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ABSTRACT   

As part of the NASA ROSES Technology Demonstrations for Exoplanet Missions (TDEM) program, we conducted a 
numerical modeling study of three internal coronagraphs (PIAA, vector vortex, hybrid bandlimited) to understand their 
behaviors in realistically-aberrated systems with wavefront control (deformable mirrors). This investigation consisted of 
two milestones: (1) develop wavefront propagation codes appropriate for each coronagraph that are accurate to 1% or 
better (compared to a reference algorithm) but are also time and memory efficient, and (2) use these codes to determine 
the wavefront control limits of each architecture. We discuss here how the milestones were met and identify some of the 
behaviors particular to each coronagraph. The codes developed in this study are being made available for community 
use. We discuss here results for the HBLC and VVC systems, with PIAA having been discussed in a previous 
proceeding.   
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1. INTRODUCTION  
1.1 Coronagraphic imaging of extrasolar planets 

The imaging of mature (>1 Gyr) extrasolar planets requires the ability to separate the light of something that is ~10-9 
(Jupiter twin) or ~10-10 (Earth twin) as bright as its star in reflected light (young giant planets are easier as they glow in 
the infrared with contrasts of 10-4 – 10-5). The planet and star are separated by a fraction of an arcsecond. To deal with 
the instrumental glare, a coronagraph may be used to suppress the diffracted light from a telescope’s obscurations while 
scattered light from optical fabrication errors can be reduced using one or more deformable mirrors. 

A wide variety of coronagraphic techniques exist or have been proposed. Some operate by modifying the distribution of 
light in a pupil (e.g., shaped pupils1, phase-induced amplitude apodization2 (PIAA)), others by altering the light at an 
intermediate focus (e.g., hybrid bandlimited coronagraph3 (HBLC), vector vortex coronagraph4 (VVC)). Variations of 
these can include the use of deformable mirrors to help control diffraction, even in the absence of any wavefront 
aberrations. There are also interferometric options (e.g., visible nuller5). The specific designs for each can be adjusted to 
optimize: 

• Inner working angle (IWA): the angle from the star at which the transmission of a point source has been 
reduced 50% relative to the maximum field transmission. 

• Field coverage: some coronagraphs (e.g., shaped pupil) can be tailored to reduce diffraction in a limited portion 
of the field, with trade-offs with IWA, throughput, and contrast. 

• Throughput: the transmission through the coronagraph, as set by stops, apodization masks, or focal plane 
masks, may often be traded against IWA and contrast 

• Low order aberration sensitivity: the IWA, contrast, and throughput may be traded off against the ability to 
reject changes in low order aberrations such as tip, tilt, focus, coma, astigmatism, etc. 



 
 

 
 

The current states of the different coronagraphic techniques vary considerably.  Some have been evaluated in testbeds in 
near-flight configurations and conditions and have achieved (or nearly so) the required contrasts in broadband light. 
Others have been tested in simplified versions and only in monochromatic light. Some exist only as models. So far, none 
has demonstrated with actual hardware the 10-10 contrast over a ~20% wavelength bandpass necessary to characterize an 
Earth twin (by contrast here, we mean that a background speckle created by optical errors and diffraction is equal in 
brightness to a planet of this flux ratio relative to the star). 

Until real hardware exists that provides 10-10 contrast, we must utilize numerical models to evaluate the performance 
limits and behaviors of the coronagraphic techniques. Such models are required for optimizing the design, demonstrating 
its expected performance with realistic optics, and creating the system response matrices used for wavefront control in 
both simulated and real systems. This requires accurate wavefront propagators and representations of the coronagraphic 
components. 

1.2 TDEM study and milestones 

To verify that the wavefront propagators are accurate to the contrast limits being considered and to understand the 
wavefront control behaviors of certain coronagraphs, we undertook a study within the NASA ROSES Technology 
Demonstration for Exoplanet Missions (TDEM) program. It had two milestones, the definitions and subsequent 
attainments of which were reviewed and approved by the NASA Exoplanet Exploration Program Technology 
Assessment Committee: 

1. Identify, implement in code, and verify efficient numerical methods for representing wavefront modification by 
the Hybrid Band-Limited Coronagraph (HBLC), the Vector Vortex Coronagraph (VVC), and the Phase-
Induced Amplitude Apodization (PIAA) coronagraph that are accurate to 1% or better relative to the mean field 
contrast for contrasts down to 10-10 as judged against the results from more robust, though slower, methods. 

2. Using the algorithms established in Milestone 1, assess the performances of HBLC, VVC, and PIAA 
coronagraphs via end-to-end modeling in a realistic and aberrated optical system with wavefront control to 
achieve a numerically-predicted mean contrast of 10-10 within a r = 2.5 – 18 λ/D radian annulus centered on the 
star integrated over a ~20% (λ = 500 – 600 nm) bandpass.  

The milestone definitions and results of this study are presented in more detail in the final results reports6. This work was 
an extension of an earlier, more cursory study7. 

Milestone 1 defined and verified the algorithms that would be used in Milestone 2 to evaluate the performance of each 
specific coronagraph design in an aberrated system. Because the end-to-end modeling in Milestone 2 would involve 
thousands of propagations through the optical system (for generating the deformable mirror response matrix and for 
iterative wavefront control), the methods established in Milestone 1 had to be as efficient as possible while still being 
accurate enough to capture the behavior of the coronagraph.  

The Milestone 1 efficiency was judged by the total amount of time it took to compute the effects of individually pushing 
each active DM actuator on each of the two 46 × 46 DMs at each of five sampling wavelengths (500, 525, 550, 575, 600 
nm), for a total of about 18,100 full propagations from the DM to the image plane. Assuming a perfectly symmetrical 
system and making use of the eight-fold symmetry of the deformable mirror, the time limit was set at 48 hours on a 
modern multiprocessor workstation. This number of propagations would be required to construct the DM response 
matrix used for wavefront control. The accuracy metric was the root-mean-square of the difference of the electric fields 
produced by the efficient method (Eeff) and a more rigorous, slower reference method (Eref), as measured within the 
specified field around the occulted source and expressed in terms of contrast: 
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Dividing the RMS of the intensity of the field differences by the peak value of the unocculted stellar PSF converts the 
result into contrast. The accuracy requirement was evaluated using aberrations that produced image fields with mean 
contrasts of 10-5 and 10-10. 



 
 

 
 

1.3 Propagators and verifying their accuracies  

To assess the impact of errors on each optical surface, the numerical wavefront propagator must be able to compute the 
diffraction of the beam from optic to optic, including those not at a pupil or a focus (which are easily handled by single 
Fourier transform between pupil and focus). This allows the effects of phase-to-amplitude (and vice-versa) transitions 
(Talbot effect) and out-of-plane vignetting to be included. This requires a combination of near and far field diffraction 
algorithms. 

The freely-available PROPER library9 for IDL (Interactive Data Language) was the baseline propagation system for this 
study. It implements the angular spectrum and Fresnel propagators, includes a model of a deformable mirror with 
actuator influence functions, can create synthetic surface error maps using power spectral density specifications, and can 
generate complex obscuration patterns. The propagators are based on the Fourier transform (but are more complex than 
the single Fourier transform commonly used for Fraunhoffer diffraction). In cases where the available PROPER routines 
were not sufficient, custom routines written in IDL or C were used (e.g., propagation between the PIAA remapping 
optics or the representation of the small opaque spot at the center of the vector vortex focal plane mask).  

Ideally, one would compare computed results to those obtained in the real world, such as from a testbed, to determine the 
accuracy of the computations. At the 10-10 contrast levels of concern here the unknown differences between the real 
optical system and the model would dominate the errors rather than computational ones. Instead, one must compare 
results from a practical (fast) algorithm to those from a reference one that is generally considered highly accurate but is 
likely extremely slow.  

Verifying S-Huygens as a “practical” reference algorithm against Rayleigh-Sommerfeld 

Our base reference method of propagation was brute-force numerical integration of the Rayleigh-Sommerfeld diffraction 
equation, which we assumed to be “perfect”. It was much too slow to be a practical reference algorithm for anything 
other than a single-step propagation of a simple wavefront. For multiple-surface systems and arbitrarily-aberrated input 
wavefronts the S-Huygens method10 was used as the reference. S-Huygens makes more approximations to diffraction 
computation than Rayleigh-Sommerfeld but fewer than the propagators used in PROPER. It is a one-dimensional 
propagator (radial vector of a 2-D wavefront) and can be used on circularly-symmetric wavefronts with high resolution. 
By decomposing the wavefront into a sufficient number of azimuthal harmonic basis functions, it can also be used for 
arbitrary two-dimensional wavefronts11.  

To verify the use of S-Huygens as the practical reference, we compared its results to those generated by Rayleigh-
Sommerfeld. Each method was used to propagate a circularly-symmetric aberrated wavefront (circular phase ripples) 
between two PIAA optics (remapping and phase correction mirrors). The aberrations were chosen to produce a 10-10 
mean contrast field at final focus between r = 2.5 and 18 λ/D. Afterwards the PIAA propagation, the wavefronts were 
multiplied by a greyscale apodizer and then propagated to focus using Hankel transforms. The Rayleigh-Sommerfeld 
calculation took 31 hours on a 256 processor system with 6.4 billion samples over the surface of the 1st optic (M1) and 
just a single radial cut on the 2nd. S-Huygens took 70 seconds on an 8-core workstation using parallelized code with 
45,000 points along the radius of M1 (because a completely symmetrical system was used, only one S-Huygens vector 
needed to be calculated). Assuming the Rayleigh-Sommerfeld results were exact, the accuracy of S-Huygens was 0.04% 
(Figure 1) as calculated by the previously defined equation. S-Huygens was thus considered a valid reference algorithm 
against which to judge other methods. 

Verifying PROPER against S-Huygens 

The accuracy of the PROPER routines was derived against S-Huygens. Each method was used to propagate a circularly-
aberrated input wavefront (for 10-10 contrast) through an entire simple, bandlimited Lyot coronagraphic system 
(including collimating and focusing optics). Based on these results, the accuracy of PROPER is 0.6% (Figure 2) when 
using a grid size of 2048 × 2048 with the beam at the entrance pupil spanning ¼ the diameter of the grid. 

Verifying PASP against S-Huygens 

The PIAA coronagraph optics compress the beam to create an apodized pupil. The spacing between rays becomes non-
uniform during propagation and the resulting phase differences large, invalidating the use of the usual Fourier-based 
methods (as does the high curvature change at the edge of the PIAA optics). A different algorithm, PIAA Angular 
Spectrum Propagator (PASP)12,13, can be used between the PIAA optics. It separately propagates each spatial frequency 



 
 

 
 

component of the field, accounting for remapping. This algorithm was described in detail in our previous report8 that 
detailed the results of the PIAA evaluations. 
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Figure 1. Comparisons of the propagation between two PIAA optics using Rayleigh-Sommerfeld and S-Huygens. (Left) The 
amplitude at the PIAA M2 optic. The pupil remapping by the M1 optic creates an apodized beam. (Right) The intensity at 
the focus of the system. The green line shows the difference between the two computed electric fields converted to intensity 
contrast. 

 

 

 

  

 

 

Figure 2. Plots of the ~10-10 contrast bandlimited 
Lyot coronagraph image fields calculated by 
PROPER and S-Huygens. The intensity 
contrast of the difference between the electric 
fields is also plotted. 

 

 

1.4 Defining the model system 

The common optical elements 

The three model coronagraphs shared a common front end optical system starting with a 1.5 m diameter primary mirror, 
secondary and fold mirrors, a collimator, and two 46 × 46 actuator deformable mirrors placed in sequence and separated 
by 1.0 m. The two DMs, with one at a pupil, allowed both phase and amplitude errors to be corrected in a 360º region 
centered on the star. The HBLC and VVC utilized the same back end system (Figure 3) after the 2nd DM that consisted 
of an optic to focus the beam onto a focal plane mask, after which a collimator reimaged the pupil onto a Lyot stop 



 
 

 
 

mask. Afterwards, the beam was focused onto the detector. In the case of PIAA, after the 2nd DM an optic created a pupil 
image on the 1st PIAA mirror (M1), which remapped the pupil onto the 2nd PIAA optic (M2) that corrected for the 
induced phase error. Another optic then reimaged the pupil onto an apodizing mask, after which another focused the 
beam onto an occulter at the PIAA intermediate focus, where most of the star’s light was removed. The beam was then 
sent to a duplicate of M2 and then to M1 (this reverse-order PIAA system restored the original wavefront mapping and 
avoided image distortion) and then to an optic that focused onto the detector.  There were some flat fold mirrors included 
to fit the layout into a realistic volume (the layouts are based on the ACCESS concept design study). 

In the Milestone 2 step, all of the optical surfaces had synthetic phase (polishing, figuring) errors and amplitude 
(coating) errors appropriate to the optic type and dimension. The 2-D error maps were realizations of power spectral 
density specifications derived from real optics. The phase wavefront errors ranged from 1.5 nm RMS (fold mirror) to 8.3 
nm RMS (primary). Measured error maps of a real set of PIAA optics were used for the PIAA simulations. The 
deformable mirrors were represented using a measured Xinetics actuator influence function, which is provided by 
PROPER. 
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Figure 3. Schematic optical layout for the HBLC/VVC. Not shown are the telescope primary and secondary mirrors that 
feed Fold 1 in the upper right. 

 

Wavefront control 

In Milestone 2 the systems were placed in the aberrated system and the DMs used to control the wavefront errors, 
creating a zone of suppressed speckles from r = 2.5 – 18 λ/D. The Electric Field Conjugation14 (EFC) method was used 
to compute the DM settings given the measured field at the final image plane. The computed, complex-valued field was 
used directly, without any indirect derivation of it that would be required in a real system. EFC requires a DM response 
matrix that describes how the field changes with a piston of each actuator (and at each wavelength). This matrix is 
computed by propagating a poke of each actuator through the system (a model is necessary to generate this whether it is 
used in a simulation or in a real system). One of the critical parameters in EFC is the regularization value. We derived 
the optimal one for each coronagraph by running separate control cases. 

The field at the image plane was “sensed” and controlled at 5 wavelengths evenly sampling the 500 – 600 nm bandpass. 
The mean contrast was evaluated using the average of the 5 monochromatic fields. 

 

2. HYBRID BAND-LIMITED CORONAGRAPH (HBLC) 
The HBLC3 is a variation on the classical Lyot coronagraph that uses a small, opaque occulting spot in an intermediate 
focal plane to mask the core of the stellar PSF and an aperture (Lyot) stop in a subsequent pupil plane to block most of 
the remaining diffracted light. The HBLC replaces the spot with specifically-tailored amplitude-and-phase-modulating, 



 
 

 
 

variable-thickness, patterned coatings. The graded amplitude transmission coating is usually a metal on top of which a 
patterned dielectric is applied. By modifying both the amplitude and phase in a controlled manner, and using the known 
material properties (indices of refraction, etc.) the HBLC focal plane mask can control wavelength-dependent 
transmission variations inherent in any real material as well as increase the throughput by allowing for a slightly more 
open Lyot stop. Even greater improvement can be achieved by modifying the wavefront with one or more deformable 
mirrors. The coatings and DM settings can be simultaneously optimized to produce a high-contrast field with specified 
inner and outer radii over a given bandpass. 

The HBLC used in our simulations included the effects of coating-induced, wavelength-dependent phase and amplitude 
variations based on real material properties as calculated with standard thin film equations. This was a realistic design 
that could be used in an actual system and whose performance should closely match the predictions (excluding any mask 
deposition errors). The HBLC was composed of a patterned mask at an intermediate focus (Figure 4), a Lyot stop mask 
at a subsequent pupil plane, and control with the deformable mirrors.  The DM (Figure 5) and focal plane mask patterns 
were optimized for an unaberrated system over r = 2.5 – 18 λ/D using an iterative method. Note that the DMs were an 
integral part of diffraction control, even in a perfect system; the patterns were later altered to correct for wavefront errors 
in an aberrated system. The focal plane mask used nickel and cryolite coatings with spatially-variable thicknesses to 
produce amplitude and phase modulations (Figure 4). The Lyot stop had an opening 60% the diameter of the beam, and 
it had a central obscuration 10% of the beam diameter (this spot was found to provide additional diffraction suppression 
when using the DMs). This HBLC configuration provided a mean contrast of 3.7 × 10-11 over the target field in an 
unaberrated system (Figure 6). 
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Figure 4. The HBLC focal plane mask intensity transmission (left) and phase modulation (right) used in this study. The 
wavelength dependence is based on thin film calculations using the properties of nickel and cryolite. 
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Figure 5. The initial HBLC deformable mirror 
settings used in this study, optimized for an 
unaberrated system.scaled. Shown scaled 
between -10.2 nm to +6.4 nm in piston. 



 

 

2.1 HBLC Milestone 1 results 

The HBLC did not require any special propagation algorithms or “tricks” to represent it in the numerical simulations 
since it simply modified the phase and amplitude with relatively smooth patterns. There was, in essence, no reference 
algorithm result to which a faster algorithm could be compared. For the HBLC Milestone #1 accuracy requirement, we 
relied on the demonstrated accuracy of the PROPER propagation algorithms.  

We compared results (Figure 7) from different computational grid sizes (4096 × 4096 & 2048 × 2048) and 
corresponding samplings at the focal plane mask (0.079 & 0.157 λ/D, respectively, with 322 pixels across the pupil in 
both cases). We created a two-dimensional, isotropically-scattering, synthetic primary mirror phase map that provided a 
contrast floor of ~10-5 (low contrast case) and ~10-10 (high contrast case) with the default layout. The accuracies for both 
contrast levels, based on the differences between the 2K and 4K grids, were about the same, ~7 × 10-14 (Figure 8). It is 
likely that some numerical artifacts cancel out. The execution time to compute the DM response matrix as specified in 
the Milestone 1 requirement was 8.3 hours using 2K grids. 
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Figure 6. Radial profile of the HBLC coronagraphic field 
expressed as contrast for an unaberrated system over λ = 500 
– 600 nm. 
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Figure 7. Monochromatic (550 nm) contrast maps for HBLC Milestone 1 simulation runs (1.1 × 10-10 mean contrast) using 
4K × 4K arrays (left) and 2K × 2K arrays (right). The contrast evaluation region of r = 2.5 - 18 λ/D is marked with circles. 
The colorbar indicates log10(contrast) and ranges from 10-12 up to 10-8. 



 

 

 

 

 

Figure 8.  Difference between the  4K × 4K and 2K × 2K electric 
fields (10-10 contrast), displayed as contrast. The contrast 
evaluation region of r = 2.5 - 18 λ/D is marked with circles. The 
colorbar indicates log10(contrast) and ranges from 10-16 up to 10-

10 (different scaling from contrast maps above). 

 

 

2.2 HBLC Milestone 2 results 

Trial EFC runs used different regularization values in the DM response matrix. There appeared to be a “sweet spot” 
using a regularization of 0.5 × 10-5. Lower regularization values (less actuator damping) provided rapid improvements in 
the first few iterations but the solution would eventually diverge. A higher value (more damping) slowed the 
convergence rate. After 150 iterations, a regularization value of 1.0 × 10-5 reached mean contrasts (Figure 9) of 2.4 × 10-

10 and 9.7 × 10-11  (for r = 2.5-3.5 λ/D, 2.5-18 λ/D, respectively). After only 50 iterations, a regularization value of 0.5 × 
10-5 provided contrasts of 2.2 × 10-10 and 9.3 × 10-11 for the same annuli, which we adopted here. Because it produced 
the best contrast over the full field after some experimentation, we chose to use uniform weighting over a 2.2 – 18 λc/D 
annulus (the contrast was still evaluated over 2.5 – 18 λc/D). The target dark hole contained 7596 pixels and there were 
1804 active actuators on each DM. The DM response matrix for 5 wavelengths was 2.1 GB in size. As shown in Figure 
10, there is considerable variation in contrast with wavelength. With an ideal coronagraph, one might expect that the 
contrast would be best near the central wavelength and degrade away from it.  However, the combination of the 
wavelength-dependent amplitude-and-phase-modifying mask and DM settings in the HBLC results in a different 
behavior. 

 

              

 

 

 

Figure 9.  Final broadband contrast over the field achieved 
using the HBLC. Log10(contrast) is shown on the color 
scale.  The inscribed circles mark the r = 2.5 and 18 λ/D 
boundaries of the contrast measurement region.  The mean 
contrast in this region is 9.3 × 10-11.  The residual structure 
is largely due to the wavelength-dependent coating behavior 
included in the HBLC mask representation. 
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Figure 10. Final HBLC broadband contrast decomposed into monochromatic contrasts over the field. Log10(contrast) is 
shown on the color scale (note that the contrast range is different here than for the other contrast maps in order to emphasize 
the variations with wavelength).  The inscribed circles mark the r = 2.5 and 18 λ/D boundaries of the contrast measurement 
region.  At the central wavelength (550 nm), the mean contrast is 9.4 × 10-11 over the dark hole. 

 

3. VECTOR VORTEX CORONAGRAPH (VVC) 
An optical vortex is created using a mask that introduces an azimuthally-varying phase shift to the wavefront, creating a 
“phase screw” with a singularity at the center. This results in self-interference as the wavefront propagates, forming a 
dark central hole in the beam at some distance from the mask. An optical vortex can be used in a Lyot coronagraph by 
placing a vortex-generating mask at an intermediate image plane that results in a dark central hole at a subsequent pupil 
plane, where a Lyot stop is placed. The advantages of an optical vortex coronagraph are that it can provide imaging very 
close to the star (< 2 λ/D) and has high throughput (>90%) due to a relatively wide-open Lyot stop. 

Previous vortex masks were transmissive, stepped spiral patterns etched into substrates. They suffered from 
manufacturing defects due to the imperfect singularity at the center of the spiral and the small, nanometer-scale steps 
required to produce an approximation to a smooth phase ramp. They were also inherently chromatic. A new technique4  
has been developed that creates a “geometrical” phase spiral by manipulating the polarization of incoming light with 
novel coatings made of hardened birefringent liquid crystal polymers (LCPs). This vector vortex is essentially a 
rotationally symmetric halfwave plate (HWP) providing a geometrical phase shift that applies opposite phase screws to 
the two orthogonal circular polarization states. In the vector vortex, for a linearly polarized input field (or for natural 
light projected onto a linear basis), the rotationally symmetric HWP rotates the polarization vector. The definition of 
circular polarization is a linear polarization rotating at the angular frequency ω (equal to that of the electromagnetic 
field); a rotation φ = 2θ of the polarization vector is strictly equivalent to a phase delay. If, at any given point in space, 
the polarization vector is rotated, it implies that the given circular polarization has acquired a geometric phase ramp eiφ= 
ei2θ. The term φ thus represents both an angle and a phase – hence the term “geometrical” phase. 

The VVC focal plane mask used in these simulations had a charge of 4 (the resulting phase spiral rotates by 4 × 2π 
radians), resulting in 4th order aberration rejection. An opaque circular spot of r = 0.25 λc/D at the center of the mask 
covered the “confusion zone”, the region where, in a real mask, there would be large fabrication errors near the central 
singularity. A simple, circular Lyot stop was used at the reimaged pupil plane after the VVC mask with a clear aperture 
of 90% the diameter of the beam. 

The broadband performance of a mask with less than 3 layers would be poor (~10-4 - 10-8 contrast) due to “chromatic 
leakage”. A real mask would require 5 layers of polymer and operate in a single polarization channel (as we assumed in 
all of our simulations). Such a design would ideally create a contrast floor of <10-12 (this does not include 
reflections/scattering from interference effects, which have not been computed). We assumed that we were using a 5 
layer mask, and because the predicted leakage term was far below our contrast requirement, we did not explicitly include 
it in our simulations.  

 



 
 

 
 

3.1 Representation of the VVC 

Breaking down the Jones matrix 
 
The action of the vector vortex coronagraph (VVC) on the input vectorial wavefront Wi is rigorously represented by the 
following Jones matrix product: 
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As stated in the white paper, a single polarization at a time will be analyzed, which simplifies the equation as follows: 
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In conclusion, the propagation through the VVC requires two main propagations, adding up incoherently: (1) the VVC 
term that will itself be broken down (see below) to represent the action of the opaque spot covering the central region of 
disorientation and (2) the leakage term. The chromatic leakage term L transmits a fraction of the incoming light without 
phase modification but with the amplitude modification induced by the opaque spot. 

 
Action of the VVC in the perfect case 
 
For a perfect VVC case (circular filled uniform pupil without aberration), the field in the pupil after the vortex focal 
plane mask is: 
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The action of the vortex on a perfect field Eperf at focus corresponds to a Hankel transform (HT[]) of the lth order of the 
Bessel J1 function. This transform has analytical solutions, known as the Weber-Schafheitlin integral, which reduces to 
the Sonine integral in the l=2 case15. The final rigorous analytical result of these integral solutions is that the energy 
inside the pupil downstream from the vortex is 0 for non-zero, even values of the topological charge l. 

 
Superposition principle applied to the VVC 
 
Now in the real world, nothing is perfect, and both the wavefront and the VVC are affected by systematic errors. The 
superposition principle allows rigorous decomposition of these errors linearly. The aberrated system field at the vortex 
plane, E, can be decomposed into the sum of a perfect field, Eperf , and an aberrated one, Eab:  



 
 

 
 

 
E = Eperf + Eab. 

 
Both of which correspond to the Fourier transform of a perfect wavefront at a pupil and the aberrated one:  

 
W = Wperf + Wab. 

 
The action of a real world VVCab (VVCperf + central opaque spot S) can be decomposed into the difference of a perfect 
VVCperf, whose mathematical properties with a perfect wavefront are well known (see here above), and a finite one 
limited to the spot area: 
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The superposition principle allows us to break down the action of an imperfect vortex on an imperfect wavefront, as 
follows 
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Evaluation of the first term 
 
The first term, bearing a large fraction of the incoming beam energy (in the high Strehl ratio regime), cancels out inside 
the pupil geometric area (cf. the mathematical demonstration in the perfect case), which allows us to avoid computing it 
uselessly and be confronted to the well-know aliasing error of the vortex coronagraph representation at the very center 
(where most of the energy is). Outside of the pupil the light is masked by the Lyot stop. 

For this term, the efficient method simply consists of considering this term as being 0. The reference method is analytical 
and gives 0 as well. The match is therefore perfect, by definition. 

Our representation of the vortex boils down to propagating differential terms (2, 3, & 4) only, using the perfect vortex 
solution for the dominant (1st) one. However, leaving out this main term, which carries most of the energy, does not 
capture the effect of downstream aberrations. Therefore, to represent the low-level interactions between the 1st vortex 
term  and errors on the OAP between the mask and the Lyot stop, one must carry out the propagation of the “vortexified 
field” (Eperf × VVCperf) from the mask, through the relay optic, and on to the Lyot stop. 

The numerical representation of the vortex mask is generated by computing a phase ramp on a grid 5× larger on each 
side than the wavefront array (e.g., a 10K × 10K array for a 2K × 2K grid). This subsampled grid is then block averaged 
(real and imaginary parts separately) down to the default sampling. This method produces a good, but not perfect, 
representation of the vortex mask.  When it is multiplied by the perfect field at focus and propagated to a pupil, aliasing 
and Fourier transform artifacts introduce energy inside the pupil interior, when it should be zero. 

To avoid these numerical aliasing problems specific to the 1st term (and affecting low spatial frequencies), one can 
propagate the Eperf × VVCperf field to the Lyot stop, zero-out the pupil interior, and then propagate back to the focal plane, 
using the result for future propagations. Because Fresnel algorithms are used, the field at the focus has a phase term 
introduced by the focusing optic, so a simple Fourier transform cannot be used to go back and forth between the focal 
and pupil planes. Instead, one must do a full propagation from focus to the collimator, apply a positive lens, propagate to 
the Lyot stop and zero out the interior, then propagate backwards to the collimator, apply a negative lens, and then back 
to focus. This only has to be done once per wavelength and the result stored, since the 1st term does not change. 

Generally speaking an optical system could be designed in such a way that the number of relay optics is reduced to the 
only required OAP. This optic would be sufficiently far from the mask, hence close enough to the pupil so that the dark 



 
 

 
 

hole is nearly fully formed, making the effect of surface errors nearly irrelevant after filtering by the Lyot stop. A non-
telecentric system could also be constructed so that the pupil is formed after the focal plane mask without any 
intervening optics. 

Evaluation of the second term 

The second term can be propagated using the conventional FFT-based technqiues, aliasing (sampling artifacts) errors 
being negligible where the aberrations are (further away from the center of the vortex).  

Evaluation of the third and fourth term 
 
The third term can be very accurately represented using partial Fourier transforms, e.g. the matrix Fourier transform16 
(MFT); we only need to evaluate the effect of the mask in a very limited area (the small spot that covers alignment errors 
at the center of the vortex mask).  This computation can be done once per wavelength, and stored for subsequent use. 
The perfect field at focus is Fourier transformed to a virtual pupil plane, then it is transformed back to focus using the 
MFT to create a very highly sampled field only within the region of the spot. This is multiplied by the vortex phase ramp 
and then transformed back to the virtual pupil using another MFT. The result is then Fourier transformed back to focus 
with the original field sampling and stored for subsequent use. We have verified that the spot, given its small size 
(diameter = 0.5 λ/D) has no influence on the aberrated field (verified down to about 10-19 for a 10-10 nominal contrast), so 
the fourth term can be neglected.  

3.2 VVC Milestone 1 results 

There is no known analytical method for the propagation of an aberrated field through a vector vortex to serve as a 
reference algorithm to determine the accuracy of the methods used here. Instead, to estimate the accuracy we ran 
separate simulations using different array sizes (4096 × 4096 & 2048 × 2048) and corresponding beam/grid diameter 
ratios (0.0625 & 0.125, respectively; the pupil size is 256 pixels across in each case). The VVC chosen for these 
simulations had a central opaque spot 0.5 λ/D in diameter. We used the phase map defined earlier to provide a contrast 
floor of 10-5 (low contrast case) and 10-10 (high contrast case). 

The accuracy of the 2K grid computations, compared to those using 4K grids, was 7.2×10-12 for the 10-5 contrast field 
(~0% error) and 2.6 × 10-15 for the 10-10 contrast field (also ~0% error). Because the accuracies derived from the array 
size comparison were better than those established for PROPER, we used the PROPER accuracies (0.6%) as the 
Milestone #1 metric for the VVC.  Figures 11 and 12 show the computed images and differences for the 10-10 contrast 
fields. The DM matrix test took 15.7 hours, so the efficient VVC propagation algorithms met the Milestone #1 efficiency 
and accuracy requirements. 

                                 4K × 4K                            2K × 2K 

 
Figure 11. Monochromatic (550 nm) contrast maps for VVC Milestone 1 simulation runs (8.8 × 10-11 mean contrast) using 
4K × 4K arrays (left) and 2K × 2K arrays (right). The contrast evaluation region of r = 2.5 - 18 λ/D is marked with circles. 
The colorbar indicates log10(contrast) and ranges from 10-12 up to 10-8. 

 



 
 

 
 

 

 

 
 

 

 

Figure 12.  Difference between the  4K × 4K and 2K × 2K electric 
fields, displayed as contrast. The contrast evaluation region of r = 
2.5 - 18 λ/D is marked with circles. The colorbar indicates 
log10(contrast) and ranges from 10-17 up to 10-12 (different from 
contrast maps above). The asymmetry in this residual map is due to 
the action of the opaque spot, which injects diffracted starlight 
enhancing the anti-symmetric cross-terms in the vortex. 

 

3.3 VVC Milestone 2 results 

We ran EFC on the VVC system using an empirically optimized DM response matrix regularization of 0.5 × 10-5 with a 
uniform weighting of 1.0 over r = 0.9 – 18 λc/D and 0.2 for r < 0.9 λc/D. After 25 iterations of EFC we reached mean 
contrasts of 6.0 × 10-12 over r = 2.5 – 18 λc/D (easily meeting the Milestone #2 requirement) and 1.5 × 10-11 over r = 2.5 
– 3.5 λc/D (Figure 13). Unlike the HBLC, the contrast is best at the central wavelength (Figure 14). This difference is 
likely due to the representation of the mask being wavelength independent (excluding the fact that the central spot does 
not scale with wavelength). If a more realistic representation of the VVC mask were to be used (i.e., one including 
interference effects between coating layers), then the wavelength dependence would likely differ.  

 

 

 

 

 

 

 

Figure 13. Final broadband contrast over the field 
achieved using the VVC. Log10(contrast) is shown on the 
color scale. The mean contrast in the dark hole region is 
6.0 × 10-12.  It is possible that if coating-dependent thin-
film effects, including interference, were included, there 
would be a greater, non-uniform level of residuals, like 
those seen for the HBLC or PIAA.  
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Figure 14.  Final VVC broadband contrast decomposed into monochromatic contrasts over the field. Log10(contrast) is 
shown on the color scale (note that the contrast range is different here than for the other contrast maps in order to emphasize 
the variations with wavelength).  The inscribed circles mark the r = 2.5 and 18 λ/D boundaries of the contrast measurement 
region.  At the central wavelength (550 nm), the mean contrast is 1.8 × 10-12 over the dark hole. 

 

 

3.4 Future VVC work 

Our results here show that there are no show-stoppers in the fundamental VVC design that would prevent reaching 10-10 
contrast. However, the system used here was essentially perfect, with no errors in the vortex mask and no wavelength-
dependent phase and amplitude dispersions introduced by the coatings. More work is needed to implement such errors, 
though they would likely be heavily dependent on particular fabrication methods.  So far, the VVC has not been 
developed as much as HBLC or PIAA, and it requires more time to mature. 

During our experiments, we concluded that for the particular VVC propagation technique we used (specifically, 
propagating the effect of the occulting spot) to be accurate, it was necessary to not have any optics between the focal 
plane mask and the subsequent collimating mirror. This prevents light near the center of the beam from being scattered 
by surfaces before the vortex has had a chance to form and clear out the center. 

4. CONCLUSIONS 
We have shown that the HBLC and VVC systems can be efficiently and accurately represented in 
terms of wavefront propagation. Both systems are fundamentally capable of achieving 10-10 mean 
contrast in a realistically aberrated system. We note that implementation of the VVC in our study 
avoided polarization effects by assuming a single polarization channel. Also, we assumed a 5 layer 
design that theoretically provides better than 10-10 control of chromatic leakage. 
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