
The Unparalleled Systems Engineering of MSL’s Backup
Entry, Descent, and Landing System: Second Chance

Chris Roumeliotis Chris.Roumeliotis@jpl.nasa.gov1, Jonathan Grinblat jonathan.f.grinblat@jpl.nasa.gov1,
Glenn Reeves glenn.e.reeves@jpl.nasa.gov1

1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099

Abstract - Second Chance (SECC) was a bare bones
version of Mars Science Laboratory’s (MSL) Entry
Descent & Landing (EDL) flight software that ran on
Curiosity’s backup computer, which could have taken over
swiftly in the event of a reset of Curiosity’s prime
computer, in order to land her safely on Mars. Without
SECC, a reset of Curiosity’s prime computer would have
lead to catastrophic mission failure. Even though a reset
of the prime computer never occurred, SECC had the
important responsibility as EDL’s guardian angel, and this
responsibility would not have seen such success without
unparalleled systems engineering. This paper will focus
on the systems engineering behind SECC: Covering a brief
overview of SECC’s design, the intense schedule to use
SECC as a backup system, the verification and validation
of the system’s “Do No Harm” mandate, the system’s
overall functional performance, and finally, its use on the
fateful day of August 5th, 2012.

Keywords: Mars Science Laboratory (MSL); Entry
Descent and Landing (EDL); Second Chance (SECC);
Fault Protection.

1 Introduction
 On a basic level, Second Chance (SECC) is a version

of MSL’s Entry Descent and Landing (EDL) flight software
that ran on the back-up flight computer. It was specifically
designed so that it could have taken over and landed MSL
safely on the surface of Mars in the event of a reset on the
prime computer. This afforded an opportunity to partially
mitigate the risk of a reset of the prime computer due to
flight software or due to a non-common mode hardware
reset induced during EDL. Without SECC, a reset of this
nature would have ultimately been mission catastrophic.
The existing MSL avionics and flight software provided the
necessary infrastructure and foundation for a dual string
EDL. Thus, the EDL team embarked on designing,
verifying, validating, and uplinking on an accelerated
schedule, installing SECC onboard MSL 24 hours before
EDL was to begin. This paper will provide a very brief
overview of SECC’s design, along with an overview of
MSL’s rover compute element (RCE) for context, and then
delve into the overall verification and validation (VnV)
strategy of SECC. This includes Functional & Performance
VnV along with “Do No Harm” VnV, SECC uplink, and

SECC’s final execution on the fateful day of August 5th,
2012.

1.1 SECC Design and Implementation

Overview
As mentioned earlier, SECC is an extension of EDL

flight software that is stripped down to the core essentials
crucial for delivering the rover safely to the surface. For
reference the EDL flight software image size was
approximately 20MB, while the SECC image size was half
that, or approximately 10MB. SECC runs on the backup
computer and constantly tracks the state of EDL flight
software running on the prime computer, propagating
attitude and position knowledge. By gathering all the
necessary data from the prime computer and bus monitor
data streams, a state estimate is continuously made by
SECC. This state estimate is then fed to a navigation filter,
which allows SECC to be constantly shadowing the prime
computer. In the event of a prime computer reset, SECC
can quickly place the backup computer in control of EDL
within a fraction of a second. Prior to executing EDL, all
vital flight software and hardware states are configured to
their last known or desired states at the time of reset. This
transition of control to the backup computer is absolutely
crucial, as not only all the proper hardware and software
states must be configured properly and executed seamlessly,
but this transition of control must be achieved rapidly
enough so that the harsh physics of EDL do not become
insurmountable to the vehicle. In other words, SECC had to
be designed to limit the control outage so that the spacecraft
could recover quickly enough to continue with EDL. SECC
must provide coverage throughout all of EDL’s perilous
states, as shown in Figure 1.

© 2013 California Institute of Technology.
Government sponsorship acknowledged.

mailto:Chris.Roumeliotis@jpl.nasa.gov
mailto:jonathan.f.grinblat@jpl.nasa.gov1
mailto:glenn.e.reeves@jpl.nasa.gov

Figure 1. SECC’s coverage extended through the entire
EDL timeline providing protection from a prime computer

reset.

Below is a simplified architecture diagram depicting
the interfaces between MSL’s dual rover compute elements
(RCE) and MSL’s myriad other essential avionics found on
the rover stage, descent stage, and cruise stage. SECC had
to passively run on the backup RCE (labeled as RCE-B)
inflicting no interference on the prime string until there was
a reset on the prime RCE (labeled as RCE-A).

Figure 2. Simplistic diagram of MSL’s avionics architecture

1.2 Rover Compute Element Overview
The Rover Compute Element (RCE) boxes perform

the Command and Data Handling (CD&H) function for the
entire spacecraft. As previously mentioned, there are two
RCEs, that each act as a separate, redundant string. There is
a primary RCE performing all the functions necessary for
the entire spacecraft (cruise, descent, and rover stages), and
a backup RCE, whose function depends on the software
running on it, but has no control of the spacecraft. Each
RCE contains a BAE RAD750 flight computer, along with
custom JPL built boards to handle all the input and output

(I/O) to every part of the spacecraft and its sensors and
instruments. This includes radios, radar, power switch
modules, inertial measurement units (IMU), sun sensor, star
tracker, scientific instruments, timekeeping, etc. The RCE
also is the controller of the spacecraft communications
buses. The power switches to control the power for each
RCE is located in a separate avionics box, which has
rudimentary software that is able to autonomously power
cycle or swap RCEs as needed in the event of a fault.

The main spacecraft flight software always runs on the
primary RCE and is in full control of the spacecraft. The
backup RCE is capable of three modes of operation. The
first mode is a method of cold spare, in which the regular
flight software runs on the backup computer, and only
performs limited telemetry collections. If an RCE swap is
needed, there can be a control outage of up to two minutes.
The second mode is a second method of cold spare, in
which the backup RCE is completely off. In this case, the
backup RCE would be autonomously powered on and then
swapped to. This would result in a maximum control outage
of three minutes. The third mode of operation of the backup
RCE is as a hot spare, which is when SECC runs on it. In
this mode, the backup RCE follows the primary RCE, and is
ready to take over spacecraft control in less than a second.

The RCEs are capable of self-arbitration of which
computer is the primary and which is the backup. This is
known as string arbitration, and each RCE essentially
monitors the other. The primary string monitors the backup
string, only to monitor the health of the backup string. The
backup string monitors the primary string in order to
determine if it should become the primary computer and
assert control of the spacecraft. This is achieved through
direct cross-string signals between the RCEs, along with
software that uses these signals in order to determine which
RCE should be in control. The cross-string signal names are
Prime, Online, and Healthbeat. The 3 Prime signals go high
on the one RCE that asserts itself primary, the Online
signals go high on each RCE when software is successfully
running on that RCE, and Healthbeat toggles every 125ms.
Using these, software can effectively allow for only one
RCE to assert control at any moment in time, and allows for
an RCE to take over control as needed.

Figure 3. Diagram of interconnects between each Rover
Compute Element

The ability for the backup RCE to assert control at any
time was one of the most important aspects that had to be
validated in the SECC software, to ensure that it only did so

at the correct time, and did not interfere with a functioning
primary computer.

1.3 A Delicate System

Leading up to pre-launch, the main EDL VnV
campaign baselined the backup RCE to remain powered off
during EDL. In the beginning, this single string approach to
EDL presented some advantages which included
minimizing the chances of inadvertent interactions between
the two RCEs during EDL, and more enticingly drastically
reducing testing complexity. However, as the advent of the
Martian landing approached, it was realized upon
reassessment that relying on only one RCE left the
spacecraft vulnerable to a potential reset of the prime RCE
during EDL. A reset of the prime RCE was a fault case
from which MSL could not recover. Over time the need for
SECC became more obvious. The need for SECC was
driven by MSL flight system’s daunting complexity, which
made the system brittle when run in single-string mode.
There were many pieces of hardware and software that
needed to function correctly in order to have a successful
EDL.

One of the most complex parts of the system is the
RCE, since any hiccup in the computer would result in the
loss of the mission. Late RCE testing had caught some
susceptibilities to noise on the power bus, which could
result in the RCE resetting especially during pyrotechnic
firings used in critical separation events. All of the
plausible cases were fixed, but there was enough remaining
uneasiness on what may not have been caught lurking
around the corner that made a suitable backup highly
desirable. It was decided that the usage of the redundant
RCE would add indispensible robustness to the system.

2 Overall Verification and

Validation Strategy
The underlying challenge was to ensure SECC could

be armed and allowed to take control, but at the same time
not interfere with EDL. In other words, SECC had to
functionally perform exactly like EDL, but only when
required to do so. If SECC was not needed, i.e. there was
no reset on the prime string, SECC had to “Do No Harm” to
the prime string and the rest of the flight system, while
passively running on the backup string. Since all previous
EDL testing had occurred with the backup RCE off,
including simulated EDL on the real flight spacecraft, the
SECC verification and validation program provided unique
challenges. It would never get to run on the real spacecraft
until the real EDL, so it was necessary to prove that it was
providing insurance, without increasing risk to a successful
landing.

Additionally, the work on SECC only began less than
a year before landing. This meant that the normal
verification and validation program that can take years to

complete would not suffice. Thus, an extremely thorough
VnV strategy was developed that ensured all aspects of the
system were tested in the most robust manner. Not only was
the functional and performance side tested but also the “Do
No Harm” side. Below is a diagram depicting the overall
roadmap of the SECC VnV strategy. The VnV strategy
evolved into a dual pronged approach with an emphasis on
the “Do No Harm” paradigm feeding into both prongs. This
“Do No Harm” paradigm needed to permeate throughout
the entire VnV process, as this was absolutely essential in
driving and molding the VnV scope as a whole.

Figure 4. SECC’s VnV strategy roadmap consisted of a dual
pronged approach.

One prong concentrated on developing the “Do No
Harm” test scope through a separate means of an extremely
detailed interference susceptibly analysis. The other prong
concentrated on developing the SECC functional and
performance test scope through a means of verification item
analysis. The diagram visually depicts the dual pronged
approach for SECC’s VnV strategy with both prongs
merging downstream to create the entire VnV scope.

Different input products and analysis flowed down
through each prong creating a separate test scope,
generating a prioritized verification item (VI) superset,
finally breaking these down further into test cases on
different testbed venues. The interference susceptibility
analysis prong produced 24 “Do No Harm” VIs while the
verification item analysis prong produced 322 “Functional
& Performance” VIs. Among the superset of VIs, the “Do
No Harm” VIs resulting from the analysis and flow down
were prioritized the highest, as they were the most essential
in verifying and validating.

Figure 5 depicts the verification item burn-down as a
function of schedule. The burn-down of the “Do No Harm”
(DNH) VIs were assigned the highest priority and are
depicted in red, while the “Functional/Performance” VIs
were completed subsequently and are depicted in blue. All
VIs needed to be burned down to embark on Certify for Use
Testing to further justify SECCs use in flight. This only
allowed for 3 months of rigorous testing. In the beginning,
all focus was kept on the “Do No Harm” aspect until we felt

completely comfortable and convinced proceeding with the
burn-down of the “Functional/Performance” aspect. This
meant that very close attention needed to be given so that
we did not miss anything in the “Do No Harm” VnV scope,
to ensure we did not misappropriate critical resources that
were to be released to bolster the burn-down of the
“Functional/Performance” aspect. All testing needed to be
complete before the Uplink Readiness milestone. This
burn-down occurred in parallel with various SECC builds,
which would fix the issues found during the test campaign.
This allowed the team to release new SECC builds
strategically within the VnV timeline marked in the green
diamonds below. All builds needed to be regression tested
as well to ensure that the correct changes were applied.
This meant that the new builds injected within the SECC
VnV timeline needed to have extra testing done to re-verify
and re-validate all the test scope that had already been done
previously.

Figure 5. SECC’s verification item burn-down
superimposed on a schedule with crucial milestones.

2.1 Functional & Performance Verification
and Validation

From the total 322 “Functional/Performance” VIs,
different test cases needed to be concocted to strain the
system and verify that SECC would perform as designed. If
a reset were to occur, SECC had to land the vehicle safely
on the Martian surface. For SECC, the EDL success criteria
were slightly relaxed to remove some of the built-in
conservatism that was originally placed on the main EDL
flight software. If a reset occurred and SECC took over the
vehicle, then we did not want to unnecessarily constrain
SECC as much as the main EDL flight software as this
would end up biasing our perception and lead us to falsely
rate SECC’s true performance. Some of the relaxed success
criteria included slightly higher vertical and horizontal
touchdown velocities, more than one but less than three
touchdown events during the sky crane maneuver before
flyaway, and slightly larger landing ellipse positional errors.

An example of a test was to induce a reset on the
prime string within the terminal descent radar data

collection portion of the EDL timeline, and verify that
SECC could land the vehicle safely. A reset of the prime
string occurring during this portion of the timeline was
deemed one of the most plausible. Though the test was was
difficult to get right it was accurately shown that, SECC was
passively monitoring the state of EDL up until the prime
string reset. At the time of the reset, SECC kick-started and
took over the entire vehicle within a short 0.71 seconds,
flawlessly putting the vehicle in a heading alignment slew as
expected. Had the control outage been larger the landing
would not have been successful, as it would have failed
most of the success criteria. However, the 0.71s control
outage was small enough to declare success, resulting in a
landing that was a little farther downrange from the target
but with better than expected touchdown velocities. This
was only one example, but during the full gamut of the
testing, the team began developing more and more
confidence with SECC’s performance. Through this testing,
it could be demonstrated that SECC was able to land the
vehicle with a prime string reset at almost any point on the
entire EDL timeline.

Figure 6. A pie chart of SECC’s functional and performance
VI areas.

To give a sense of breadth of the VIs that were
covered to ensure SECC was functioning as designed, the
above pie chart details the breakdown all of SECC’s
“Functional/Performance” VIs. The functional and
performance VIs that needed to be verified ranged from
pyro firings within the EDL timeline constraint area
(highlighted light blue in the figure), all the way to SECC
performance augmentation requirements found within the
SECC requirements area (highlighted dark orange in the
figure). These VIs were all burnt down in time for Certify
for Use testing.

2.2 Do No Harm Verification and Validation

In order to upload and enable the SECC software on
the backup RCE, it was important to make sure that it never
tried to assert control of the spacecraft when it wasn’t
supposed to. If there were no faults during EDL, then SECC
is never supposed to try to take over, which is what was
called “Do No Harm.” Verification and validation of this
requirement was top priority, since if SECC did not work at

all, then at least MSL would not be any worse off than it
was before. As previously mentioned, each RCE has a
software module that controls if it is allowed to become the
primary RCE and take control of the spacecraft. This
software module is called string arbitration (SARB). Most
of this SARB software remained unchanged when imported
for use with SECC, but due to the criticality of this piece of
software, a full VnV program was warranted for it.

In order to verify that SECC worked correctly in the
nominal case and was never needed, the focus was put onto
three main mission phases. First, when enabled on the
backup computer during pre-Entry Descent and Landing
operations (pre-EDL), it should have no effect on the
operation of the spacecraft, and from the primary
computer’s perspective, nothing on the flight system
changed. The second phase of focus was during Entry and
Descent. In this phase, again the primary computer should
behave no differently if SECC was running or not, and if the
backup computer was on or not. The last area of focus was
Landing, in which SECC is supposed to self-remove itself
and allow normal flight software to run on the backup
computer which allowed the rover to safely phone home.
All verification and validation was performed on a high
fidelity testbed that included nearly identical copies of all of
the hardware flying to Mars. The Verification and
Validation of “Do No Harm” first focused on noise on the
cross-string signals. These signals are triplicate voted in
software, so if any single signal has a fault, software is
supposed to vote the best two out of three. There are eight
signals (three unique) that go in each direction between
RCE, and every combination of single signal faults were
tested to verify that the backup RCE running SECC never
incorrectly tried to take over. Next, the focus was put on if
the backup computer went belly-up during EDL, since all
previous EDL testing had been done with the backup RCE
off. During multiple simulated runs of pre-EDL an EDL, the
backup RCE was purposefully reset over and over, which
the primary computer is supposed to just ignore, aside from
just printing a message. The last area that was tested was to
make sure that SECC correctly removed itself from memory
and left no trace once Curiosity landed successfully. This
was done with memory readouts before and after simulated
landings to verify that nothing had changed before and after
SECC was run.

As a result of the tight schedule in the implementation
plan for SECC, it was important to streamline the
verification and validation to allow for regression testing.
There were a number of successive releases of the software
as functionality was added and bugs were fixed. This
required coming up with a limited regression test that was
used between minor releases, which were separated by one
to two weeks. This limited test could be completed in one 8-
hour shift on the hardware testbed. For release candidate
builds, the entire “Do No Harm” verification could be
completed in two to three 8-hour shifts. With the
streamlined regression plan, it was possible to quickly turn
around testing after a release in order to allow for the

functional testing of SECC recovering EDL under various
scenarios to continue.

3 Uplink and Final Execution

Figure 7. Flow diagram of running SECC on the flight
spacecraft

Before SECC could be uplinked to the spacecraft for
use, SECC underwent an additional “Certify for Use” test
campaign. After all the verification items were burned
down, the “Certify for Use” campaign began with the final
build of SECC. This campaign involved targeted scenario
testing which re-tested the most likely reset scenarios,
performed a complete regression test campaign of the “Do
No Harm” aspect of the VnV, and involved two flight-like
operation readiness tests (ORTs). In order to verify that
SECC could be loaded onto the flight vehicle in a flight-like
manner, the exact procedure that was to be used 24 hours
before EDL was performed during these two ORTs. ORTs
are special tests in which the MSL testbed is set up to match
the flight vehicle as closely as possible. The flight
operations team then runs through EDL on the testbed as if
it is the real vehicle. All of the procedures and commands
that would be sent in real life in the lead up to EDL, are sent
here as well. This ensures that the ordering of the
commands has no unexpected effect, and that the flight
operations team can perform all the necessary tasks in the
allotted time. During these two ORTs, in which SECC was
loaded, it was demonstrated that SECC could be installed
and run on the flight vehicle with no issues.

When the time came for the real EDL preparations,
the SECC load went exactly as planned, with the results
being no different from what was seen during the ORTs.
The SECC software was uplinked about a month before
landing. The uplink process first involved compressing the
software image and then dividing into twenty-two small
files. The files were then uplinked via the Deep Space
Network (DSN) over the course of two days. Finally, once
confirmation that all of the files were on board was
received, the files were re-merged back together, the image
was decompressed, and a checksum was performed. This
SECC image then sat on the backup computer for the next
month until it was time to install and activate it.

About 24 hours before EDL, the SECC software was
installed on the backup RCE, which involved three main
steps. The first step was copying it into volatile RAM.
Loading the SECC software image in volatile memory
instead of non-volatile memory provided one major benefit:
should the backup RCE lose power for any reason, regular

flight software would then load on it when power is
restored. This was part of the “Do No Harm” strategy. The
second step was activating SECC by resetting the backup
computer, which allowed it to boot into the SECC software
image. Lastly, SECC was enabled via a ground command
sent to the primary RCE, which gave the go-ahead to the
backup computer to allow SECC to take over as needed in
the event of a fault after forty minutes before entry (E-40).

At E-40, the SECC software autonomously armed
itself as designed, and all telemetry indicated that it was
perfectly following the events initiated by the primary
computer. Throughout entry, descent, and landing, the
telemetry all indicated that the SECC was working and
could have taken over spacecraft control at any time.

Once the landing sequence completed, and the rover
was safely on the ground, the SECC software successfully
removed itself from memory and reset the backup RCE it
was running on. Normal flight software then loaded on that
RCE, and the remaining sequences to get ready for surface
operations over the next few hours all worked nominally.
The SECC software had fulfilled its goal of doing no harm,
and EDL was successful. Ultimately the insurance SECC
yielded was priceless to the team. Just knowing that there
was a guardian angel waiting to take control in the event of
a reset of the prime computer was an amazing feat for the
MSL mission and the team.

4 Conclusions

SECC, from concept to execution, required precise
and focused systems engineering. It required dealing with
an extremely tight schedule, a limited team, the inability to
test it on flight hardware before launch, and the requirement
of not making the chances of a successful Entry, Descent,
and Landing any lower. This posed unique challenges that
were met with a unique plan of attack.

The SECC design and implementation were planned
around the restricted schedule from the beginning. Having
the hard deadline of August 5th, 2012 provided all the
motivation needed to get done on time. By focusing on the
most brittle parts of the system, it was possible to gain a
high amount of confidence in the design and testing. The
two-pronged approach used for verification and validation
was instrumental in identifying all the test cases required to
feel confident in the system’s ability to perform. Lastly,
focusing on the “Do No Harm” set of verification items
separately from the functional test cases, allowed for easy
delineation in the test program, and for quick regression
testing of new builds of the software.

Although SECC was not utilized in the landing of the
Curiosity rover, its development and testing allowed for the
entire EDL team to gain a better understanding of how the
flight system works during stressful conditions. The
extensive testing of SECC did uncover a small amount of
potential mission ending bugs in the mainline flight
software running on the primary computer, which could be
fixed before EDL. The primary computer did end up

working flawlessly throughout the entire entry, descent, and
landing sequence. The extra insurance SECC provided for a
successful EDL, warranted all of the intense effort put it
into it. SECC ingeniously used all the redundancy built into
the system and maximized the chances for landing. SECC
ended up setting precedence as the first “dual string” EDL
system employed on a Mars mission. All previous Mars
missions had used a “single string” approach before MSL.
In this light, SECC paved a new way of guaranteeing a
successful landing on Mars. And to this end, it will not be
surprising to see the Jet Propulsion Laboratory use a very
similar backup EDL system on all future Mars missions.
SECC was designed and tested to truly give MSL a “second
chance” at EDL, even though in the end it was not utilized.
On August 5th, 2012, Curiosity’s successful landing was a
tribute to the hard work of everyone who had worked on the
project over the preceding 9 years.

References

[1] R. Prakash, P.D. Burkhart, A. Chen, K. A. Comeaux,
C. S. Guernsey, D. M. Kipp, L. V. Lorenzoni, G. F.
Mendeck, R. W. Powell, T. P. Rivellini, A. M. San Martin,
S. W. Sell, A. D. Steltzner, D. W. Way, "Mars Science
Laboratory Entry, Descent, and Landing System
Overview," 2008 IEEE Aerospace Conference, pp. 1-18,
March 2008.

[2] R. P. Kornfeld, R. Prakash, A. Chen, A. S. Devereaux,
M. E. Greco, C. C. Harmon, D. M. Kipp, A. M. San Martin,
S. W. Sell, A. D. Steltzner, “Verification and Validation of
the Mars Science Laboratory/Curiosity Rover Entry
Descent and Landing System,” AAS/AIAA Flight
Mechanics Conference, pp. 1-30, February 2013.

Acknowledgements
This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

	The Unparalleled Systems Engineering of MSL’s Backup Entry, Descent, and Landing System: Second Chance
	Chris Roumeliotis 17TUChris.Roumeliotis@jpl.nasa.govU17TP1P, Jonathan Grinblat 17TUjonathan.f.grinblat@jpl.nasa.govUP1P17T,
	Glenn Reeves 17TUglenn.e.reeves@jpl.nasa.govU17TP1
	P1PJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099
	1 Introduction
	1.1 SECC Design and Implementation Overview
	1.2 Rover Compute Element Overview
	1.3 A Delicate System

	2 Overall Verification and
	Validation Strategy
	2.1 Functional & Performance Verification and Validation
	2.2 Do No Harm Verification and Validation

	3 Uplink and Final Execution
	4 Conclusions
	References
	Acknowledgements

