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• Lunar laser OCTL terminal (LLOT) 

• Architecture overview 

• Detector subassembly 

• Data capture and processing platform 

• Operation modes 

• Data processing algorithms 

• Test results 

• Monte-Carlo simulation 

• End-to-end laboratory testing 

Outline 
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Lunar Laser OCTL Terminal 
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• LLOT is a backup ground station for the Lunar Laser Communication 

Demonstration (LLCD). 
 16 day demonstration (August-October, 2013) 

 Link support at Sun-Earth-Probe (SEP) >10 

 Transmit laser beacon to assist link acquisition 

 Receive downlink at 39 Mbps @  code-word error rate < 1E-5 

 Transmit limited real-time channel and link diagnostics to operations center  

 Process downlink in non-real time to extract information 
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OCTL Telescope Assembly 

LLOT Receiver Overview 

Monitor and 

Control 

Assembly 

Detector 

subassembly 

Data capture 

and processing 
subassembly 

Receiver Assembly 

Concurrent processing 

channel estimator 

Post-processing receiver 

Sample 

and store 

Signal parameter 

estimates 

Decoded telemetry 

data 

Photodetector 

output waveform 

• LLOT employs software receiver architecture 
‒ Downlink signal is sampled and stored using COTS data acquisition system 

‒ Two software processing modes 

• Concurrent channel estimation: parameter estimates returned during pass 

• Post-processing receiver: after pass is completed, telemetry data is 

decoded 

‒ Architecture is transparent to detector options 
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LLOT Detector Subassembly 

• Desired photodetector characteristics 

– Operates in photon counting regime (2 - 30 photons/bit). 

– Supports >500 MHz  instantaneous photon count rates. 

– Detection efficiency >30% for data rates higher than 155 Mbps. 

– Active area > 50 μm. 

– Detector jitter < 200 ps. 

– Low excess and thermal noise. 

• Several technologies considered 

– Intensified photodiodes (IPD) 

– Photomultiplier tubes (PMT) 

– Avalanche photodiodes (APD)  

– Nanowire arrays 

Detector output model 

Intevac IPD 
Hamamatsu PMT 

Amplification 

Technologies 

DA-APD 
JPL WSi nanowire array 
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PX1500-2 digitizer cards 

RAID 

SCOPE SW 

Data Capture and Processing Subassembly 

• Signatec signal acquisition system 

– COTS PC server running two Intel Xeon processors 

– Two PX1500 digitizer cards 

– 24 TB RAID  

• One digitizer card sampling at ~1.25 GHz can support 
– 155 Mbps at 1 sample/slot 

– 39 Mbps at 4 samples/slot 

• RAID can store ~20 LLCD downlink passes (each pass ~15 minutes) 

2 Intel Xeon Processors 

Offers a total of 24 cores 

PX1500-2
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PCIe Bus

RAID CTRL 1

RAID CTRL 2

12 TB
24 DISKS
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24 Disks

Signatec Signal Acquisition System

Xenon 
Processor

Xenon 
Processor

Gigabit 
Ethernet

xeon xeon 

RAID 
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Post-Processing Receiver Mode 

Cost effective solution for providing backup capability for LLCD 

De-interleaver 
SC-PPM 

Decoder 

Sample  

decisions 
Slot 

statistics 

Log-likelihood 

ratios 

Block 

parameter 

estimator channel 

estimates 

Storage 

Monitor & 

Control 
Subassembly 

decoded 

telemetry 

data 

Frame 

alignment 

sequence  

correlator 

• Full receiver processing starts after entire pass has been recorded 

• Fixed sample clock - no frequency or phase adjustment 

• Entire recording and software processing system implemented on 
single COTS platform. 

Xeon processor 
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Concurrent Channel Estimation Mode 

Channel estimates increase confidence that recorded data is valid 

Detector 

assembly 
ADC 

Block 

parameter 

estimator 

1.25 GHz fixed 

sample clock 

Storage 

to files 

Monitor & 

control 

• Software operating on files during recording of downlink pass 

• Signal parameters are estimated periodically during track (1 Hz rate) 

• Valid frame flag  

• Slot frequency 

• Ks (signal counts per symbol), Kb (background counts per slot) 

• Indicates channel conditions and detection of LLCD signal format in 

recorded data 

• Channel estimation algorithms are identical to post-processing 

algorithms.  

Frame 

alignment 

sequence  

correlator 

estimates of valid 

frame flag, slot 

frequency, Ks, Kb 

File 

handling 

Xeon processor 
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• Demodulation and decoding must be performed in the presence of 

significant signal impairments. 

 

 

 

 

 

 

Data Processing Algorithms 

Overcame significant system impairments through algorithm development 
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Issue 
Algorithm 

Solution 

Bandlimited detector pulse with thermal noise 

• Samples must be converted to photon counts. 

Sample decision 

photon counting  

Detector pulse arrival time jitter (100-200 ps) 

• Signal intensity spread over multiple slots at high data rates 

• Inter-slot and inter-symbol interference 

Modified log-likelihood 

ratio 

Fixed sampling clock with low samples/slot 

• Samples are not synchronized to slot timing, splitting signal 

intensity across slots 

FAS block parameter 

estimation + 

Modified log-likelihood 

ratio  

Free-running downlink slot clock 

• Significant dynamics between downlink slot clock and 

receiver sample clock 

• Misalignment of samples with slots causes decoding failure 

FAS block parameter 

estimation 

FAS = frame alignment sequence 
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• Multi-level sample decision thresholding 

– Converts ADC samples into estimates of photon counts. 

– Approximates Poisson sample statistics.. 

– Memory parameter prevents overcounting of pulses. 

– Decision thresholds and memory adjusted for different detectors 

 

 

Data Processing Algorithms: 

Sample Decision Photon Counting 

Tslot 

ADC samples 
thresholds 

sample decisions 

1 0 

Tslot 

0 
1 
2 
3 

≷ 0 
1 

0 

Z-1 

ADC samples sample decisions 
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FAS FAS FAS FAS 

(1), Ks(1), Kb(1) 

Codeword Codeword Codeword 

(2), Ks(2), Kb(2) (L), Ks(L), Kb(L) 

• Sample decision counts must be correctly aligned with slots for demodulation.  

• Downlink clock dynamics result in time-varying slot phase offsets. 

• Frame alignment sequences allow periodic parameter estimation over linear phase 

intervals. 

 

 

 

 

 

 

• Linear fit to block of L estimates → single slot frequency and phase estimate over block. 

• Outlier pruning limits impact of spurious estimates. 

• Signal (Ks) and background (Kb) estimates also made over block. 

• Estimates are used in decoder log-likelihood ratio calculation. 

• Frame declared valid if number of non-outliers exceeds specfied threshold. 

Data Processing Algorithms: 

Open Loop Estimation and Slot Synchronization 
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• Interpolated log-likelihood ratio with detector jitter compensation 

– Log-likelihood ratio (LLR) used in decoding algorithm. 

– Pulse jitter spreads average signal intensity over multiple slots at 155 Mbps. 

– LLR modified to recover signal energy in adjacent slots. 

– Parameter estimates needed for modified LLR. 

𝑳𝑳𝑹 𝒊 =  𝒍𝒐𝒈 𝟏+ 𝒇(𝒊, 𝒋, 𝝐  , 𝝈𝒋)
𝑲 𝒔

𝑲 𝒃

𝒀𝒋 − 𝑲 𝒔

𝒊+𝟐

𝒋=𝒊−𝟐

 

 
 

– Recovers ~2 dB of loss due to timing error and 200 ps pulse jitter at 155 Mbps 

 

 

Modified LLR corrects slot timing offset and mitigates effect of jitter 

Data Processing Algorithms: 

Modified Log-likelihood Ratio 

average slot intensity, synchronized clock average slot intensity, asynchronous clock,  

detector rms jitter j 

Tslot 
Tslot 

offset  

function of slot offset, 

rms detector jitter 
estimates of mean signal and  

background photons per slot 
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Simulated Decoding Performance 

• Algorithms were validated via simulation under worst case conditions: 

 

 

 

 
 

• Simulation models coded signal, detector, clock dynamics, and data processing. 

• Receiver software tracks maximum clock offset and decodes codewords. 

Data rate Kb detector jitter frequency offset frequency drift integration time 

155 Mbps 0.04632 200 ps 350 kHz 250 Hz/s 3.2 ms 

39 Mbps 0.3072 200 ps 87.5 kHz 62.5 Hz/s 12.8 ms 
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    Codeword Error Rate at 39 Mbps      

~8.3 dB ~2.6 dB 
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Codeword Error Rate at 155 Mbps 

~3.2 dB ~4.6 dB 
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Simulated Channel Estimation: 155 Mbps 
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Kb estimate 

• Channel estimator tested on simulated bandlimited detector data at 155 Mbps with slot frequency 

offset  of 350 kHz, Kb = 0.046 background photons/slot 

• Frame detection 

probability 

• Empirical probability 

of high valid flag 

• Pd = 1 for CWE<1e-5 

• Pd → 0 as Ks → 0 

• Slot clock frequency 
estimate 

• Residual error ±0.15 
slots over estimation 

block in expected 
operating region 

• Ks, Kb estimates 

• Dependent on 
sample decision 

parameters 
• Will be degraded by 

blocking 
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Simulated Channel Estimation: 39 Mbps 
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• 39 Mbps, with 87.5 kHz slot frequency offset, Kb = 0.3 background photons/slot 

±0.12 slot 

residual error 
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End-to-End Laboratory Testing 

TX 

Emulator 

Modulator and 

Laser 

Photon 

counting 

detector 

Signatec 

Acquisition 

System 

LPF Amps 

Clock 

Source 
RX Clock 

~1.25 GHz 

• Conducted end-to-end optical testing with a 1550 nm detector 

‒ TX emulator plays encoded LLCD signals. 

‒ Detector output data recorded and processed with software receiver. 

‒ Background and slot clock frequency dynamics injected. 

• IPD initially baselined for detector subassembly 

‒ Failed prematurely and suffered from afterpulsing 

• PMT test device also unable to close link due to afterpulsing 

• 1064 nm IPD (no afterpulsing) tested to validate receiver software 

• Tungsten silicide (WSi) superconducting nanowire array testing in 

progress  

 

CW Laser 

(background) 
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1064 nm IPD Results 

• 1064 nm IPD tested to validate algorithms in optical channel 

• 39 Mbps test data 

– No incident background  

– Maximum expected slot clock dynamics 

• No codeword errors 

 

Data 

Rate 

(Mbps) 

Frequency (Hz) Estimated 

Frequency 

Offset (Hz) 

Estimated 

Ks 

Estimated 

Kb 
CWER E[I] 

Offset Drift 

39 

0 0 0.188 1.973 0.018 0 3.002 

-87.5k 0 -87.526k 1.952 0.019 0 3.041 

-87.5k 62.5 -87.526k 1.951 0.019 0 3.021 

87.5k 0 87.464k 1.959 0.019 0 3.066 

87.5k 62.5 87.464k 1.95 0.019 0 3.027 
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1550 nm WSi Array Results 

• 1550 nm WSi  7-pixel array tested at 39 Mbps  

– 1 K operating temperature 

– Aggregate 29% detection efficiency 

– Discriminators after each pixel to reject thermal noise, followed by analog 

combining 

– Nominal to worst case signal-to-background ratio 

– No clock dynamics 

• Low estimated photon counts due to blocking from detector reset time. 

• No codeword errors at nominal SBR 

• Additional testing in progress 

 

39 Mbps 

Test Case 

Expected 

Ks 

Expected 

Kb 

Estimated 

Ks 

Estimated 

Kb 
CWER E[I] 

No 

background 
3.93 0 1.467 0.006 0 3.399 

Nominal SBR 3.97 0.0135 1.404 0.011 0 4.518 

3 dB below 

nominal SBR 
3.94 0.0269 1.367 0.015 0 6.014 

Worst case 

SBR 
3.99 0.0385 1.35 0.018 0.019 9.307 
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Conclusions 

• Post-processing software receiver developed for Lunar Laser OCTL 

Terminal. 

• Algorithms developed to perform channel estimation and telemetry 

decoding with few samples per slot, in low signal photon flux 

conditions, with significant downlink clock dynamics. 

• Simulations and laboratory tests have validated algorithm 

performance. 

• Tungsten-silicide nanowire detector array closes link at 39 Mbps in 

laboratory with nominal signal-to-background conditions. 

Receiver functionality validated by simulations and electrical signal tests 
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The work described here was performed at the Jet Propulstion Laboratory, California Institute of 

Technology ,under contract with the National Aeronautics and Space Administration (NASA). 
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Backup 
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•  LLOT System Block Diagram 

OCTL Telescope 

Completed LLOT partitioning and staffing 

Functional Block Diagram 



Feb. 7, 2013 SPIE Photonics West 2013 

• Let the slot correlation statistic of the received slot counts 𝒀  against the 𝒋th shift of 

the SFAS slot sequence 𝒔  accumulated over 𝑳 SFAS periods be given by  

• Let the shift corresponding to the maximum correlation statistic be  

• Estimates of the channel parameters and timing offset are given by 

 

 

 

Data Processing Algorithms: 

Signal and Background Estimation 

L-block slot offset (from slope of 

linear least-squares fit to 𝜏 𝑖 ) 

L-block normalized frequency 

offset (from slope of linear 

least-squares fit to 𝜏 𝑖 ) 

time offset from start 

of subchannel i 

mean background 

photons per slot 

mean signal 

photons per pulse 

i 
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FADING ANALYSIS 

• Fading caused by atmospheric scintillation was analyzed at 155 Mbps (Moision) 

• Predicted performance losses due to scintillation and finite interleaver depth 

Scintillation 

index 

Coherence 

time  

Interleaver 

parameters 

Interleaver 

depth 

Fading 

loss 

Finite interleaver 

loss 

Total 

loss 

0.01 10 ms N=84, B=2070 0.74 s 0.02 dB 0.19 dB 0.21 dB 

• Stand-alone fading simulation shows ~0.2 dB loss  

relative to unfaded case 

• Tests planned to verify additive fading loss 

– Simulation  

• Subchannel interleaver/de-interleaver and fading 
simulation code written 

• Run time limited by computing resources 

– End-to-end fading test  

– Pointing-induced fading process not analyzed 

~0.2 dB 
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PARAMETER ESTIMATION 

ALGORITHM FLOWCHART 
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L sets of SFAS, 

MFAS correlator 

outputs 

Calculate L sets of 

estimates 

 𝝉𝒊,𝑲𝒔𝒊,𝑲𝒃𝒊 

For each 𝝉𝒊, calculate 

pairwise slopes with 

other 𝝉𝒊’s 

For each 𝝉𝒊,  
 

For each 𝝉𝒊, calculate 𝑵𝜸,𝒊 = 

number of pairwise slopes 

exceeding 𝜸𝒎𝒂𝒙 

Valid frame 

flag = 0 

Keep 

𝝉𝒊,𝑲𝒔𝒊,𝑲𝒃𝒊 

Calculate linear least-squares 

fit to set  of 𝝉𝒊’s 

Calculate 𝑵𝒑 = number of 

non-outlying points 

 𝑵𝒑 > 𝝁𝒑𝒕𝒔? 

New estimates  

Fslot = slope of line fit 

𝝉 = y-intercept of line fit 

𝑲𝒔 = mean of 𝑲𝒔𝒊’s 

𝑲𝒃 = mean of 𝑲𝒃𝒊’s 

 

Valid frame 

flag = 1 

Throw away 

𝝉𝒊,𝑲𝒔𝒊,𝑲𝒃𝒊 

Variable algorithm settings 

• L = number of FAS periods 
• 𝜸𝒎𝒂𝒙= maximum frequency 

offset threshold 

• 𝝁𝒐𝒖𝒕𝒍𝒊𝒆𝒓𝒔= maximum 
expected number of outliers 

• 𝝁𝒑𝒕𝒔= minimum number of 

points in valid estimate 

𝑵𝜸,𝒊 < 𝒇 𝑳, 𝑵𝜸,𝒊 , 𝝁𝒐𝒖𝒕𝒍𝒊𝒆𝒓𝒔 ,𝝁𝒑𝒕𝒔 ? 

Y 

N 

Y 

N 

Maintain previous 

valid set of 

estimates 
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EFFICACY OF OUTLIER PRUNING 

• Ultimate performance metric for slot frequency and phase estimation 

algorithm using linear least-squares fitting is frequency estimation error. 

• Pruning algorithm eliminates outliers prior to linear fit, and is based on 

maximum expected frequency offset and expected number of outliers 

• Coefficient of determination (𝑹𝟐) metric can be used to evaluate linearity of 

data set prior to and after pruning 
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                Ks (dB)                 

• 155 Mbps 

• Kb = 0.04632 ph/slot 

• Algorithm parameters 

• L = 64 

• 𝜸𝒎𝒂𝒙 = 0.001 

• 𝝁𝒐𝒖𝒕𝒍𝒊𝒆𝒓𝒔 = 28 

• 𝝁𝒑𝒕𝒔 = 10 

 


