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Goal: demonstrate the feasibility of using large aperture
“Polished Panel” optical receivers for hybrid RF/Optical
deep-space communications via 34-meter DSN antennas

* Installed polished aluminum panels on the main reflector of the
34 meter research antenna at DSS-13, for field evaluation

 Fabricated and installed a weather-proof remotely controlled

camera enclosure on the subreflector support structure
» Contains a large-sensor camera from Finger Lakes Instruments (FLI)
* Enclosure and camera are computer controlled from alidade

* Imaged the point-spread-function (PSF) generated by the planets
Jupiter, Venus and several bright stars

» Evaluated optical communications performance based on PSF data
» determined quantum limited error probabilities for OOK and 2PPM signals
» evaluated photon-counting receiver performance in high background
 developed a model for easily computing block-coded performance
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Mathematical model of Focal-Plane Intensity Distribution and Photon-counting statistics

Gaussian model of signal intensity distribution

ki:zkij J MLy x5 30)
’ Is(x,y|x0,y0):ls(27z0'f)_l><
3 exp{-[(x—x,)* /20 +(y—y,)*/20,]} watts/cm’
Average signal energy over detector element i, j
T
Yol- A, %05 ¥0) = [ PG | %o p)
0
/ ETAZIS(iA,jA|x0,yO)
i,j=0
Photo-count probability density from
detector element i, j
. k;
2 \ p(kij | X0 Vo) =[A, (G5 J [ X4, 16)]" %
Let Ax = Ay = A, with no loss in generality b) exp[—A, (@, j | x5, Y,)]/ ki/‘!
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The Coherent-State Representation of Optical Signals

. b A’
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Quantum limit for binary signals

For any pair of binary signals |y,),|w,) , the quantum

* 1 * :l . . 2
limited error probability depends only their overlap [1]: P(E)=1=P(C) = [1 \/1 W lvi)) J

Quantum limit for the special case of OOK and binary PPM signals

For OOK signals represented by |0) and |a) | with overlap | (0| a) [’= ¢, the quantum limit is:

PSOK(E)Z%[I_\/l—HWo |l//1>|2]=%[1— 1—e"“'2}=%[1—m]

with average symbol energy K, =7 |a ”, hence | |'=2K, (average power constraint)

For PPM signals represented by |#,) =|@")[0) and |¢,) =|0)|a’) the squared overlap becomes

@, | @,) =10’ | 0) | @'y P=|(a’| 0XO0 | @'y P=|(a’| 0) P[{0] &) P= e e = e = ¢ 2K

Py (B) = 1= 1@ To P =2 [1= 1= |

with average signal power K, =/ @' |*. If |&'*=1|a |’ (equal avg. power), then Pypprs (E) = P (E)

Victor Vilnrotter Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. 5



IEEE AEROSPACE CONFERENCE, MARCH 2013
Performance of Large Aperture “Polished Panel” Optical Receivers

Jet Propulsion Laboratory
California Institute of Technology

Photon Counting Receiver: OOK signals

Maximum likelihood decision strategy, OOK signals:

Obtain the photon-counts, &, , within each 7-second symbol-interval, and compare to the
optimal threshold 7 = 2K /log(1+ 2K /K,) . If k, <7 declare H;if k, >n declare H,.

With no background,K, =0,—7n =0 . HypothesesH, and H, , equilikely case:P(H,)=P(H,) =7

1, n=0 a Lol
Pl -{5 130 e =L

Conditional detection probabilities: P(C|H,)=P(0|H,)=1, P(C|H)=P(n>1|H)=1-¢

P(C)= Y P(CIH)PH ) =1-4e ™ P(E)=1-P(C)=1e™  |Bpe(B)=3e™

2¢€
i=1

With background, K, , -7 =2K_/log(1+2K /K,) , probability of correct detection becomes

floor(77) Kko e—K;, © (K + K )ko e—(KbeKs)
POOK(E):I_%[ Z bk' +Z ’ ;
0°

ko=0 ceil(n) ko '
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Photon Counting Receiver: binary PPM signals

Maximum likelihood decision strategy, binary PPM signals:

Obtain the photon-countsk, and &, in the first and second slots, respectively, and compare: if &, >k,
declare H, ; if k, >k, , declare H,. In case of a tie, toss a fair coin to determine the outcome.

With no background, K, =0, an error is made only if no photons are observed, in which case a fair
coin is tossed leading to correct detection half the time. Since the probability of observing no photons
under either hypothesis is e, it follows that the average probability of error for binary PPM is

ZPPM(E) :% o

With background, K, , the probability of bit error can be expressed as [2]

P(E) = Z Zy(klﬂkz) (Ks +Kb)k1 Kbkze_(Ks‘Fsz) /kl'kz'
k=0 ky =k,

where y(k,k,)= {1

1
2

k, =k,
k, #k,
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Bit error probabilities for OOK and 2PPM: zero to low background
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Quantum limit and photon-counting detection performance of OOK and binary PPM signals as a function
of average signal energy : a) extremely low average background energy per symbol-interval; b) low average
background energy per symbol-interval.
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Bit error probabilities for OOK and 2PPM: moderate to high background
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Quantum limit and photon-counting detection performance of OOK and binary PPM
signals as a function of average signal energy : a) moderate average background energy;
b) high average background energy.
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excluded
region

Accumulated signal energy m
(array detectors sorted according to K (m)= Z A (n)
signal intensity, in decreasing order) n=1

Accumulated background energy
(constant background intensity)

K,(m)=m4,

10°
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region
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Polished panel PSF generated by the star Vega, showing

the low signal energy region excluded by spatial filtering. Pyopy (E | m")

/

Bit error probability
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Binary PPM Simulation Results

Illustration of random array counts for various pixel-intensity distributions using the experimentally recorded
PSF in a) as the average energy distribution, ranging from very high, b), to very low, f), total signal energy
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Polished Panel Receiver Performance Simulation

10 T T T T

Signal + background = Background intensity
intensity in slot #1 only in slot #2

Pulse-position modulation, M=2

Kb =5 photons/frame/slot

/>

simulated Pe

Probability of bit error, Pe

N =10,000 frames/simulation point

theoretical Pe

Sample of array photo-counts for each slot: 10 w w w r L L w w .
low signal intensity, ~ 100 photons/frame

Average number of photons/frame/pulse, Ks

Sample frames of background and
signal-plus-background frames, and
associated array photo-counts.

Theoretically derived binary PPM performance
and simulation results.
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Coding to Improve Detection Performance
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Conditional error probabilities for equally probable
but highly asymmetrical OOK signals, validating

the binary symmetric channel model for high
background intensities.

40

For bounded distance decoders that correct all combinations
of t or fewer errors, the bit error probability can be expressed
approximately as:

RE=n" 2 p["|p - py
Jj=t+1
With B, Z Jj (a good approximation for systematic codes),

- - . n j n—j n—
and using the identity 7 IZJ(]-) 'A=p)" =p-pd-p"
j=2

the bit error probability can be further simplified as:

Fy(Ey=n” Zn: J'(n-j I(1-p)"’

j=t+l J
<(n-1)_; 1-j
=p—p2( j )p’(l—p)”"’=
=0

pll-C,,(t=1,n-1,p)]= B,(E)

where C,,,(—1,n—1, p) is the binomial cumulative distribution with (n-1) degrees of freedom, from 0 to (z-1).
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BCH-coded performance and optimization
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Uncoded and BCH block-coded performance of binary PPM symbols for increasing codeword-length,
with = 2; b) minimum error probability achieved with n =127, ¢=2.
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BCH-coded performance and optimization
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Uncoded and BCH block-coded performance of binary PPM symbols for increasing error correction strength,
with n = 63; b) minimum error probability achieved with =5, n = 63.
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CONCLUSIONS

« A high quality “polished panel” (Vertex Antennentechnic GmbH.)
was installed on the DSN’s 34 meter antenna at DSS-13

« The PSF generated by the polished panel was determined by tracking
the planets Jupiter and Venus, as well as several bright stars

« Detailed mathematical model of the focal-plane energy distribution was
developed, and the experimentally determined PSF was used to evaluate
potential deep-space communications performance of a “polished-panel”
optical receiver, with OOK and binary PPM signals

» It was shown that with zero background OOK can approach the quantum bound
even with optically imperfect polished panel reflectors (average power constraint)

« |t was shown that deep-space communications requirements can be met even
with simple codes, and parameter optimization with BCH codes was illustrated
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