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NASA’s Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on 
June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In 
order to meet the challenging attitude control and navigation requirements of the orbit 
profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction 
Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel 
Assembly (RWA).  In 2008, after 11 years of reliable service, several RCS thrusters began to 
show signs of end of life degradation, which led the operations team to successfully perform 
the swap from the A-branch to the B-branch RCS system.  If similar degradation begins to 
occur on any of the B-branch thrusters, Cassini might have to assume a “mixed” thruster 
configuration, where a subset of both A and B branch thrusters will be designated as prime.  
The Cassini Fault Protection FSW was recently updated to handle this scenario.  The design, 
implementation, and testing of this update is described in this paper. 

Nomenclature 
AACS = Attitude and Articulation Control Subsystem 
AFC = Attitude Control Flight Computer 
CBH = Catbed Heater 
DOY = Day of Year 
ETC = Excessive Thruster Commanding 
FP = Fault Protection 
FSDS = Flight Software Development Suite 
FSW = Flight Software 
GSW = Ground Software 
ITL = Integrated Test Laboratory 
LV = Latch Valve 
MEA = Main Engine Assembly 
MPD = Mono-propellant Driver Unit 
MTA = Mono-propellant Tank Assembly 
OTM = Orbit Trim Maneuver 
RCS = Reaction Control System 
RWA = Reaction Wheel Assembly 
S/C = Spacecraft 
VDECU = Valve Driver Electronics Controller Unit 

I. Introduction 
he Cassini spacecraft was launched on 15 October 1997 by a Titan 4B launch vehicle.  After an interplanetary 
cruise of almost seven years, it arrived at Saturn on June 30, 2004.  To save propellant, Cassini made several 

gravity-assist flybys: two at Venus and one each at Earth and Jupiter.  
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The RCS hardware consist of redundant cross strapped Valve Drive Electronics Control Units (VDECU) and 

Mono-prop Drivers (MPD), which control the thruster valves, required catbed heaters, as shown in figure 3.  MPD A 
controls latch valve 40 for the ‘A’ Branch, and MPD B controls LV 41 for the ‘B’ branch. 

 

 
In October 2008, two of the eight A-branch RCS thrusters, which had been used flawlessly since launch for 11 

years as the prime set, began to show signs of degradation.3 One of the recommendations from the Cassini 

 
Figure 2. Cassini RCS Schematic2 

 
 

 
Figure 3. RCS Hardware Driver Block Diagram 
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propulsion team was an in-flight swap to the backup thruster B-branch, because this branch had never been used in 
flight, and thus had pristine thrusters and catalyst beds.  The swap to the ‘B’ thruster branch was completed in flight 
over the course of nine days in March 2009.2   Cassini continues to operate flawlessly on the B-branch, but if 
degradation occurs on any of the thrusters in this branch, we may be forced to adopt a “mixed” branch configuration, 
with some of the A-branch thrusters being used with some of those from the B-branch.  

III. Problem with AACS Fault Protection In “Mixed Mode” 
The Cassini attitude control flight software is capable of supporting such a “mixed” thruster configuration. All 

that is needed is to designate which set of thrusters on these two thruster branches is prime.  The original fault 
protection logic, however, was not capable of properly handling a mixed branch configuration.  The AACS FSW 
version A8.8.0 was recently updated to improve the FP handling of thruster faults in the mixed branch configuration.  
This new version was called A8.9.0. 

If a thruster leak is detected in a mixed thruster configuration, the fault protection logic of the old Cassini flight 
software (version A8.8.0) will swap to an “all B branch” thruster configuration and close the A-branch latch valve 
(LV40). This is the correct response if the leaky thruster is from the A-branch. If, however, the leaky thruster is from 
the B-branch, the current “all B-branch” fault protection response will not shut off the monopropellant latch valve 
associated with the problematic thruster, and the fault will not be mitigated. Hydrazine will be still leaking out of the 
leaky B-branch thruster. 

This limitation of the A8.8.0 flight software build was rectified in the A8.9.0 flight software build (that was 
uploaded on the Cassini spacecraft on December 12, 2012). The new fault protection logic design (for mixed 
thruster configuration) is described in this paper. 

IV. Design of Mixed Branch Fault Protection 
 Although the Cassini fault protection design is not required to be tolerant to multiple failures, provisions should 
be made in the event of reasonable and recoverable future failures of the thruster system.  No design provisions are 
made for failure modes which Cassini lacks the hardware redundancy to mitigate.  An example of which would be 
permanent thruster leaks on both thruster branches.  In the event of a leak on both thruster branches, or a failure of 
both mono-propulsion drivers (MPDs), orbit maintenance will not be possible and the mission science will not be 
possible.  Additionally, the fault protection design has assumed that there is no more than a single “hard” thruster 
failure per thruster branch, where a hard thruster failure is defined as complete loss of thrust.  Partial thrust 
degradation (such as exhibited by the Z3A and Z4A thrusters) is acceptable and recoverable.   

Autonomous detection of a leaking hydrazine thruster was of particular importance to the Cassini mission due to 
the risk of the wasting vital hydrazine propellant after a leak occurs.  Early in the mission, communication with 
Cassini occurred only once per week.  Other critical periods where delayed leak detection was considered especially 
threatening were the approach to the Earth flyby in August 1999 and during Saturnian tour operations.  The Cassini 
fault protection design includes three leak detection error monitors, one for each spacecraft body axis, which 
monitor for excessive thruster commanding (ETC).  These monitors compare expected angular momentum 
accumulation with estimates of commanded RWA and RCS control quantities. If deviations rapidly accumulate, a 
leak detection error monitor will trigger and fault protection response will occur (see Reference 4).   

In response to an excessive thrusting error, the onboard fault protection will attempt a number of corrective 
actions including swapping to the backup sun sensor assembly (SSA), stellar reference unit (SRU), inertial reference 
unit (IRU), valve driver electronics control unit (VDECU), backup thruster branch, and calling system Safing.  The 
appropriate corrective action is selected based upon a tier count parameter which increments each time an excessive 
thrusting condition is detected.  At a high level, the pre-AACS FSW 8.9.0 FP design takes the actions described in 
table 1.   

 
 

Table 1: Pre AACS A8.9.0 FSW Fault Protection Behavior 

Tier  FP Action Taken Relevant Parameters which govern FP 
behavior 

1 Reset monitors, request System Safing  
2 Reset monitors, request System Safing  
3 Reset monitors, request System Safing  
4 Reset monitors, request System Safing  
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5 Reset monitors, request System Safing  
6 Swap thruster branches*, reset monitors, request System Safing Swap_Thrusters_2n = 6 
7 Swap VDECU, reset monitors, request System Safing Swap_VDECUs_2n = 7 
8 Swap IRU, reset monitors, request System Safing Swap_IRUs_2n = 8 
9 Swap SRU, reset monitors, request System Safing Swap_SRUs_2n = 9 
10 Swap SSA, reset monitors, request System Safing Swap_SSAs_2n = 10 
11+ Reset monitors, request System Safing  

 
*After the thruster branch swap a thrusters_swapped flag is set to true and the onboard FP will not swap thruster 

branches again while that flag is set. 
 
On the 6th tier of the FP response to a excessive thrusting error the onboard fault protection will swap thruster 

branches and close the latch valve to the backup thruster branch (either LV-40 or LV-41). Following the closure of 
the appropriate latch valve, the FP will issue a 7PAUSE DROP command, which will force AACS to drop inertial 
attitude knowledge and reacquire attitude knowledge using the updated prime suite of sensors, actuators, and related 
hardware.  Figure 4 illustrates the Cassini AACS mode transition diagram and the applicable transitions between 
modes. 

 

 
 
Closing the upstream latch valve will stop a thruster leak and is the appropriate corrective action, but the 

challenge is to determine which latch valve to close.  Additionally, the on-board FP will not swap thrusters a second 
time after it swaps for the first time.  Three main design change options were considered to protect against a leaky 
thruster while in a mixed thruster configuration.   
 The first option considered was to close both upstream latch valves LV-40 and LV-41 to isolate all thruster leaks 
on both thruster branches and transition to a new RWA-based Safing mode.  This provides robust mitigation to the 
widest range of thruster failures, but requires significant amount of design changes and testing.  The AACS design 

 
Figure 4. Cassini AACS Mode Transition Diagram5 
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which has undergone thorough testing and has been stable with over fifteen years of flight experience, always uses 
the RCS control system to detumble the spacecraft (bring body rates under control), find the sun, point to the sun, 
find stars (to re-establish 3-axis attitude knowledge) and finally slew to a “safe” attitude (typically HGA to Sun with 
SRU pointing at an unobstructed star field) to allow communication with ground controllers.  The AACS design 
does not have the capability to perform these actions under RWA control.  Significant re-design work would be 
required to establish an RWA-based recovery path.  Additionally, the analysis and testing involved to ensure that the 
RWA system can always achieve these goals under a range of credible non-zero system momentum conditions 
would be difficult to bound.  Given the low likelihood of a thruster leak scenario, the implementation complexity, 
and the relatively robust quantity of hydrazine remaining onboard, the option to close both LV-40 and 41 and use 
RWA control was not selected to mitigate the vulnerability to a leak while in mixed thruster branch operation. 
 The second option considered was to design the fault protection to diagnose which thruster is leaking, close the 
latch valve on that leaking thruster branch, and recover via the nominal RCS-based Safing design with the other 
branch of thrusters.  This method maintains the same tiering for the subsequent tier count of the 
retry_attitude_initialization response, but it requires logical changes to the diagnosis step of the activation rules and 
a modification of the retry_attitude_initialization response.  Furthermore, there are concerns about the accuracy of 
the diagnosis being able to uniquely and unambiguously determine which thruster is leaking.  The complexity of the 
required design and the risk of a false diagnosis being fatal led us away from this option. 

 The last option is the simplest, and is the one implemented in the AACS A8.9.0 FSW build.  Swap thruster 
branches twice, if needed, instead of the baseline one time.  This required a modification of internal count 
parameters and minor logic changes to the swap thrusters response, in order to close LV-40 and swap to the B-
branch thrusters on the 6th tier of FP action, and to open LV-40 and close LV-41 and swap to the A-branch thrusters 
on the 7th tier of FP action.  In the event of a thruster leak on branch B, fault protection actions will swap to an all B-
branch set of thrusters on the 6th tier of the response.  This action will not mitigate the thruster failure in this case, 
but the next tier (7th tier) of FP actions will swap to the A-branch thrusters, and close LV-41, which will mitigate the 
thruster leak.  In the event of a thruster leak on branch A, the FP actions will swap to an all B-branch set of thrusters 
on the 6th tier of the response and mitigate the leak. 
 

Table 2: AACS A8.9.0 FSW Fault Protection Behavior  

Tier  FP Action Taken Relevant Parameters which govern FP 
behavior 

1 Reset monitors, request System Safing  
2 Reset monitors, request System Safing  
3 Reset monitors, request System Safing  
4 Reset monitors, request System Safing  
5 Reset monitors, request System Safing  
6 Swap thruster branches, reset monitors, request System Safing Swap_Thrusters_2n = 6 
7 Swap thruster branches a second time, reset monitors, 

request System Safing 
 

8 Swap VDECU, reset monitors, request System Safing Swap_VDECUs_2n = 8 
9 Swap IRU, reset monitors, request System Safing Swap_IRUs_2n = 9 
10 Swap SRU, reset monitors, request System Safing Swap_SRUs_2n = 10 
11 Swap SSA, reset monitors, request System Safing Swap_SSAs_2n = 11 
12+ Reset monitors, request System Safing  
 
 Although the selected option to swap thruster branches twice requires the least code modification, there are some 
drawbacks from a hydrazine usage perspective.  In the event of a thruster leak on the A-branch thrusters, it takes the 
on-board fault protection an additional tier of response to mitigate the thruster leak. As described in reference 4, the 
excessive thruster commanding error monitor uses the Euler equation to detect unexpected accumulation of angular 
momentum (which is diagnosed as a thruster leak).  Based on the design of the monitor and the onboard threshold, 
the additional hydrazine lost by not mitigating a B-branch thruster leak until the 7th tier, as compared to the 6th tier, 
was determined to be insignificant. 
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V. Mixed-branch RCS Fault Protection Test Design 
Every time an update is planned to the AACS FSW, an extensive amount of testing is performed on multiple 

platforms to verify the proper design and implementation of the update.  In addition to the standard acceptance and 
regression tests that are performed for every new version of FSW, new test cases were designed that specifically 
targeted the mixed branch FP changes that were made for FSW version A8.9.0.  We wanted to stress the system, 
looking for possible weaknesses in the design and implementation, whereby undesirable fault responses might occur 
in the presence of multiple or extremely unlikely faults.  In other words, we wanted to test the boundaries and 
limitations of the system. 

The first thing considered in the design of the test suite was the configuration of the spacecraft to be used in the 
tests.  Since Cassini has a total of 16 RCS thrusters from which a subset of 8 are used at any one time (see figure 1), 
it would be virtually impossible to perform every test with every possible permutation of mixed branch thruster 
configuration.  We chose to make use of three mixed branch thruster configurations (see table 3) in our testing, 
making sure to include an intelligent representation of Z thrusters, because they are unbalanced, and Y thrusters, 
because they are balanced (see figure 1).   

 

 
The reader will remember that the A branch Z3 and Z4 thrusters have degraded in flight3, which is why both of 

the test configurations make this assumption.  The configurations are intentionally biased toward having most of the 
B branch thrusters designated as FSW prime, since this is the most likely scenario, given that that A branch thrusters 
have seen the most use in flight.  

As for the spacecraft mass properties and thrust values to use in testing, we decided to use the values predicted 
for the year 2015, since this is half way between the present time and the end of the mission, in 2017.  All other 
spacecraft hardware states such as RWA configuration, propulsion latch valve positions, star tracker and sun sensor 
power states, etc., set to match the current operational state of the spacecraft. 

Once the set of test configurations was defined, individual test cases were designed to make sure the software 
change performed as expected in various nominal operational scenarios, as well as with the introduction of realistic 
and extreme faults.    

A description of some of the fault protection test cases, along with the objectives of performing these sets of tests 
are explained below: 

1. A- or B-branch RCS thruster is stuck open or closed. The objective of performing this set of test cases is to 
verify that the on-board FP design will switch to the thruster branch without the stuck open (or closed) 
thruster. Moreover, the LV (LV-40 or LV-41) for the thruster branch with that stuck open/closed thruster is 
commanded closed, to stop the leak in those stuck open test cases. 

2. VDECU, MPD, or LV faults. Determine that the on-board FP design will replace the failed MPD (or VDECU 
or LV) using its backup. Thereafter, the failed equipment is powered off. 

3. RWA fault. Verify that the on-board FP design will transition from the Inertial_RWA to Inertial_RCS 
attitude control mode in the presence of a permanent RWA fault. Thereafter, the mixed-branch thruster set 
will slew the S/C to an Earth-pointed attitude. All RWAs are powered off. But both MPDs (which are needed 
for the mixed-branch RCS thruster configuration) will stay powered on. 

4. Non-AACS Fault Induced Safing. Verify that after an AFC reset, the FSW designated prime states of the 
thruster configuration (thrusters, CBH, MPD, and VDECU) will be maintained via the recovery data. FP will 
successfully slew the S/C to the Safing attitude using the mixed-branch thrusters. Both MPD (that are needed 
for the mixed-branch RCS thruster configuration) will stay powered on. 

 
Table 3. Mixed Branch Thruster Configurations Used in Testing 
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5. Catbed Heater Fault. Confirm that the on-board FP design will successfully replace the faulted prime CBH 
using their secondary counterparts. 

6. Attitude Determination Functional Failures. These test cases are all members of the FP regression test set. 
They check out several safety net response scripts. The objective of this set of test cases is to ascertain that 
actions taken by these scripts could be supported by a mixed RCS thruster configuration. 

VI. Test Implementation 
The AACS team made use of two hardware platforms for testing the new version of the FSW, with hundreds of 

test cases emphasizing regression and new functionality.   Both platforms have advantages and disadvantages.  The 
AACS team members used discretion in assigning the proper test case to the proper test environment.  

A. Cassini Test Platforms 
The two main test platforms available to the AACS engineers are the Flight Software Development System 

(FSDS) and the Integrated Test Laboratory (ITL). 
FSDS is a workstation-based simulation without any hardware in the loop7.  It runs a compiled version of the 

FSW, with all the hardware and environmental inputs simulated.  It runs relatively quickly, approximately 8 times 
real time, and can be scripted with multiple instances running at the same time.  The scripting capability allows for 
easy repeatability and updating of tests, which makes regression testing of new versions of FSW much easier to 
design, execute, and evaluate.  The use of a tool like FSDS allowed us to run and evaluate hundreds of test. 
  The ITL is a very high fidelity system mode integrated hardware test facility, with the AACS FSW running on a 
flight spare Avionics Flight Computer (AFC), and multiple flight spare avionic hardware units in the loop8.  The ITL 
platform is very flight like, and as such is very resource intensive.  It can only run one test at a time in real time, and 
takes several hours to boot up and prepare each test.  This effectively limited us to a few dozen tests performed in 
the ITL. 

B. Interesting Results 
First and foremost, the results of the testing showed the mixed branch fault protection design and implementation 

to be a success.  It is robust and effective in isolating thruster leaks quickly, without causing unnecessary thruster 
swaps in response to faults that are not thruster related, in the vast majority of cases.  Regardless of the initial 
thruster configuration, the spacecraft proved capable of recovering from a hydrazine leak by isolating the faulted 
thruster branch and continuing operation on the spare branch. 

There were extreme scenarios, however, whereby unexpected or undesirable results occurred, but they were 
deemed so unlikely, or there are operational workarounds to mitigate their effects, that further changes to the FSW 
was not necessary. 

 
1) Phantom Momentum Induces False Excessive Thruster Commanding Fault Trip 
In extreme fault cases, a known 

mismatch between the FSW modelled 
RWA momentum and the actual 
momentum can occur, when the RWA 
system is unexpectedly powered off, 
whether from a safing response, or from an 
AFC reset6, as shown in figure 6.  This 
mismatch in momentum can induce the 
Excessive Thruster Commanding (ETC) 
Fault Monitor to erroneously trip, as it uses 
the Euler equation to monitor spacecraft 
rotation4.  The design of the mixed branch 
thruster fault protection is to delay the ETC 
swap of thruster branches to the fifth tier to 
allow time for the phantom momentum to 
decay, so that the thruster branch is not 
swapped unnecessarily.  This was thought 
to be sufficient margin, so that a thruster 
swap would not occur due to ETC 

 
Figure 6. Graphical Concept of RWA FSW Phantom Momentum6 
Illustrates two scenarios of FSW discrepancy.  Blue arrow discrepancy 
occurs when a Safing or FP-related RWA to RCS transition is invoked, 
red arrow discrepancy occurs when an AFC reset is invoked.  
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responding to phantom momentum, but would still occur quickly enough in response to a real thruster leak.   
This proved not to be the case, however, for a few extremely unlikely worst case instances of phantom 

momentum.  One such case involved the spacecraft initially anti-sun pointed, with an induced AFC reset with loss of 
attitude knowledge and maximum possible RWA momentum.  This induced a sun search with the maximum amount 
of phantom momentum possible.  In this case, ETC tripped 6 times and induced an unnecessary thruster branch 
swap.  In flight, operations rules and ground software prevent such a large amount of initial momentum on the 
RWAs, so the test case is deemed extremely unlikely to occur in flight.  Regardless, it would not be catastrophic if it 
did occur, as the operators would simply command a swap back to the original thruster configuration.  Since the 
undesired response was not catastrophic and is extremely unlikely to occur, we decided to leave the FSW 
unchanged, even though the original design intent was not completely satisfied under every circumstance. 
 

2) Interfering Fault Responses 
The AACS Fault Protection is object oriented, where multiple response scripts can be active at one time5.  In the 

process of testing the mixed branch FSW update, we found a scenario whereby two response scripts interfere with 
one another in an undesired way.  The ETC error monitor is supposed to allow for five trips of its momentum 
threshold before the response script swaps thruster branches in an attempt to isolate a suspected thruster problem.  
The FP software did not respond in the expected manner, however, when it came to a few particular test cases 
involving stuck closed thrusters.   

In a test case involving a stuck closed Z1A thruster valve during change to the RWA momentum in RCS control, 
it turned out that the Excessive Thruster Commanding fault monitor tripped nine times before commanding a swap 
to the B-branch, which isolated the stuck closed thruster and remediated the fault.  This occurred because another 
fault monitor, Excessive Attitude Error, was also tripping its threshold, and the two monitors share a common tier 
count parameter.  Both monitors were overwriting the counter, so ETC actually tripped more than the design number 
of times before the thruster swap.   

We were never able to cause this situation to occur in the many stuck open test cases we ran.  Since a stuck 
closed thruster does not leak hydrazine, the extra tiers exercised before the thruster swap was not deemed a serious 
problem, and we decided against making further updates to the FSW.  
 

3) Safety Net Fault Protection Responses 
The test cases involving “safety net” Fault Protection responses provided results that proved challenging. Safety 

net Fault Protection responses like “Long Sun Search”, “Suspend Attitude Control”, and “Pause and Safe” are 
routines that react when lower level fault protection are unable to mitigate faults. Due to this design, excessive 
swapping of hardware will occur prior to fault mitigation if the remedy comes from these higher order responses. 
From a testing standpoint, when the engineer recognizes swapping thruster branches will cure the fault, a swap of 
IRUs or SRUs prior to mitigating the fault may be considered unnecessary.  However, Fault Protection was 
architected such that lower level FP attempts all necessary hardware combinations prior to attempting substantial 
response actions like swapping primeness of the thruster branch set. A handful of test cases fell into extraneous 
hardware swapping; but since the fault was mitigated as intended, those test cases passed their success criteria. 

 

VII. Conclusion 
The successful design, implementation, and testing of the update to Cassini’s mixed RCS branch AACS Fault 

Protection Flight Software was a huge undertaking, the success of which required the collaboration of many talented 
individuals.  This paper describes the challenges of designing and testing this update.  Although the FSW has been 
successfully uplinked and is currently operating on board the spacecraft, several important lessons were learned 
along the way. 

Future missions that make use of dual string propulsions systems would do well to take advantage of that fact in 
all aspects of the FSW.  The Cassini AACS FSW was originally designed to properly handle a mixed branch 
propulsion configuration for nominal operations, but the fault protection software was not designed to handle this 
possibility gracefully.  Much time and energy could have been saved if the mixed branch capability had been 
incorporated into the fault protection software at launch. 

We found a few cases where a lack of strict adherence to the object-oriented paradigm caused unexpected 
results.  The phantom momentum case had been known and published previously5, but the fault monitor counter 
interference case was not.  Future missions would do well to implement strict controls on maintaining the object-
oriented methods of data scope enforcement. 
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The scripting capability of the Flight Software Development System proved invaluable in the testing and 
verification of the new FSW.  Individual test cases were easily modified and the results were easily evaluated, as 
they could be quickly run and compared to the results from previous versions of the FSW.  This capability is 
especially valuable on a long term project like Cassini, where the knowledge base loss from inevitable turnover in 
personnel is mitigated by the repeatable nature of scripted tests.  Not all missions have such a test platform, but our 
experience with Cassini shows it to be a valuable and cost effective method for thorough testing of a complicated 
system. 
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