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@ President of the United States has set a challenge of humans to
Mars orbit by 2030s

@ One possible scenario is humans to Mars orbit by 2033 followed
by a landing in 2038

€ That would leave 25 years from IPPW 10 to a human landing on
Mars

€ Key events on the road to a human landing
* |dentification of a baseline EDL architecture to land humans safely
* Development of the key EDL technologies to execute the architecture
* Precursor missions to demonstrate developed EDL technologies

€ NASA has mandated all robotic Mars missions shall contribute
toward a human Mars mission

€ Arrived at the point where future robotic science mission planning
merges with human precursor mission planning
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NASA’s Mars Design Reference
Architecture 5
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NASA EDL-SA Architectures JPL TeamX HIAD Concept
€ Element Masses

* 80 to 100 ton entry mass

* 40 ton landed payload

€ EDL Sequence of Events
* Entry from Mars orbit at 4.8 km/s 23 m Diameter

« Hypersonic and supersonic flight with aeromaneuvering
for precision landing

* Transition event from supersonic flight to powered
descent under rocket power at about Mach 2 to Mach 3

Supersonic Hypersonic  Aerocapture

w' w' * Maneuvering for precision landing followed by soft
il il touchdown = -
<
] w' w'
g i
10 x 30 m Mid L/D Aeroshell NASA Habitat Lander Concept NASA Cargo Lander Concept
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Entry, Descent and Landing Systems ‘

NASA Office of the Chief Technologist
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€ Thermal Protection Systems
* Dual-pulse capable TPS

* Flexible TPS for inflatables
- Stowable & capable of 20-150 W/cm?

@ Inflatable Decelerators
* HIAD for hypersonic deceleration

- Guidance & control method challenges HIAD Entry at Mars
- Flexible structure leading to potential for fluid/structure interaction

e SIAD to augment supersonic deceleration
- Augment separation events

SIAD Rocket Sled Test
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9 Supersonic Retro-Propulsion (SRP)
* Forces and torgques from start up transients are
a concern S
 Structural dynamics induced in engine structure
also a concern
@ Deep Throttle Descent Engines e
* Deep throttle engines required to allow both S
high thrust deceleration and low thrust soft
touchdown SRP Fluid Structure

@ Plume-Soil Interaction / Site Alteration

* Potential of high thrust engines to significantly
excavate surface

MSL Plume Site Excavation
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@ Future Mars Sample Return is generally
viewed as having the potential to exercise
many of the mission elements needed for a
human mission

* Mars EDL

* Mars Ascent
* Potentially Mars in-situ resource utilization
Mars Sample Return

€ Mars Sub-Scale Precursor Mission Concepts Conceptual Design

e D 8 SMD study

) Traded th ree Opt|ons “Expendable Heawvy”™ “Expendable Heavy”™  Partial SLS/SLS Dedicated
(e.g. Delta-1VH) (eg- Falcon-H) Co-manifest S1S
- 1:10 scaling (Delta-IVH) .g .; e
. 3 o o .
- 1:5 scaling (Falcon H) > > °
- =
- 1:4 scaling (Dedicated SLS BIE
! |
* Larger missions better =
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Precursor Missions Concepts — EDL Risk
Reduction
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@ A significant increase in landed mass capability over the next 25
years is required for NASA’s current human mission architecture

Mars
Projection
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@ If we are truly planning to land humans on Mars in 25 years, robotic
Mars landers must be the precursor missions

e Current NASA budget profile allows for only one path of technology development
e Continue the current science driven missions and combine with human mission
technology development objectives
@ If we are to build off our current capability, the first human Mars
landers must be reasonable in size

* There are not enough flight opportunities in the next 25 to robustly develop and

demonstrate the massive systems envisioned by the current NASA reference
architecture

* Additionally, human Mars landers must have a clear evolutionary path from today’s
EDL systems

- Favors blunt body style human mission entry systems

Any viable strategy should be developed in the context of the international

space community
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