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Abstract: We review resource-efficien y metrics for transferring classical information with
photons, present an overview of the ultimate limits to photon and dimensional efficien y permitted
by quantum mechanics, as well as that achieved with structured transmitter-receiver pairs.

The ultimate limits of resource-efficien photonic communication is dictated not only by the efficien y of the mod-
ulation, coding and decoding schemes, but also by the optical states into which the information is encoded and the
measurement performed at the receiver. Photonic communication links almost universally adhere to the following ar-
chitecture: at the transmitter the message bits are encoded into a symbol string with structured redundancy to allow
error correction at the receiver. The encoded bits are then modulated onto optical states (photons). The photons propa-
gate through the physical medium and map to a set of corresponding states at the receiver. A measurement is performed
at the receiver—possibly collectively over multiple information symbols—the outcomes of which are processed to es-
timate the transmitted message. The aforementioned communication task consumes resources in two fundamental
classes: (1) energy (i.e., photons) must be available to the transmitter as the physical information carrier; and (2) the
signaling constellation must map to a subset of photonic degrees of freedom (i.¢., spatial, temporal, polarization, and
wavelength modes of light). Consequently, the photon information efficien y (PIE) c ,, is given by

cp=CJ/E (bits per photon), (1)

where C is the capacity of the link in bits per channel use and E is the average photon number utilized per channel use.
The dimensional information efficien y (DIE) ¢4, on the other hand, is given by

ca=C/D (bits per dimension), 2)

where D is the number of signal dimensions utilized per use of the channel. Suppose we consider L-meter paraxial
propagation with the transmitter and receiver having aperture areas 4 7 and A respectively. In addition, let us assume
T'-second symbol durations, and nonoverlapping modulation bandwidths B around N center wavelengths, denoted by
Ai. Finally, assuming independent modulation of the two polarizations, the maximum number of dimensions is [1]

D =2xBT x
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Here, the factor 2 is due to the two polarization states, BT is the time-bandwidth product, and each term in the sum
is the area-bandwidth product in transverse space. Therefore, D is fundamentally represents the dimension of the
subspace spanned by all waveforms that can be generated within the temporal, spatial, polarization and wavelength
constraints specifie by the link parameters.

We now turn our attention to the achievable (¢ ,,cy) pairs in the pure loss channel, with various modulation and
measurement pairs, as shown in Fig. 1(a). The ultimate quantum limit to resource efficien y is given by the outermost
gold curve, and is approached only by optimal selection of all building blocks discussed in the previous paragraph.
Several important conclusions are derived from this curve. First, there is an inherent fundamental tradeoff between the
best possible PIE and DIE, i.e., improving PIE will come at the expense of reduced DIE and vice versa. Second, there
is no brick-wall maximum to either PIE or DIE. However, high values of PIE or DIE results in exponential penalty for
the alternative variable, e.g., when ¢, > 1 we have ¢; ~ ec,2™ 7 [1].

While the ultimate limits show that unbounded PIE is achievable, structured systems may not have brick-wall
asymptotes. In particular, Fig. 1(a) shows that heterodyne and homodyne receivers coupled with ideal coherent-state
modulation both hit a ¢, asymptote at 1.44 bits/photon and 2.89 bits/photon respectively. This is due to the signal-
independent and additive nature of the fundamental quantum noise resulting from measuring either a single quadrature
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Fig. 1. Photon versus dimensional information efficien y tradeoffs for (a) the noiseless (pure-loss)
channel; and (b) thermal-noise channel with n;, > 0.

(homodyne) or both quadratures (heterodyne) of a fiel mode in a coherent state. On the other hand, in the ¢ ;> 1
regime heterodyne detection and coherent-state modulation approaches the Holevo bound, confirmin its optimality
in dimensionally-constrained links operating with an abundance of photons (e.g., fibe optic communications). Using
homodyne detection results in a factor-of-1/2 worse ¢ 4 due to the fact they measure a single quadrature of the field

On-off keyed coherent-state modulation coupled with a photon-counting detector (OOK-PC) asymptotically ap-
proaches the Holevo bound in photon efficien y when ¢ , > 1. This is achieved by having a low-duty-cycle modulation,
resulting in high peak-to-average photon-flu ratio. While not shown in the figure the same asymptotic performance
is attained by a more convenient implementation to OOK-PC, namely pulse-position modulation paired with photon-
counting (PPM-PC) [1]. Unfortunately, the DIE of OOK-PC is ¢, =~ (2log, e/e)2~r, which is suboptimal to the
Holevo bound by a factor proportional to ¢ ,. This observation has spurred interest in recent years to fin communi-
cation systems that have the same asymptotic scaling as the Holevo bound [2,3]. OOK-PC and PPM-PC have c 4 < 1
because they are binary modulations, and the best (c ,c,) tradeoff achievable with higher-order intensity modulation
and photon-counting (IM-PC) has long been an open problem. Tight bounds derived in the ¢ ;> 1 limit have shown
that IM-PC systems achieve ¢, that is approximately a factor 0.33 worse than that of heterodyne detection, and a factor
0.66 worse than that of homodyne detection.

Whereas unbounded PIE is achievable in pure-loss channels, this is no longer true when noise is present. In high-
sensitivity optical systems this noise can be a result of photodetector dark current, signal independent background
radiation generated in the propagation medium, or signal-dependent unwanted excess radiation (e.g., finit extinction
of laser source). While the noise statistics for each category varies [4], all of them result in effective asymptotes to
the achievable PIE. In particular, Fig. 1(b) shows an example when an average of n , = 0.01 background photons are
in a thermal state. The (conjectured) Holevo bound in this case yields a brick-wall PIE asymptote of /og»(1+ 1/n,).
Homodyne and heterodyne detection with coherent-state modulation hit the asymptotes 1/(n,+1/2) and 1/(n,+ 1)
respectively. OOK-PC and PPM-PC systems (with a Poisson approximation to the noise statistics) have ¢ ~ e 7,
yielding an effective bound to PIE when ¢, > 1.

To summarize, we have provided a brief review of the ultimate resource efficien y limits of photonic communi-
cations. We have define energy and signal dimensionality as two important resource classes and we have briefl
reviewed the high PIE and high DIE asymptotes for pure-loss systems, as well as systems with background noise.
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