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Abstract— Model-Based Systems Engineering (MBSE) is being 
used increasingly within the spacecraft design community because 
of its benefits when compared to document-based approaches. As 
the complexity of projects expands dramatically with continually 
increasing computational power and technology infusion, the time 
and effort needed for verification and validation (V&V) increases 
geometrically. Using simulation to perform design validation with 
system-level models earlier in the life cycle stands to bridge the 
gap between design of the system (based on system-level 
requirements) and verifying those requirements/validating the 
system as a whole.   

This case study stands as an example of how a project can 
validate a system-level design earlier in the project life cycle than 
traditional V&V processes by using simulation on a system 
model.  Specifically, this paper describes how simulation was 
added to a system model of the Soil Moisture Active-Passive 
(SMAP) mission’s uplink process.   

Also discussed are the advantages and disadvantages of the 
methods employed and the lessons learned; which are intended to 
benefit future model-based and simulation-based V&V 
development efforts. 
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1. INTRODUCTION 

System verification and validation at the Jet Propulsion 
Laboratory (JPL) is performed on the flight system during 
assembly, test, and launch operations (ATLO) on flight system 
testbeds with the associated simulation and support equipment 
(SSE), and on software simulators and other models of the 
system.  For many years, we have been following the axioms 

that test is the preferred method of verification, and that we 
must test in the way that we intend to fly, and then fly the 
mission in the way that we have tested.  These are worthy 
ideals to aspire to, but are increasingly difficult to meet in a 
time of ever more demanding missions, rapidly expanding 
processor capability, increasing software complexity, and 
decreasing resources for testing. For example, lightweight 
flexible structures interacting with system actuators, systems in 
planetary environments, and entry, descent, and landing 
scenarios are near impossible to test thoroughly at the system 
level. 
 
Spacecraft generally spend a year or two in system integration, 
and test time with the flight system is so limited that it is 
difficult to perform more than a handful of nominal and faulted 
mission cases. System testbeds are available earlier and for 
longer, but their behavior cannot be compared to and certified 
against the flight system until the project is well into system 
validation testing (the right hand side of the Project 
Development V model [1]), where there is a large schedule and 
resource impact to mitigate problems that may arise. 
 
Early use of highly capable, high fidelity software simulators, 
such as Work Station Test Set (WSTS) [2], are a major 
mitigation to the V&V problem, but adding ever more test 
resources to verify incomplete requirement sets for ever more 
complex spacecraft in ever more complex environments is not 
enough.  We would like to do a better job of articulating the 
architecture of the system earlier in the project lifecycle, as 
well as validating that it can do the job before ever committing 
to hardware or software (like WSTS), and relying more on 
system models for verification and validation once the system 
is built.  The Model-Based System Engineering approach of 
‘build the model, verify the model, build the system to realize 
the model, validate the system against the model’ offers a way 
of getting a higher quality, lower cost result in the 
development of complex space systems. This study explored 
the utility of simulations generated directly from SysML 
models in validating operations concepts and scenarios early in 
the project lifecycle. 
 
As part of the JPL Integrated Model-Centric Engineering and 
model-based V&V framework, we are exploring ways of 
integrating more model-based techniques in our systems 
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engineering work [4, 5], in particular performing system 
validation earlier in the lifecycle.  One such method is to build 
a project model (comprised of a ground system, flight system, 
and associated subsystems), using the Systems Modeling 
Language (SysML), to a sufficient level of detail to validate 
operations scenarios and run early versions of operational 
readiness tests against the model.  Advantages of such a 
model-based technique is not only the possibility of running 
simulations generated directly from the same models that 
express the architecture and design, but also the possibility of 
validating such models using formal methods [8] to obtain a 
far more detailed assurance that the design was valid for the 
expected range of conditions, and under all combinations of 
input parameters.   
 
We are also intrigued by the possibilities of model re-use 
between different flight projects.  Although initial model 
development is a significant task, the value of the effort will 
most likely be realized over several subsequent project 
development cycles.  For spacecraft built using subsystem 
designs and architectural patterns that endure for several 
missions, major elements of the behavior models are also 
reusable.  Although we do not yet have data on the effort it 
takes to change models to accommodate modifications in 
system design from mission to mission, it is clear that models 
for widely used standards (such as CCSDS) and common 
elements of missions’ design (such as JPL’s Multi-Mission 
System Architecture Platform, MSAP) will produce re-usable 
elements. 
 

2. CASE STUDY / THESIS STATEMENT 
This work involved creating a static model of the uplink 
system for the Soil Moisture Active and Passive (SMAP) 
spacecraft [3] using SysML, and generating a simulation 
directly from the model. The techniques and similar tools have 
been used before to model and simulate components of the 
spacecraft’s avionics subsystem [4].  A similar methodology 
was used to model the uplink system, using newer tools and 
going into greater levels of detail. The intent was to build a 
functioning uplink simulation that could initially be used to 
validate the structure of the commands in successive deliveries 
of the SMAP spacecraft command database, and subsequently 
be integrated into a more generalized project model/simulation 
to account for spacecraft uplink processes. 

Taking the elements of the command database and 
‘transmitting’ them from a rudimentary ground system model, 
having the spacecraft model ‘receive’ and parse the SMAP 
Consultative Committee for Space Data Structure (CCSDS) [6] 
command structure correctly, routing the commands to the 
correct sequence engines then having them ‘execute’, and 
having corrupted commands be rejected by the modeled 
avionics with the correct error response would validate the 
uplink component of a later project-level model. In the current 
work, the CCSDS reception, parsing, and error detection 
aspects of the uplink process were validated via a system 
model-based simulation approach. 

It was also intended that the static SysML model of the uplink 
system would be the subject of a model checking exercise – 
translating the SysML model to PROMELA [9], expressing the 

constraints and requirements on the system in computation tree 
logic, and proving the model met the requirements of the 
system; but regrettably this had to be left as a future task.  
Overall, this case study was an important step on our road to 
expressing architecture and design in models, validating those 
models early in the lifecycle with directly derived simulations 
and formal methods, building systems in accordance with the 
models, and performing the bulk of our V&V directly on the 
models. The intent of such an approach is to save ATLO 
testing time and resources for verifying hardware 
workmanship and performing a limited set of tests designated 
for model validation. 

3. DESCRIPTION OF THE UPLINK PROCESS 
The uplink process includes: the generation of commands, the 
radiation of these commands to the spacecraft, and their 
interpretation and execution by the flight system avionics. 
 
First, the Mission Operations System (MOS) personnel input 
commands (like “flip a relay” or “cool boot the system”) from 
a mission-specific Command Dictionary and use the Ground 
Data System (GDS) to transmit them to the spacecraft. These 
commands are formatted in a way that is consistent with the 
principles and recommendations formulated by the 
international Consultative Committee for Space Data Systems 
(CCSDS).  
 
Each actual command only accounts for a small fraction of the 
contents of the final uplink message that gets transmitted to the 
spacecraft. Additional data is prepended and appended to the 
command in order to: ensure proper delineation of different 
units of data, help characterize the contents of the message and 
ensure space-link security.   
 
Tele-command transfer frames are the basic data units that 
allow the transmission of user data to the spacecraft through 
the space data link [6].  Following the CCSDS 
recommendations, each transfer frame is encoded in 
elementary units called codeblocks that contain spacecraft 
command instructions, as well as additional bits used for error 
detection and correction. This provides protection against 
errors and corruptions that may occur over the space link. 
Multiple series of codeblocks are then encapsulated in a 
Communications Link Transmission Unit (CLTU), which 
provides a method for synchronizing the bit streams during 
reception [7]. Figure 1 illustrates a possible CCSDS structure 
of the uplink data, with each CLTU being delimited on both 
ends by fixed bit sequences called ‘start sequence’(s) and ‘tail 
sequence’(s). Finally, a command load (or command file) is 
defined as a contiguous bit stream containing several CLTUs. 
It starts with an ‘acquisition sequence’ containing various bits 
that enables the antenna in the spacecraft’s telecom subsystem 
to acquire bit synchronization. It ends with an ‘idle sequence’ 
containing various bits that ensures that the antenna can 
maintain bit synchronization when no CLTUs are being 
transmitted.  
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The simulation environment can be thought of as a traditional 
script that is distributed among the various entities and 
diagrams in a system model. Although it can be quite different 
from traditional script writing at first glance, the methodology 
works just like a very large code with lots of function calls to 
hold it all together. The job of the simulation engine is to 
interpret the paths described in the various state machine 
(STM) and activity diagrams and walk through the logic in 
these diagrams while executing the code within each activity 
node along the way. Most SysML realization software 
packages have their own simulation plug-ins and work in a 
similar manner as described above. 

We implemented our simulation engine per the methodology 
shown in Figure 4. Values properties on blocks are used a 
means for reading and writing changing variables during the 
runtime environment. They serve as one of the primary means 
of maintaining persistence in the model as the activity nodes 
are run as a series of independent-runtime environments. STM 
and activity diagrams represent the code architecture dispersed 
among the activity nodes as operator/function calls, where 
SysML artifacts (e.g. decision nodes, merges, etc.) can be used 
as if statements and for loops. Specific to our implementation 
we used opaque behavior and opaque actions as a means to 
insert code into the simulation using either JPython or 
Javascript syntax. As the simulation activates each of these 
activity nodes, it executes the underlying code. The ports and 
connectors on IBDs serve as a method to pass information 
between the underlying behaviors on each block in the system 
model. 

This methodology was primarily used as it follows the SysML 
patterns that the system model is based on. Additionally, it 
allows the user to visualize and quantize what the static system 
model is trying to represent. This is especially important when 
dealing with a very complicated process like uplink – in this 
case a simulation enables quantitative and qualitative 
understanding of a design. 

Figure 4 - Model to Simulation Conversion Methodology  

Modeling Entity Simulation Implementation 

Values Properties on Blocks Global Variables 

State Machine & Activity 
Diagrams 

Code Architecture 

Opaque Behaviors & 
Actions 

Operators / Function Calls 

Ports/Connectors on Internal 
Block Diagrams 

Module / Library / Super 
Class Interactivity 

 

Details of model 

Selected details of the model are shown in the figures below.  
Figure 5 is analogous to Figure 3 above; except that it is the 
actual IBD used in the simulation.  Aspects that make Figure 5 
vary are behavior diagrams overlaid onto the structural 
diagrams, which allow the user to track things like higher and 
lower-level processes running simultaneously during runtime 

and multiplicities of objects reflecting redundancy in the 
system.     
 
Figure 5 is the diagram intended for users to watch during live 
simulations, to see where the “command” is in the system at 
any given point in time.  This is a useful view because when a 
problem is found with the command or processing routine, the 
simulation highlights which subsystem is currently active and 
what operation it is performing. This helps in validating the 
model against the SMAP system, and eventually with testing 
responses to new commands. 
    

 
Figure 5 – Detailed SMAP Simulation IBD 

Figure 6 is a state machine diagram (STM) controlling the 
command generation process.  Starting with a request for the 
user to input a single (or list of) command(s), it invokes a 
series of other activity diagrams to encapsulate said commands 
into proper CCSDS format and sends them to the GDS for 
transfer to the flight system model.   
 
Figure 7 shows the last activity invoked by the state machine 
represented in Figure 6.  It takes the “U/L Msg” (Uplink 
Message) stored in a value property within the “MOS” section 
of the model and puts it on the “U/L Msg Out” port (seen as 
the only port leaving “MOS” in Figure 5) to simulate sending 
it to the GDS.   
 
In Figure 7, the “Read Self” action is an artifact of the 
simulation, and is a visual equivalent to explicitly declaring a 
variable in “code”.  There are very few places where such 
“artifacts” are needed for simulation purposes. One advantage 
of simulation (discussed in further detail in the next section) is 
that the “overhead” involved with testing the system using 
MBV&V is on the order of variable declaration and dragging 
and dropping actions onto diagrams, which is far less work 
than developing high fidelity simulators such as WSTS [2] or a 
system test-bed. 
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Figure 6 - Uplink Message Generation Process (Depicted as 

a STM) 

Figure 8 shows the TIF’s logic modeled as a STM.  Because of 
the nature of FPGAs, its logic was not difficult to capture in 
the model since functionality is hard-wired into the board and 
was well defined in design documentation. Figure 8 also 
highlights how the STM was used to model a looping 
mechanism in the simulation (acting like a “for-loop”). The 
key advantage of using STMs over activity diagrams (with 
respect solely to the execution of the simulation engine) is that 
loops are permissible in STMs, while they are less 
straightforward in activity diagrams.  

Figure 9 shows a diagram of the first activity invoked by the 
state machine represented in Figure 8 to run commands 
through the logic wired onto the TIF.  While each action 
contains several embedded lines of code to manipulate the data 
flowing through the various subsystems during the simulation, 
the layout of the diagram and the titles of the actions suffice to 
convey the behaviors associated with each action.  In 
summary, conveying this level of detail via the use of diagrams 
presents a major benefit: when a command is not executed 
successfully by FSW or by hardware on the spacecraft, there is 
a visual pointer that pinpoints the problem in the 
model/simulation. 
 

 
Figure 7 - Send Uplink Message Activity Diagram 

Figure 11 is a testament to the levels of abstraction that can be 
built into the behavioral model of the system.  As seen in 
Figure 8, one of the activities called by the “Process next 
codeblock” state is the activity called “Handle codeblock”.  
Since this process is made up of several distinct processes, it 
was not recommended to place both of these complex 
processes onto the same diagram for sake of clarity. 
 
Figure 10 takes this level of abstraction to even greater detail.  
When the action ‘Place in the Buffer’ in Figure 11 is executed, 
the simulation checks for uncorrectable errors per the logic and 
code in Figure 10 and displays them to the user.     
 
Analogous to creating function calls in traditional 
programming, Figure 11 is meant for those viewers not 
directly concerned by the logic behind the FPGA and mostly 
interested in knowing whether or not “codeblocks were 
handled correctly”.  Part of the beauty of modeling tools with 
metadata and relationships lies in the unlimited number of the 
levels of abstraction that can be captured based on stakeholder 
needs and resources.      
 
Another scenario in which abstraction is a key advantage is the 
case where a modeler inherits a large amount of code from a 
previous simulation.  If this is a known quantity or if the 
project does not have the desire/resources to model certain 
parts of a system, these “black boxes” allow the project to 
focus only on modeling parts of the system that are of interest, 
while leveraging existing models. Because each behavior 
modeled has well-defined inputs and outputs (as well as logic 
that describes how data is being manipulated), it can be used in 
any model that adheres to those interface specifications.        

Figure 12 represents an STM modeling the FSW portion of the 
spacecraft.  Every time codeblocks are placed into the memory 
buffer, FSW is tasked with retrieving the data (from either 
buffer A or B).  Upon gathering data from the memory buffer, 
FSW will reconstruct and check the data message for errors. If 
the data holds valid, FSW would then queue the command for 
execution, as seen in Figure 13.  
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Figure 8 – TIF State Machine Diagram 

 
Figure 9 – TIF Command Reception Behavior 

 

 
Figure 10 - Placing Codeblocks in the Buffer 
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Figure 11 – TIF Codeblock Handling Behavior 

 
Figure 12 - FSW Data Retrieval Behavior 

 

 
Figure 13 – FSW Frame Set Construction Activation 

Behavior 

 
5. LESSONS LEARNED 

Compared to other simulation techniques relying exclusively 
on code, the use of a SysML-based simulation greatly 
enhanced the transparency and readability of the overall logical 
flow. Indeed, SysML enabled the organization of the entire 
simulation into distinct and well-identified behaviors 
containing individual pieces of executable code. As illustrated 
by several figures in the previous section, this offers any 
newcomer to the project a high-level view of the processes 
being simulated, regardless of their familiarity with the lower-
level code. Transparency is also improved during the execution 

of the simulation, since behaviors become highlighted as they 
run, giving the end-user the chance to better comprehend the 
simulation runtime sequences. This feature is not only critical 
during debugging of the model, but also for qualitative 
validation (via visualizing the order that distinct operations are 
performed) of the overall uplink process.  The simulation 
engine used to perform these simulations was completely off-
the-shelf, and required only that the modelers learn how to use 
the program.   

Another major advantage in running a simulation via a SysML 
model is the tight association between the structural model of 
the system (outlined in BDD’s and IBD’s) and the behavioral 
model of the system (outlining functionality and logic in 
STM’s, activity diagrams, and parametric diagrams). This 
powerful combination of structure and behavior within the 
same environment provides an interesting means to reflect 
recent design changes and capture their impact on the behavior 
of the system. The logic of one or more modeled processes can 
be re-validated as new elements get added to the design (or 
modified).  

During the development of the uplink model, various sections 
were modeled concurrently and independently, and unit tested 
before the end-to-end model was assembled. Development of 
the model therefore mimicked development of the actual 
hardware, in that lower level components are fabricated 
separately before being integrated as a functioning system.  This 
process also provided model validation, guaranteeing the input 
and output data interfaces for each distinct subsystem model 
were consistent. The simulation provides an additional means to 
expose discrepancies between inputs and outputs at the 
interfaces between subsystems; as any mismatches will result in 
explicit anomalies when the simulation is run. 

The decomposition of the uplink process into individual, 
logical pieces required the definition of various simulation 
artifacts to exchange information between these distinct pieces.  
While the main uplink message is directly modeled as a data 
flow that traverses the different activities or states, how this 
data is accessed and manipulated varies throughout the 
simulation.   For example, the simulation takes advantage of 
both SysML “value properties” and “signals”.  Extra overhead 
is thus required to make sure that this data gets properly 
updated, in a way that resembles the use of global variables in 
traditional programming. However, this effort is minimal when 
compared to that effort involved in setting up a high fidelity 
software simulator such as WSTS. In addition, having a 
relatively accurate simulation much earlier in the life cycle, 
and with fewer resources, can prove particularly beneficial.  

Finally, as with other simulation techniques, modeling parallel 
processes with SysML creates some challenges in terms of 
synchronization.  Extra care must be taken to ensure that 
model elements trigger the appropriate responses at the right 
times (with respect to other elements in the simulation). 
Timing issues may have to be addressed, depending on the 
fidelity of the simulation engine being used and the number of 
desired concurrent operations.  During the implementation of 
this work, it was identified that the simulation engine’s speed 
of execution and the computing speed of the machine could 
impact the logic.  This is a major limitation of the simulation 
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engine that was used that had to be circumvented by 
implementing artificial delays to ensure the proper sequencing 
of activities.  

6. SUMMARY 
Simulation was successfully added to the structural and 
behavioral models of the SMAP mission.  Although some 
idiosyncrasies of the tooling needed to be worked out, the 
general overhead with creating a simulation from the static 
models was miniscule when compared to creating a high-
fidelity software simulator like WSTS [2] or an avionics 
hardware testbed.  The benefits of this SysML simulation 
allowed for verification of the SMAP mission’s actual 
command dictionary per the logic outlined in design 
documents; thus successfully validating the system design with 
a small team and limited resources. 

Unfortunately, this process was developed concurrently as 
hardware testbeds and WSTS [2] were being developed; so the 
full effect of this simulation was not realized early enough.  But 
as future missions (and other complex systems in general) are 
proposed and funded, they can take advantage of this process to 
validate high-level functionality of their designs before copious 
amounts of money are spent validating the design at lower 
levels.   

To date, the model-based V&V [MBV&V] paradigm at JPL has 
focused around system model-based simulations [4] and system 
test diagrams [5], but this does not fully satisfy the goals of 
MBV&V, which are to address all areas of V&V when working 
with system models. In current studies, the applications of 
MBV&V are being extended to demonstrate interactions 
between a SysML system model and a high-fidelity avionics 
simulator, such as WSTS [2]. Additionally, work is also being 
done to demonstrate interaction between a SysML system 
model and an avionics testbed. The intent of this current work is 
to extend the application of MBV&V to the implementation 
phase of the project development “V” [1]. 
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