at the
interfaces between subsystems; as any mismatches will result in
explicit anomalies when the simulation is run.

The decomposition of the uplink process into individual,
logical pieces required the definition of various simulation
artifacts to exchange information between these distinct pieces.
While the main uplink message is directly modeled as a data
flow that traverses the different activities or states, how this
data is accessed and manipulated varies throughout the
simulation. For example, the simulation takes advantage of
both SysML “value properties” and “signals”. Extra overhead
is thus required to make sure that this data gets properly
updated, in a way that resembles the use of global variables in
traditional programming. However, this effort is minimal when
compared to that effort involved in setting up a high fidelity
software simulator such as WSTS. In addition, having a
relatively accurate simulation much earlier in the life cycle,
and with fewer resources, can prove particularly beneficial.

Finally, as with other simulation techniques, modeling parallel
processes with SysML creates some challenges in terms of
synchronization. Extra care must be taken to ensure that
model elements trigger the appropriate responses at the right
times (with respect to other elements in the simulation).
Timing issues may have to be addressed, depending on the
fidelity of the simulation engine being used and the number of
desired concurrent operations. During the implementation of
this work, it was identified that the simulation engine’s speed
of execution and the computing speed of the machine could
impact the logic. This is a major limitation of the simulation

 7

engine that was used that had to be circumvented by
implementing artificial delays to ensure the proper sequencing
of activities.

6. SUMMARY
Simulation was successfully added to the structural and
behavioral models of the SMAP mission. Although some
idiosyncrasies of the tooling needed to be worked out, the
general overhead with creating a simulation from the static
models was miniscule when compared to creating a high-
fidelity software simulator like WSTS [2] or an avionics
hardware testbed. The benefits of this SysML simulation
allowed for verification of the SMAP mission’s actual
command dictionary per the logic outlined in design
documents; thus successfully validating the system design with
a small team and limited resources.

Unfortunately, this process was developed concurrently as
hardware testbeds and WSTS [2] were being developed; so the
full effect of this simulation was not realized early enough. But
as future missions (and other complex systems in general) are
proposed and funded, they can take advantage of this process to
validate high-level functionality of their designs before copious
amounts of money are spent validating the design at lower
levels.

To date, the model-based V&V [MBV&V] paradigm at JPL has
focused around system model-based simulations [4] and system
test diagrams [5], but this does not fully satisfy the goals of
MBV&V, which are to address all areas of V&V when working
with system models. In current studies, the applications of
MBV&V are being extended to demonstrate interactions
between a SysML system model and a high-fidelity avionics
simulator, such as WSTS [2]. Additionally, work is also being
done to demonstrate interaction between a SysML system
model and an avionics testbed. The intent of this current work is
to extend the application of MBV&V to the implementation
phase of the project development “V” [1].

ACKNOWLEDGEMENTS

The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

The authors would also like to thank Division 31 (SSCAE - Chi
Lin) for supporting this work.

REFERENCES
 [1] Figure 3-2 of NPR 7123.1A, reiterated in Figure2.1-1 of

the SE Handbook

[2] Henriquez, Canham, Chang, McMahon; Workstation-Based
Avionics Simulator to Support Mars Science Laboratory
Flight Software Development, AIAA Modeling and
Simulation Technologies Conference, 18-21 August 2008,
Honolulu, HI.

[3] Official JPL site for the Soil Moisture Active and Passive
(SMAP) mission http://smap.jpl.nasa.gov/

[4] Khan, Sievers, Standley, Model-Based Verification and
Validation of Spacecraft Avionics, Infotech@Aerospace
2012 Conference, Santa Ana, CA, May 2012.

[5] Ingham, Day, Donahue, Kadesh, Kennedy, Khan, Post,
Standley, A Model-Based Approach to Engineering
Behavior of Complex Aerospace Systems,
Infotech@Aerospace 2012 Conference, Santa Ana, CA,
May 2012.

[6] Consultative Committee for Space Data Systems,
Telecommand Summary of Concept and Rationale. CCSDS
200.0-G-6. Green Book. Issue 6. January 1987.

[7] Consultative Committee for Space Data Systems, TC
Synchronization and Channel Coding—Summary of
Concept and Rationale. CCSDS 230.1-G-1. Green Book.
Issue 1. June 2006.

[8] Verification and Validation in Systems Engineering –
Assessing UML/SysML Design Models, Debbabi, Hassaine,
Jarraya, Soenu, Alawneh, Sprindger-Verlag 2010, ISBN
978-3-642-15228-3.

[9] Model Checking with SPIN, http://spinroot.com/

 8

http://smap.jpl.nasa.gov/

BIOGRAPHIES

Omair Khan has been with JPL for
more than 4 years. His work
includes system-engineering
support on future NASA
astrophysics proposals and further
developing the paradigm of system
model-based V&V. He is currently
supporting the DARPA Phoenix
project, where he is seeking
solutions to do system V&V using
SysML models and high-fidelity

simulators. He received a M.S. in Aerospace and
Mechanical Engineering from the University of
Southern California and a B.A. in Physics and
Astrophysics from the University of California,
Berkeley.

Dr. Gregory Dubos is a Systems
Engineer in the Mission Systems
Concept Section at the Jet
Propulsion Laboratory (JPL). His
current work at JPL focuses on
the infusion of Model-Based
Systems Engineering (MBSE) and
simulation during mission

formulation activities. For DARPA’s Fractionated
Spacecraft (F6) project, he developed discrete-event
simulation models that capture technical risks such
as launch failures, spacecraft failures, and orbital
debris. He also regularly serves as the Risk and
Programmatics Chair for Team X, JPL’s concurrent
engineering environment. Dr. Dubos received his B.S
and M.S degrees in Aeronautics from SUPAERO,
Toulouse, France, and his M.S and Ph.D. in
Aerospace Engineering from the Georgia Institute of
Technology, Atlanta, GA.

Joseph Tirona is a member of
the System Verification and
Validation Group at JPL. He
has used MBSE to model
Ground Data Systems on a
number of flight projects,
including the Mars Science
Laboratory (MSL), Dawn, and
the Orion Multi-Purpose

Crew Vehicle Program. He is currently working as
a Systems Engineer doing V&V on the Soil Moisture
Active-Passive (SMAP) mission. He received a B.S.
in Mechanical Engineering from California
Polytechnic University, Pomona, where he is a
graduate student.

Shaun Standley is the
Group Supervisor for the
System Verification and
Validation Group at JPL.
His current interest is
using model-based
techniques to improve the
system verification and
validation process. He has

held a number of positions in V&V Engineering and
spacecraft operations, including Project V&V
Engineer for the Soil Moisture Active and Passive
(SMAP) mission, End to End Information System
engineer for the Kepler mission, Spacecraft Engineer
for the Cassini orbiter, Systems Engineer for the
Huygens Titan probe, and Systems Engineer for the
Ulysses Solar orbiter. He received a B.Sc. (Hons)
from Southampton University in the UK where he
also did postgraduate work, and an MBA from
Pepperdine University.

 9

