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Abstract - Second Chance (SECC) was a bare bones 
version of Mars Science Laboratory’s (MSL) Entry 
Descent & Landing (EDL) flight software that ran on 
Curiosity’s backup computer, which could have taken over 
swiftly in the event of a reset of Curiosity’s prime 
computer, in order to land her safely on Mars.  Without 
SECC, a reset of Curiosity’s prime computer would have 
lead to catastrophic mission failure.  Even though a reset 
of the prime computer never occurred, SECC had the 
important responsibility as EDL’s guardian angel, and this 
responsibility would not have seen such success without 
unparalleled systems engineering.  This paper will focus 
on the systems engineering behind SECC: Covering a brief 
overview of SECC’s design, the intense schedule to use 
SECC as a backup system, the verification and validation 
of the system’s “Do No Harm” mandate, the system’s 
overall functional performance, and finally, its use on the 
fateful day of August 5th, 2012. 
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1 Introduction 
 On a basic level, Second Chance (SECC) is a version 

of MSL’s Entry Descent and Landing (EDL) flight software 
that ran on the back-up flight computer. It was specifically 
designed so that it could have taken over and landed MSL 
safely on the surface of Mars in the event of a reset on the 
prime computer.  This afforded an opportunity to partially 
mitigate the risk of a reset of the prime computer due to 
flight software or due to a non-common mode hardware 
reset induced during EDL.  Without SECC, a reset of this 
nature would have ultimately been mission catastrophic.  
The existing MSL avionics and flight software provided the 
necessary infrastructure and foundation for a dual string 
EDL.  Thus, the EDL team embarked on designing, 
verifying, validating, and uplinking on an accelerated 
schedule, installing SECC onboard MSL 24 hours before 
EDL was to begin.  This paper will provide a very brief 
overview of SECC’s design, along with an overview of 
MSL’s rover compute element (RCE) for context, and then 
delve into the overall verification and validation (VnV) 
strategy of SECC. This includes Functional & Performance 
VnV along with “Do No Harm” VnV, SECC uplink, and 

SECC’s final execution on the fateful day of August 5th, 
2012.  
 
1.1 SECC Design and Implementation 

Overview 
As mentioned earlier, SECC is an extension of EDL 

flight software that is stripped down to the core essentials 
crucial for delivering the rover safely to the surface.  For 
reference the EDL flight software image size was 
approximately 20MB, while the SECC image size was half 
that, or approximately 10MB.   SECC runs on the backup 
computer and constantly tracks the state of EDL flight 
software running on the prime computer, propagating 
attitude and position knowledge.  By gathering all the 
necessary data from the prime computer and bus monitor 
data streams, a state estimate is continuously made by 
SECC.  This state estimate is then fed to a navigation filter, 
which allows SECC to be constantly shadowing the prime 
computer.  In the event of a prime computer reset, SECC 
can quickly place the backup computer in control of EDL 
within a fraction of a second.  Prior to executing EDL, all 
vital flight software and hardware states are configured to 
their last known or desired states at the time of reset.  This 
transition of control to the backup computer is absolutely 
crucial, as not only all the proper hardware and software 
states must be configured properly and executed seamlessly, 
but this transition of control must be achieved rapidly 
enough so that the harsh physics of EDL do not become 
insurmountable to the vehicle.  In other words, SECC had to 
be designed to limit the control outage so that the spacecraft 
could recover quickly enough to continue with EDL. SECC 
must provide coverage throughout all of EDL’s perilous 
states, as shown in Figure 1.  
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Figure 1. SECC’s coverage extended through the entire 
EDL timeline providing protection from a prime computer 

reset.  

Below is a simplified architecture diagram depicting 
the interfaces between MSL’s dual rover compute elements 
(RCE) and MSL’s myriad other essential avionics found on 
the rover stage, descent stage, and cruise stage.  SECC had 
to passively run on the backup RCE (labeled as RCE-B) 
inflicting no interference on the prime string until there was 
a reset on the prime RCE (labeled as RCE-A).  

 

Figure 2. Simplistic diagram of MSL’s avionics architecture 

1.2 Rover Compute Element Overview 
The Rover Compute Element (RCE) boxes perform 

the Command and Data Handling (CD&H) function for the 
entire spacecraft. As previously mentioned, there are two 
RCEs, that each act as a separate, redundant string. There is 
a primary RCE performing all the functions necessary for 
the entire spacecraft (cruise, descent, and rover stages), and 
a backup RCE, whose function depends on the software 
running on it, but has no control of the spacecraft. Each 
RCE contains a BAE RAD750 flight computer, along with 
custom JPL built boards to handle all the input and output 

(I/O) to every part of the spacecraft and its sensors and 
instruments. This includes radios, radar, power switch 
modules, inertial measurement units (IMU), sun sensor, star 
tracker, scientific instruments, timekeeping, etc. The RCE 
also is the controller of the spacecraft communications 
buses.  The power switches to control the power for each 
RCE is located in a separate avionics box, which has 
rudimentary software that is able to autonomously power 
cycle or swap RCEs as needed in the event of a fault. 

The main spacecraft flight software always runs on the 
primary RCE and is in full control of the spacecraft. The 
backup RCE is capable of three modes of operation. The 
first mode is a method of cold spare, in which the regular 
flight software runs on the backup computer, and only 
performs limited telemetry collections. If an RCE swap is 
needed, there can be a control outage of up to two minutes. 
The second mode is a second method of cold spare, in 
which the backup RCE is completely off. In this case, the 
backup RCE would be autonomously powered on and then 
swapped to. This would result in a maximum control outage 
of three minutes. The third mode of operation of the backup 
RCE is as a hot spare, which is when SECC runs on it. In 
this mode, the backup RCE follows the primary RCE, and is 
ready to take over spacecraft control in less than a second.  

The RCEs are capable of self-arbitration of which 
computer is the primary and which is the backup. This is 
known as string arbitration, and each RCE essentially 
monitors the other. The primary string monitors the backup 
string, only to monitor the health of the backup string. The 
backup string monitors the primary string in order to 
determine if it should become the primary computer and 
assert control of the spacecraft. This is achieved through 
direct cross-string signals between the RCEs, along with 
software that uses these signals in order to determine which 
RCE should be in control. The cross-string signal names are 
Prime, Online, and Healthbeat. The 3 Prime signals go high 
on the one RCE that asserts itself primary, the Online 
signals go high on each RCE when software is successfully 
running on that RCE, and Healthbeat toggles every 125ms. 
Using these, software can effectively allow for only one 
RCE to assert control at any moment in time, and allows for 
an RCE to take over control as needed. 

 

Figure 3. Diagram of interconnects between each Rover 
Compute Element 

The ability for the backup RCE to assert control at any 
time was one of the most important aspects that had to be 
validated in the SECC software, to ensure that it only did so 



at the correct time, and did not interfere with a functioning 
primary computer. 
 
1.3 A Delicate System 

Leading up to pre-launch, the main EDL VnV 
campaign baselined the backup RCE to remain powered off 
during EDL.  In the beginning, this single string approach to 
EDL presented some advantages which included 
minimizing the chances of inadvertent interactions between 
the two RCEs during EDL, and more enticingly drastically 
reducing testing complexity.  However, as the advent of the 
Martian landing approached, it was realized upon 
reassessment that relying on only one RCE left the 
spacecraft vulnerable to a potential reset of the prime RCE 
during EDL.  A reset of the prime RCE was a fault case 
from which MSL could not recover.  Over time the need for 
SECC became more obvious.  The need for SECC was 
driven by MSL flight system’s daunting complexity, which 
made the system brittle when run in single-string mode. 
There were many pieces of hardware and software that 
needed to function correctly in order to have a successful 
EDL.   

One of the most complex parts of the system is the 
RCE, since any hiccup in the computer would result in the 
loss of the mission. Late RCE testing had caught some 
susceptibilities to noise on the power bus, which could 
result in the RCE resetting especially during pyrotechnic 
firings used in critical separation events.  All of the 
plausible cases were fixed, but there was enough remaining 
uneasiness on what may not have been caught lurking 
around the corner that made a suitable backup highly 
desirable. It was decided that the usage of the redundant 
RCE would add indispensible robustness to the system. 

 
2 Overall Verification and  

Validation Strategy 
The underlying challenge was to ensure SECC could 

be armed and allowed to take control, but at the same time 
not interfere with EDL. In other words, SECC had to 
functionally perform exactly like EDL, but only when 
required to do so.  If SECC was not needed, i.e. there was 
no reset on the prime string, SECC had to “Do No Harm” to 
the prime string and the rest of the flight system, while 
passively running on the backup string.  Since all previous 
EDL testing had occurred with the backup RCE off, 
including simulated EDL on the real flight spacecraft, the 
SECC verification and validation program provided unique 
challenges. It would never get to run on the real spacecraft 
until the real EDL, so it was necessary to prove that it was 
providing insurance, without increasing risk to a successful 
landing.  

Additionally, the work on SECC only began less than 
a year before landing. This meant that the normal 
verification and validation program that can take years to 

complete would not suffice. Thus, an extremely thorough 
VnV strategy was developed that ensured all aspects of the 
system were tested in the most robust manner. Not only was 
the functional and performance side tested but also the “Do 
No Harm” side.  Below is a diagram depicting the overall 
roadmap of the SECC VnV strategy.  The VnV strategy 
evolved into a dual pronged approach with an emphasis on 
the “Do No Harm” paradigm feeding into both prongs. This 
“Do No Harm” paradigm needed to permeate throughout 
the entire VnV process, as this was absolutely essential in 
driving and molding the VnV scope as a whole.  

 

Figure 4. SECC’s VnV strategy roadmap consisted of a dual 
pronged approach. 

One prong concentrated on developing the “Do No 
Harm” test scope through a separate means of an extremely 
detailed interference susceptibly analysis. The other prong 
concentrated on developing the SECC functional and 
performance test scope through a means of verification item 
analysis. The diagram visually depicts the dual pronged 
approach for SECC’s VnV strategy with both prongs 
merging downstream to create the entire VnV scope.   

Different input products and analysis flowed down 
through each prong creating a separate test scope, 
generating a prioritized verification item (VI) superset, 
finally breaking these down further into test cases on 
different testbed venues.  The interference susceptibility 
analysis prong produced 24 “Do No Harm” VIs while the 
verification item analysis prong produced 322 “Functional 
& Performance” VIs.   Among the superset of VIs, the “Do 
No Harm” VIs resulting from the analysis and flow down 
were prioritized the highest, as they were the most essential 
in verifying and validating.   

Figure 5 depicts the verification item burn-down as a 
function of schedule.  The burn-down of the “Do No Harm” 
(DNH) VIs were assigned the highest priority and are 
depicted in red, while the “Functional/Performance” VIs 
were completed subsequently and are depicted in blue.  All 
VIs needed to be burned down to embark on Certify for Use 
Testing to further justify SECCs use in flight.  This only 
allowed for 3 months of rigorous testing.  In the beginning, 
all focus was kept on the “Do No Harm” aspect until we felt 



completely comfortable and convinced proceeding with the 
burn-down of the “Functional/Performance” aspect. This 
meant that very close attention needed to be given so that 
we did not miss anything in the “Do No Harm” VnV scope, 
to ensure we did not misappropriate critical resources that 
were to be released to bolster the burn-down of the 
“Functional/Performance” aspect.  All testing needed to be 
complete before the Uplink Readiness milestone.  This 
burn-down occurred in parallel with various SECC builds, 
which would fix the issues found during the test campaign.  
This allowed the team to release new SECC builds 
strategically within the VnV timeline marked in the green 
diamonds below.  All builds needed to be regression tested 
as well to ensure that the correct changes were applied.   
This meant that the new builds injected within the SECC 
VnV timeline needed to have extra testing done to re-verify 
and re-validate all the test scope that had already been done 
previously. 

 

Figure 5. SECC’s verification item burn-down 
superimposed on a schedule with crucial milestones.   

2.1 Functional & Performance Verification 
and Validation 

From the total 322 “Functional/Performance” VIs, 
different test cases needed to be concocted to strain the 
system and verify that SECC would perform as designed.  If 
a reset were to occur, SECC had to land the vehicle safely 
on the Martian surface.  For SECC, the EDL success criteria 
were slightly relaxed to remove some of the built-in 
conservatism that was originally placed on the main EDL 
flight software.  If a reset occurred and SECC took over the 
vehicle, then we did not want to unnecessarily constrain 
SECC as much as the main EDL flight software as this 
would end up biasing our perception and lead us to falsely 
rate SECC’s true performance.  Some of the relaxed success 
criteria included slightly higher vertical and horizontal 
touchdown velocities, more than one but less than three 
touchdown events during the sky crane maneuver before 
flyaway, and slightly larger landing ellipse positional errors.   

An example of a test was to induce a reset on the 
prime string within the terminal descent radar data 

collection portion of the EDL timeline, and verify that 
SECC could land the vehicle safely.  A reset of the prime 
string occurring during this portion of the timeline was 
deemed one of the most plausible.  Though the test was was 
difficult to get right it was accurately shown that, SECC was 
passively monitoring the state of EDL up until the prime 
string reset.  At the time of the reset, SECC kick-started and 
took over the entire vehicle within a short 0.71 seconds, 
flawlessly putting the vehicle in a heading alignment slew as 
expected.  Had the control outage been larger the landing 
would not have been successful, as it would have failed 
most of the success criteria.  However, the 0.71s control 
outage was small enough to declare success, resulting in a 
landing that was a little farther downrange from the target 
but with better than expected touchdown velocities.  This 
was only one example, but during the full gamut of the 
testing, the team began developing more and more 
confidence with SECC’s performance.  Through this testing, 
it could be demonstrated that SECC was able to land the 
vehicle with a prime string reset at almost any point on the 
entire EDL timeline.   

 

Figure 6. A pie chart of SECC’s functional and performance 
VI areas.    

To give a sense of breadth of the VIs that were 
covered to ensure SECC was functioning as designed, the 
above pie chart details the breakdown all of SECC’s 
“Functional/Performance” VIs. The functional and 
performance VIs that needed to be verified ranged from 
pyro firings within the EDL timeline constraint area 
(highlighted light blue in the figure), all the way to SECC 
performance augmentation requirements found within the 
SECC requirements area (highlighted dark orange in the 
figure).   These VIs were all burnt down in time for Certify 
for Use testing.   
 
2.2 Do No Harm Verification and Validation 

In order to upload and enable the SECC software on 
the backup RCE, it was important to make sure that it never 
tried to assert control of the spacecraft when it wasn’t 
supposed to. If there were no faults during EDL, then SECC 
is never supposed to try to take over, which is what was 
called “Do No Harm.” Verification and validation of this 
requirement was top priority, since if SECC did not work at 



all, then at least MSL would not be any worse off than it 
was before. As previously mentioned, each RCE has a 
software module that controls if it is allowed to become the 
primary RCE and take control of the spacecraft.  This 
software module is called string arbitration (SARB). Most 
of this SARB software remained unchanged when imported 
for use with SECC, but due to the criticality of this piece of 
software, a full VnV program was warranted for it.  

In order to verify that SECC worked correctly in the 
nominal case and was never needed, the focus was put onto 
three main mission phases. First, when enabled on the 
backup computer during pre-Entry Descent and Landing 
operations (pre-EDL), it should have no effect on the 
operation of the spacecraft, and from the primary 
computer’s perspective, nothing on the flight system 
changed. The second phase of focus was during Entry and 
Descent. In this phase, again the primary computer should 
behave no differently if SECC was running or not, and if the 
backup computer was on or not. The last area of focus was 
Landing, in which SECC is supposed to self-remove itself 
and allow normal flight software to run on the backup 
computer which allowed the rover to safely phone home. 
All verification and validation was performed on a high 
fidelity testbed that included nearly identical copies of all of 
the hardware flying to Mars. The Verification and 
Validation of “Do No Harm” first focused on noise on the 
cross-string signals. These signals are triplicate voted in 
software, so if any single signal has a fault, software is 
supposed to vote the best two out of three. There are eight 
signals (three unique) that go in each direction between 
RCE, and every combination of single signal faults were 
tested to verify that the backup RCE running SECC never 
incorrectly tried to take over. Next, the focus was put on if 
the backup computer went belly-up during EDL, since all 
previous EDL testing had been done with the backup RCE 
off. During multiple simulated runs of pre-EDL an EDL, the 
backup RCE was purposefully reset over and over, which 
the primary computer is supposed to just ignore, aside from 
just printing a message. The last area that was tested was to 
make sure that SECC correctly removed itself from memory 
and left no trace once Curiosity landed successfully. This 
was done with memory readouts before and after simulated 
landings to verify that nothing had changed before and after 
SECC was run. 

As a result of the tight schedule in the implementation 
plan for SECC, it was important to streamline the 
verification and validation to allow for regression testing. 
There were a number of successive releases of the software 
as functionality was added and bugs were fixed. This 
required coming up with a limited regression test that was 
used between minor releases, which were separated by one 
to two weeks. This limited test could be completed in one 8-
hour shift on the hardware testbed. For release candidate 
builds, the entire “Do No Harm” verification could be 
completed in two to three 8-hour shifts. With the 
streamlined regression plan, it was possible to quickly turn 
around testing after a release in order to allow for the 

functional testing of SECC recovering EDL under various 
scenarios to continue. 

 
3 Uplink and Final Execution 

 

Figure 7. Flow diagram of running SECC on the flight 
spacecraft 

Before SECC could be uplinked to the spacecraft for 
use, SECC underwent an additional “Certify for Use” test 
campaign. After all the verification items were burned 
down, the “Certify for Use” campaign began with the final 
build of SECC.  This campaign involved targeted scenario 
testing which re-tested the most likely reset scenarios, 
performed a complete regression test campaign of the “Do 
No Harm” aspect of the VnV, and involved two flight-like 
operation readiness tests (ORTs).  In order to verify that 
SECC could be loaded onto the flight vehicle in a flight-like 
manner, the exact procedure that was to be used 24 hours 
before EDL was performed during these two ORTs. ORTs 
are special tests in which the MSL testbed is set up to match 
the flight vehicle as closely as possible.  The flight 
operations team then runs through EDL on the testbed as if 
it is the real vehicle.  All of the procedures and commands 
that would be sent in real life in the lead up to EDL, are sent 
here as well. This ensures that the ordering of the 
commands has no unexpected effect, and that the flight 
operations team can perform all the necessary tasks in the 
allotted time.  During these two ORTs, in which SECC was 
loaded, it was demonstrated that SECC could be installed 
and run on the flight vehicle with no issues.  

When the time came for the real EDL preparations, 
the SECC load went exactly as planned, with the results 
being no different from what was seen during the ORTs.  
The SECC software was uplinked about a month before 
landing. The uplink process first involved compressing the 
software image and then dividing into twenty-two small 
files. The files were then uplinked via the Deep Space 
Network (DSN) over the course of two days. Finally, once 
confirmation that all of the files were on board was 
received, the files were re-merged back together, the image 
was decompressed, and a checksum was performed. This 
SECC image then sat on the backup computer for the next 
month until it was time to install and activate it. 

About 24 hours before EDL, the SECC software was 
installed on the backup RCE, which involved three main 
steps. The first step was copying it into volatile RAM. 
Loading the SECC software image in volatile memory 
instead of non-volatile memory provided one major benefit: 
should the backup RCE lose power for any reason, regular 



flight software would then load on it when power is 
restored. This was part of the “Do No Harm” strategy. The 
second step was activating SECC by resetting the backup 
computer, which allowed it to boot into the SECC software 
image. Lastly, SECC was enabled via a ground command 
sent to the primary RCE, which gave the go-ahead to the 
backup computer to allow SECC to take over as needed in 
the event of a fault after forty minutes before entry (E-40). 

At E-40, the SECC software autonomously armed 
itself as designed, and all telemetry indicated that it was 
perfectly following the events initiated by the primary 
computer. Throughout entry, descent, and landing, the 
telemetry all indicated that the SECC was working and 
could have taken over spacecraft control at any time.  

Once the landing sequence completed, and the rover 
was safely on the ground, the SECC software successfully 
removed itself from memory and reset the backup RCE it 
was running on. Normal flight software then loaded on that 
RCE, and the remaining sequences to get ready for surface 
operations over the next few hours all worked nominally. 
The SECC software had fulfilled its goal of doing no harm, 
and EDL was successful.  Ultimately the insurance SECC 
yielded was priceless to the team.   Just knowing that there 
was a guardian angel waiting to take control in the event of 
a reset of the prime computer was an amazing feat for the 
MSL mission and the team.  

 
4 Conclusions 

SECC, from concept to execution, required precise 
and focused systems engineering. It required dealing with 
an extremely tight schedule, a limited team, the inability to 
test it on flight hardware before launch, and the requirement 
of not making the chances of a successful Entry, Descent, 
and Landing any lower. This posed unique challenges that 
were met with a unique plan of attack. 

The SECC design and implementation were planned 
around the restricted schedule from the beginning. Having 
the hard deadline of August 5th, 2012 provided all the 
motivation needed to get done on time. By focusing on the 
most brittle parts of the system, it was possible to gain a 
high amount of confidence in the design and testing. The 
two-pronged approach used for verification and validation 
was instrumental in identifying all the test cases required to 
feel confident in the system’s ability to perform. Lastly, 
focusing on the “Do No Harm” set of verification items 
separately from the functional test cases, allowed for easy 
delineation in the test program, and for quick regression 
testing of new builds of the software. 

Although SECC was not utilized in the landing of the 
Curiosity rover, its development and testing allowed for the 
entire EDL team to gain a better understanding of how the 
flight system works during stressful conditions. The 
extensive testing of SECC did uncover a small amount of 
potential mission ending bugs in the mainline flight 
software running on the primary computer, which could be 
fixed before EDL. The primary computer did end up 

working flawlessly throughout the entire entry, descent, and 
landing sequence. The extra insurance SECC provided for a 
successful EDL, warranted all of the intense effort put it 
into it.  SECC ingeniously used all the redundancy built into 
the system and maximized the chances for landing.  SECC 
ended up setting precedence as the first “dual string” EDL 
system employed on a Mars mission.  All previous Mars 
missions had used a “single string” approach before MSL.  
In this light, SECC paved a new way of guaranteeing a 
successful landing on Mars.  And to this end, it will not be 
surprising to see the Jet Propulsion Laboratory use a very 
similar backup EDL system on all future Mars missions.  
SECC was designed and tested to truly give MSL a “second 
chance” at EDL, even though in the end it was not utilized.  
On August 5th, 2012, Curiosity’s successful landing was a 
tribute to the hard work of everyone who had worked on the 
project over the preceding 9 years. 
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