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Abstract—Recent interest in hybrid RF/Optical 
communications has led to the development and installation of 
a “polished-panel” optical receiver evaluation assembly on the 
34-meter research antenna at Deep-Space Station 13 (DSS-13) 
at NASA’s Goldstone Communications Complex1. The test 
setup consists of a custom aluminum panel polished to optical 
smoothness, and a large-sensor CCD camera designed to image 
the point-spread function (PSF) generated by the polished 
aluminum panel. Extensive data has been obtained via real-
time tracking and imaging of planets and stars at DSS-13. Both 
“on-source” and “off-source” data were recorded at various 
elevations, enabling the development of realistic simulations 
and analytic models to help determine the performance of 
future deep-space communications systems operating with on-
off keying (OOK) or pulse-position-modulated (PPM) signaling 
formats with photon-counting detection, and compared with 
the ultimate quantum bound on detection performance for 
these modulations.  Experimentally determined PSFs were 
scaled to provide realistic signal-distributions across a photon-
counting detector array when a pulse is received, and uncoded 
as well as block-coded performance analyzed and evaluated for 
a well-known class of block codes.  
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1. INTRODUCTION 

The option to provide an optical communications capability 
for the 34-meter microwave antennas of the Deep-Space 
Network (DSN) is currently under consideration [1,2]. This 
concept is predicated on the assumption that existing RF 
capabilities would not be compromised, hence the new 
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optical reception capability should be added without 
significantly impacting the RF reflecting surfaces, the 
backup structure, or the pointing requirements on 
operational DSN antennas. One way to achieve optical 
communications requirements is to polish the aluminum 
panels of the antenna’s main reflector to optical smoothness, 
and employ a suitably large detector array to collect the 
focused light. This approach would result in a very large 
collecting aperture if, for example, the inner 26 meters of 
solid aluminum panels were all polished to optical 
smoothness. However, the extent to which thin aluminum 
panels can be shaped and polished to optical requirements 
remains to be quantified. This paper examines the potential 
communications performance of a polished panel optical 
receiver, using experimental data obtained at the Goldstone 
Communications Complex, with NASA’s 34 meter research 
antenna at DSS-13.  

As described in [1, 2], a custom mounting bracket was 
constructed, and the polished panel mounted on the main 
reflector of the 34 meter antenna at DSS-13.  The spot size, 
or “point spread function” (PSF) generated by the polished 
panel at its focal distance was recorded using a 10 mega-
pixel Finger Lakes Instruments (FLI) digital camera, 
mounted next to the subreflector on the movable part of the 
structure in a weather-proof enclosure, and controlled from 
a small room located on the DSS-13 antenna called the 
“alidade”.  Here we develop, analyze and evaluate the 
communications performance of a high data-rate optical 
“polished panel” communications receiver, based on the 
PSF obtained by tracking bright planets and stars with the 
34 meter antenna. The quantum limit for on-off-keying 
(OOK) and binary pulse-position-modulated (PPM) signals 
will be determined in the absence of background, 
characteristic of night-time reception,  along with high-
background performance when operating during the day.  
The analytic results are verified via simulation, and 
performance improvement via block codes on the 
performance of OOK and binary PPM symbols is evaluated. 
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2. MATHEMATICAL MODEL OF FOCAL-PLANE 
ARRAY PROCESSING   

To facilitate analysis and derive the structure of the 
estimator, the sensor in the focal plane is modeled as an 
array of bins as in Fig. 1, and Poisson distribution assumed 
for the number of photo-electrons generated in each bin in 
response to the signal intensity. The key features of the 
focal-plane model are shown in Fig. 1, where an elliptical 
intensity distribution, or “point-spread function” (PSF), is 
assumed in response to an optical point-source effectively at 
infinity such as Jupiter or a bright star. The elliptical shape 
was selected after it was determined that the Vertex panel 
generated an elliptical spot, instead of a perfectly circular 
intensity distribution.  
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Figure 1.  Focal-plane model of pixel array, and elliptical 
PSF with pointing offsets ),( 00 yx , motivated by 
experimentally determined point-spread function (PSF) 
for the high-quality Vertex panel. 

For purposes of analysis, the PSF is assumed to be a two-
dimensional elliptical Gaussian distribution as shown in Fig. 
1, with center at ),( 00 yx : 
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in 2watts/cm . The detector elements are taken to be small 
squares in this model, with power ijP  over the ij th  detector-
element equal to the integral of the intensity distribution 
over its active area.  Integrating power over time yields 
energy, or average “count-intensity” s	  if the received 
laser energy is measured in terms of photons or photo-
electrons:   
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With this model, the photon count from the ij-th detector 

element over a time interval of T seconds can be modeled as 
a Poisson distributed random variable with count probability 

 !/)],|,(exp[)],|,([),|( 000000 ijs
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where ijk  is the observed photo-count from the ij-th 
detector element. Recognizing that counts from different 
detector elements are independent, and defining the vector 
of counts from the entire array as � ijk�k , the joint 
probability density of the array of counts becomes: 
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Equation (4) can be used to derive the performance of 
polished panel optical receivers observing OOK or binary 
PPM symbols. This is inherently a multi-mode model, 
however we shall see that with photon-counting detection 
only the total energy, or total photon count, matters in 
determining receiver performance. 

 
3. OPTICAL COMMUNICATIONS PERFORMANCE 

The Coherent-State Representation of Optical Signals 

In order to determine the fundamental quantum limits on 
detection performance for OOK and PPM signals, it is 
necessary to introduce notation that is generally used to 
describe the properties of received laser signals in the limit 
of small signal energies. Coherent states, representing 
electromagnetic radiation produced by physical devices 
such as lasers, are an important class of states for optical 
communications. It has been shown [3, 4] that coherent 
states of a single mode of radiation ��| can be represented 
in the form of a superposition of orthonormal eigenstates 

�n| , known as the number eigenstates: 
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Each number eigenstate �n|  contains exactly n photons, 
and hence the probability of obtaining exactly n photons as 
the outcome of an experiment can be computed as 

                   !
|||||||
2

||2 2

n
ennn

n�
�� ��������

          (6)                     
These are recognized as Poisson probabilities for the 
number of photons, with the average number of photons 
equal to 2||� . Note that this model is consistent with the 
detector array model described in Section II, where the 
output of each detector element in response to a received 
signal field is Poisson distributed, as in equation (4).  
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Coherent states are not orthogonal, as can be seen by 
considering the overlap between two arbitrary coherent 
states, �� �� |  and  | .  Orthogonality requires the overlap 
to vanish, however for coherent states the squared 
magnitude of the overlap is not zero: 
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Here we made use of the orthogonality of the number states 
to simplify the intermediate expression. Equation (7) 
demonstrates that there is always some overlap between 
coherent states, regardless of how great the average photon 
count in each state may be.  

As shown in [3, 4], the quantum limit on error probability 
attainable by any pair of binary signals can be expressed in 
terms of their overlap as: 

         � 2
102

1** |||11)(1)( ������� ��CPEP        (9) 

This expression for the quantum limit is valid for OOK, 
binary PPM, and all other binary signal-sets. We next 
consider the two signal types of interest for high data-rate 
deep-space optical communications, namely OOK and 
binary PPM.  

 

Quantum limit for OOK and binary PPM signals 

  For OOK signals, a given T-second symbol-interval either 
contains a pulse, or contains nothing. The pulse energy is 
therefore twice the average signal energy, which is the key 
parameter for deep-space communications.  Substituting   

�� �|  and  0| for the quantum states under the “off” and 
“on” hypotheses, respectively.  The error probability of the 
optimum quantum receiver for OOK can be expressed in 
terms of the average number of photons in the signal 
averaged over both hypotheses, 2

2
1 ||��sK , as 
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This result applies only to single-mode pure-state signals, 
without any background noise fields. The signal-plus-noise 
problem is quite complicated and will not be treated here. 

It is well known that OOK signals are bandwidth-efficient, 
since one bit of information is transmitted in each symbol-
interval. This is not the case for PPM, which suffers from 
exponential bandwidth expansion. The binary and 

quaternary PPM symbol-sets are the most bandwidth 
efficient, requiring only twice the bandwidth of OOK for a 
given data-rate. 

In the quantum formulation, PPM is a product-space signal 
set, since each slot can be viewed as an independent 
quantum state. Letting ���� 0||| 1 ��  and 

���� �� |0|| 2 , the square of the overlap for coherent-state 
binary PPM signals can be evaluated as: 
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where now 2||��sK  since each slot contains a pulse, 
hence the average signal energy is equal to the signal energy 
of either symbol. The quantum limit on binary PPM 
performance therefore becomes 
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Surprisingly, the ultimate limit on detection performance is 
the same for OOK and binary PPM signals, under an 
average power constraint. Since PPM is parameterized with 
the number of slots, M, which is typically taken to be a 
power of 2, it is important to determine the quantum bound 
for the general case when higher dimensional PPM signals 
are used. The quantum limit  on the probability of error for 
PPM signals has been determined earlier in [3], and is given 
by 
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As an additional check on equation (12) for binary PPM 
signals, note that if we let M = 2, then equation (13) reduces 
to equation (12), as follows: 
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    (14)                     

Therefore, when operating under an average power 
constraint, the ultimate quantum limit on the performance of 
single-mode OOK and binary PPM signals is identical.  

Photon Counting Receiver: OOK signals   

Suppose there are two hypotheses, 10   and HH , denoting 
the absence and presence of signal, respectively. If the 
background radiation can be neglected, then either no 
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photons or an average of 0|| 2 �� �	  photons are 
received. The received field is assumed to be from a 
coherent laser, hence the photons are Poisson distributed 
with conditional densities  
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At the end of each signaling interval the receiver records the 
total number of detected photons, and decides which 
hypothesis is true by computing the two likelihood functions 

1,0),|( �"# iHnP ii  and selecting the hypothesis 
corresponding to the larger of the two. In the absence of 
noise 0H  is always decoded correctly, therefore 

1)|0()|( 00 �� HPHCP  . 1H  is decoded correctly if at  

least one photon is detected: 	���! eHnP 1)|1( 1 . 

With equal a-priori probabilities, 2
1

10 )()( �� HPHP  , 
the average probability of correct detection becomes  
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Finally, the average probability of error is 
	���� eCPEP 2

1)(1)( . With average received signal 
energy of sK  photons, the average energy of the pulse is 

sK2 , assuming equally likely symbols. The probability of 
error for OOK in the absence of background, and with 
average received signal energy sK , therefore becomes 
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Note that the exponent is sK2� , which means that the error 
probability decreases exponentially with sK2 . 

When background noise is present, the maximum likelihood 
receiver sets a threshold given by 

)/21log(/2 bss KKK ��$ , and decides 1H  if the signal 
plus noise counts at the end of the T second symbol interval 
exceeds threshold, otherwise selects 0H  [4]. This threshold 
increases with sK , and occasionally takes on an integer 
value, but this is a set of measure zero and can usually be 
ignored when calculating the error probability.  Ignoring 
integer threshold values, the probability of correct detection 
is given by  
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hence the error probability in the presence of background is 
)(1)( CPEP OOKOOK �� . In summary, the maximum 

likelihood detection strategy for OOK symbols with Poisson 
photo-counting is as follows: 

The OOK detection strategy can be summarized as follows:  
sum the photon-counts within the T-second symbol-interval, 

0k , and compare to the optimal threshold 

)/21log(/2 bss KKK ��$ : if $+0k  declare 0H ; if 

$�0k  declare 1H .  Note that 0k  refers to the number of 
observed counts in an OOK symbol-interval.  

Photon Counting Receiver: binary PPM signals  

For the case of binary PPM, the maximum likelihood 
receiver sums photon-counts over both slots, and select the 
slot with the largest count [4].  In case of count-equalities in 
the two slots, a random choice is made by tossing a fair 
coin. In the absence of background a correct decision is 
made if one or more photons are detected in either slot, an 
error occurring only if no photons are observed, in which 
case a random choice is made.  With Poisson statistics the 
probability of observing no photons, given that a pulse with 
average photon count sK was actually received, is sKe� , 
therefore the average probability of error after a random 
coin-toss is simply 

                                    
sK

PPM eEP �� 2
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2 )(                    (19) 

when the background is negligibly small. The exponent is 
now sK� , which means that the error probability decreases 
exponentially with increasing sK , but it takes twice as 
much signal energy to achieve the same error probability as 
with OOK signaling, when photon-counting detection is 
employed. This is somewhat interesting, in light of the fact 
that the quantum limit for these two signals sets is identical, 
given an average signal power constraint. 

The above detection strategy for binary PPM does not 
change with increasing background, although performance 
degrades. With background, an error is made if the count in 
the noise-slot exceeds the count in the signal-plus-noise slot: 
if the counts in the two slots are equal, then a random choice 
is made by tossing a fair coin. With this strategy, the error 
probability can be expressed as [4]: 
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To recap, the maximum likelihood strategy for detecting 
binary PPM symbols with Poisson photo-counting is: 

The binary PPM detection strategy can be summarized as 
follows: sum the photon-counts 21  and kk in the first and 
second slots, respectively, and compare: if 21 kk � , declare 

0H ; if 12 kk � , declare 1H . In case of a tie, toss a fair 
coin to determine the outcome. 

Note that unlike the integer thresholds discussed for OOK, 
which is very rare and can be considered a set of measure 
zero, equalities in slot-counts can now occur with significant 
probabilities in the presence of noise, hence these count-
equalities cannot be ignored. The factor ),( 21 kk,  accounts 
for the equalities in binary PPM, and have been taken into 
account when the binary PPM error probabilities were 
computed. 

The above results are illustrated in Fig. 2 for low 
background, and in Fig. 3 for high background detection.  
The quantum limit as a function of  sK  attains the same 
error probabilities for both OOK and PPM detection, 
described by equations (10) and (12), as shown in Fig. 2a, 
which also shows that in the absence of background 
( 0�bK ) OOK detected via photon counting nearly 
achieves the quantum limit for all values of sK . 
Interestingly, for error probabilities somewhat higher than 
the average background energy, OOK with photon-counting 
performs close to the quantum  limit as can be seen in Fig. 
2a for sK  less than 5, since the probability of detecting a 
background photon is negligibly small in this region.  

For small signal energies the optimum threshold defined 
above is less than one, hence the detection strategy is 
equivalent to the noiseless case, namely: declare “no pulse” 
corresponding to 0H  if no photons are detected, and “pulse 

detected” corresponding to 1H  if one or more photons are 
observed.  
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Fig. 2. Quantum limit and photon-counting detection 
performance of OOK and binary PPM signals as a 
function of average signal energy sK : a) extremely low 
average background energy per symbol-interval, 

00001.0�bK ; b) low average background energy per 
symbol-interval, 3.0�bK . 

For higher sK  an optimum threshold greater than one must 
be used, leading to errors if the background generates more 
photons than the threshold, or if the pulse generates less 
than threshold: integer changes in the threshold lead to the 
cusps in the OOK error probability curves seen in Figs. 2a 
and 2b.  With little or no background, OOK detection with 
photon-counting is “near-optimum” meaning that the error 
probability exponent is the same as for the quantum limit, 
and the error probabilities differ only by a factor (of 
approximately 2) from quantum-limited performance. 
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Fig. 3. Quantum limit and photon-counting detection 
performance of OOK and binary PPM signals as a 
function of average signal energy sK : a) moderate 
average background energy per symbol-interval, 

5�bK ; b) high average background energy per 
symbol-interval, 20�bK . 

Whereas OOK performs close to the quantum limit in the 
absence of background, binary PPM with photon-counting 
performs 3 dB worse, requiring twice the signal energy to 
achieve a given error probability, since the error probability 
exponent is a factor of two smaller than for OOK as shown 
in equation (17). However, there are two slots per binary 
symbol in a given T-second interval, hence for the same 
data-rate the background observed in each PPM slot is only 
half that of OOK. In addition, PPM compares counts in two 
slots instead of relying on a threshold, as with OOK. These 
differences in the detection strategy lead to 3 dB worse 
performance in the noiseless case for PPM , but also lead to 
less sensitivity to background interference: as can be seen in 
Fig. 2a, a background rate of 510�  has no observable 
impact on PPM performance, but degrades OOK 
performance for high signal energies. Only when the 

background increases to 0.3 photons per pulse does it begin 
to degrade PPM performance, as shown in Fig. 2b. 

It can be seen in Figs. 3 that for high background counts, the 
error probability curves for OOK and binary PPM converge, 
with nearly identical performance for 5�bK  and greater. 
However, it should be noted that binary PPM requires twice 
the processing bandwidth of OOK, necessarily leading to 
wider bandwidth and hence more challenging receiver 
designs. However, detection of binary PPM relies onn the 
comparison of counts between adjacent slots and hence  
does not require the computation of an optimum threshold, 
which may be troublesome under  time-varying background 
conditions. 

 

Spatial filtering to improve detection performance in the 
presence of background  

As shown in [4], multimode laser fields also lead to Poisson 
distributed photon-counts, as do single-mode laser fields. 
With photon-counting direct detection, there is no essential 
difference between the single-mode and muti-mode models 
of the photo-counts, both can be described by the Poisson 
distribution, provided the number of modes is large.  In a 
typical optical communications scenario, the point spread 
function (PSF) generated by the polished panel consists of a 
large number of spatial modes, since panel surface 
imperfections and residual roughness tends to scatter the 
signal over an area much larger than the diffraction-limited 
spot-size. Under these conditions, the focal-plane model of 
the received signal fields can be described by an average 
field-distribution such as the two-dimensional Gaussian 
model developed in Section II, and Poisson-distributed 
counts with average number corresponding to the integrated 
intensity can be assumed for each detector-element.  

With this model of the polished panel receiver, detector 
array processing can be optimized to achieve best photon-
counting performance by sorting the array elements 
according to energy, and computing the symbol error 
probability (PSE) for the highest energy detector element, 
then for the sum of the signal energies in the first two 
highest energy detectors, and so on, until the minimum PSE 
is reached. The amount of signal energy collected by the 
first “m” highest-energy detectors will be denoted by  

                                                                                         (21) 

where “n” is the order index according to signal energy in 
descending order.  In the following performance 
calculations the background photon distribution is assumed 
to be uniformly distributed in the detector-plane, hence the 
amount of collected background energy increases linearly 
with m as more detector elements are included. According 
to this model, the average number of background photons 
collected by m detector elements is proportional to m, 

bb mmK 	�)( , where b	  is the average background 
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photon-count rate per detector element, here assumed to be 
constant over the array. 

As described in [1], the detector array consists of 
50X50=2500 elements, but due to camera artifacts the first 
row and column were deleted, resulting in a 49X49=2401 
element square detector array. Error probabilities for OOK 
and binary PPM have been computed for increasing values 
of m, using equations (18) and (20), for a given value of 
average background count rate b	  and total collected signal 
energy )2401( �mK s , as defined in equation (21), and 

with )(ns	  obtained from an experimentally obtained PSF 
such as the one shown in Fig. 4a, by sorting pixel energies 
in decreasing order.  Writing equations (18) and (20) in 
terms of )(mKb  and )(mK s yields 
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where ),( 21 kk, has been defined in equation (20). The 
value of .� mm  that achieves the minimum error 
probability is determined for binary PPM, as shown in Fig. 
4b, for the improved PSF generated by the bright star Vega 
on Sept. 19th described in [2]. Note that the error probability 
as a function of m is a smooth curve for binary PPM, but not 
for OOK due to integer changes in the threshold, as 
described earlier and shown in Figs. 2. The optimum value 
of .� mm  can be interpreted as defining a spatial filter that 
includes only those pixels with energies greater than 

)( .ms	 , and blocks all others. This approach divides the 
detector array into two regions, not necessarily contiguous, 
that blocks signal plus background energy in the “excluded 
region” from reaching the receiver, as shown in Fig. 4a).  
This approach will be used to compute bit error probabilities 
for evaluating coded performance, and will be compared to 
the simulation discussed in the next section. 

 

4.  BINARY PPM SIMULATION RESULTS    
The theoretically derived error performance has been 
verified independently using a simulation program that 
implemented the binary PPM detection strategy described 
above, namely: 

 

Binary PPM detection strategy 

Sum the photon-counts 21  and kk  in the first and second 

slots, respectively, and compare: if 21 kk � , declare 0H  ; if 

12 kk � , declare 1H . In case of a tie, toss a fair coin to 
determine the outcome. 
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Fig. 4. a) Polished panel PSF generated by the star Vega, 
showing the low signal energy region excluded by spatial 
filtering. b) Bit error probability as a function of m for 
OOK and binary PPM signaling, illustrating the 
minimum error probability achieved by .m . 

 

Due to the requirement to generate two large Poisson count-
arrays for each symbol, then apply the above algorithm 
which calls for resolving count-equalities in both slots, it 
was decided to implement binary PPM detection in this 
simulation since this was considered to be the more 
stringent test. The experimentally recorded PSF was used to 
define the distribution of signal intensity over the detector-
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plane, with the total signal energy normalized over the 
array. To calculate error probabilities as a function of Ks, 
the total signal energy was multiplied by Ks and the average 
signal count over each of 49X49=2401 pixels was 
determined. Next, a Poisson random array was generated, 
with average count over each pixel given by the 
experimentally obtained PSF intensity distribution. An 
illustration of the resulting random count-arrays for various 
intensities from very high to very low is shown in Fig. 5a) – 
5f). Note that for high count-intensities such as in Fig. 5b)-
5d), which may correspond to long integration times as 
would be observed by a narrow-band tracking algorithm 
such as the one described in [2], the Poisson frame of 
random array counts resembles the assumed average 
intensity distribution of Fig. 5a). However, for high-rate 
data-communications the integration time is necessarily 
extremely short, hence the random array-counts with an 
average of 100 signal photons or less no longer resemble the 
original intensity distribution, as in Fig. 5f). 

 

 

 

 

 

 

 

  

a) b) c)

d) e) f)  
Fig. 5. Illustration of array counts for various pixel-
intensity distributions using the experimentally recorded 
PSF in a) as the average energy distribution, ranging 
from very high, b), to very low, f), total received signal 
energy. 

The simulation was written for binary PPM, and made use 
of the experimentally recorded PSF by scaling it to the 
average number of photons per symbol per array, Ks. An 
average background intensity of 5 photons per symbol per 
array was added to the signal distribution, which amounted 
to 5/2401 background photons per pixel. The background 
signal intensity was obtained by adding a 1 degree pointing 
offset in the cross-elevation direction and recording a 
background frame, so as not to introduce any elevation-
dependent errors, an example of which is shown in Fig. 6a) 
for the case of approximately 100 photons per symbol per 
slot for illustration purposes. 

In the simulation, a Poisson random variable with mean 
equal to the sum of background and signal intensity was 
generated for each pixel, the above detection algorithms 
applied to each of 10,000 realizations of the 49X49 pixel 
array, and the binary PPM detection strategy was applied for 
each pair of consecutive frames. Since there is no frame-to-

frame memory in the simulation, the signal pulse, hence 
PSF, was always placed in the first slot. The binary PPM 
detection strategy was applied, including the randomized 
selection in case the photo-counts in the two PPM frames 
were equal, and the number of errors recorded. Each 
realization of the binary PPM frames was repeated 10,000 
times, and the total number of errors divided by 10,000 to 
obtain an estimate of the bit error rate.  
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Fig. 6. a)  Sample frames of background and signal-plus-
background frames, and associated array photo-counts; 
b) theoretically derived binary PPM performance curve 
and simulation results.  
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The results for binary PPM signals are shown in Fig. 6 b), 
where the entire array was used to detect the signals without 
any spatial filtering to simplify the simulation, based on the 
observation that for such low background count-rates nearly 
the entire array is typically used as shown in Fig. 4a, hence 
the entire detector array could be considered a spatial filter 
for this simulation.  

The simulation results are shown as red circles in Fig. 6b), 
whereas the computed error probability is represented by the 
solid blue line. This simulation required the generation of 
two 24014949 ��  dimensional Poisson random arrays 
for each slot, followed by the application of The close 
agreement between the computed and simulated results 
provides strong validation of the computed error 
probabilities for binary PPM signals, supporting the validity 
of the signal model and detection strategy developed above 
for computing error probabilities for binary PPM signals.  

 

5. CODING TO IMPROVE DETECTION 
PERFORMANCE      

The polished panel optical receiver with its inherently large 
collecting aperture is capable of capturing a large number of 
signal photons and concentrating it into a small (but not 
diffraction-limited) spot, performs exceptionally well when 
the background radiation is negligible, such as during night-
time operation. In fact, OOK modulation with simple 
photon-counting detection closely approaches the quantum-
limit on error probability under these conditions, which 
means that no other detection technique, including much 
more complex phase-sensitive coherent detection, could 
perform better than photon-counting OOK. As shown in 
Fig. 2, uncoded OOK achieves bit error probabilities of 

65 1010 �� � with average pulse energies of only 6-12 
photons, hence very high-rate communication is possible 
with nominal optical transmitter designs that are capable of 
delivering 100 signal photons or more as discussed in [2], 
from 1 astronomical unit or even greater interplanetary 
distances. However, during daytime operation background 
increases significantly, especially when pointing close to the 
sun, leading to background counts of 10-100 photons per 
slot or more, greatly degrading uncoded detection 
performance as shown in Fig. 3. Under high background 
conditions, detection performance for both OOK and binary 
PPM degrades significantly, to the point where the receiver 
is unable to achieve the error probabilities required for deep-
space optical communications. As shown in Fig. 3, with 
only 20 background photons per pulse, only bit error 
probabilities of 21 1010 �� �  can be reached with either 
modulation formats, which is not sufficient for deep-space 
communications where bit error probabilities of 610� or 
even lower are routinely required. Some form of coding 
must be employed in order to improve polished panel 
receiver performance, under high background operating 
conditions. 

Our goal here is to demonstrate that deep-space 
communications requirements can be maintained with 
polished panel type optical receivers even in high 
background environments through the use of coding, and 
develop a simple approach to estimate the coded 
performance of high-rate modulations such as OOK and 
binary PPM. In Fig. 7, the conditional error probabilities for 
OOK detection are seen to be nearly equal for 20�bK , and 
become essentially equal for higher backgrounds, hence a 
binary symmetric channel (BSC) model is a good 
approximation even for this asymmetric signal-set. Binary 
PPM is inherently symmetric, therefore a BSC model is 
valid for this modulation format when the background 
energy is sufficiently high.   
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Fig. 7. Conditional error probabilities for equally 
probable OOK signals with increasing background, 
demonstrating the validity of binary symmetric channel 
model. 

For the BSC channel, coding can be used to improve 
receiver performance, when operating in high background 
environments characteristic of daytime operation. 
Sequences of k consecutive symbols can be converted into 
codewords by appending (n-k) parity-check bits, thus 
yielding codewords of length n, and forming an (n, k) code.  
Codewords of length n contain only k < n information 
symbols: this means that the binary symbol-lengths must be 
decreased by the code-rate k / n in order to maintain a given 
data-rate. With an average power constraint, this also 
implies that the average pulse energy must be decreased by 
the code-rate k / n  in order to maintain an average received 
signal power. That is, instead of receiving sK photons per 
pulse as in the uncoded case, in the block coded system the 
average pulse energy is smaller by a factor of k / n  since the 

sKk photons originally distributed among kT seconds must 
now be distributed among nT > kT seconds: indeed, 

ss kKKnkn �)/( , as required. The transition probabilities 
p are therefore computed with average photon counts of 

sKnk )/(  at each value of sK , to account for the 
additional (n-k) parity-check bits which must also be 
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detected, but without causing a decrease in the information 
throughput of the receiver. 

For bounded distance decoders that correct all combinations 
of t  or fewer errors, where t  is the greatest integer less 
than or equal to 2/)1( min �d  and mind  is the minimum 
distance of the code, the exact decoded bit error probability 
typically depends on the specific code and the decoder, but 
it can be expressed approximately as 
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          (23) 

where j�  is the average number of symbol errors remaining 
in the corrected sequence given that the channel caused j > t 
errors, and where p is the transition probability for either 
OOK or binary PPM, as discussed above.  This expression 
was originally derived by Odenwalder in [5], who argues 
that for systematic codes jj 
�  is a good approximation.  
For example, table 4.2  [5] shows that for extended Golay 
codes jj 
�  in most cases, confirming this approximation.  

We shall use the expression in (23) with jj ��  to 
approximate the performance gains afforded by systematic 
block codes, when applied to OOK and binary PPM 
symbols in the high-background regime:  
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Applying the identity derived in [6] for t = 1, namely 
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where ),1,1( pntCbin ��  is the cumulative distribution 
function of a binomial random variable with (n-1) degrees 
of freedom, from zero to t-1, and transition probability p as 
described above. The last equality in equation (25) is in a 
form that is particularly easy to compute, since the 
cumulative distribution of a binomial random variable is 
readily available in MATLAB and other popular computer 
applications. Note that the bit error probability in equation 
(25) can also be expressed as  

                 
� 

1
2
3

�
�
 

�%
&
'(

)
* ��

����

�
�

�

��

tj

jnj

binb

ppj
np

pntCpEP

1)1(1         

),1,1(1)(
             (26) 

which suggests the interpretation that uncoded binary error 
probability p is decreased by a factor equal to the 
probability of t or more errors ocurring among n-1 slots. 

The performance gains afforded by block codes with hard-
decision decoding, has been evaluated by comparing the 
uncoded performance of OOK and binary PPM for 
moderately high background counts corresponding to  

40�bK , with the performance of well-known BCH codes 
of various codeword lengths n and various error-correcting 
capabilities t, and the average signal and background 
energies scaled according to the code-rate to keep the data-
rate and average signal power constant. The results are 
shown in Figs. 8 as a function of the codeword size n for a 
fixed value of the error correcting capability t = 2, and in 
Fig. 9 as a function of t, for a given codeword length n = 63.  

Note that for low signal energies below approximately 22 
photons the uncoded receiver actually performs slightly 
better in both cases, but that after exceeding this “threshold” 
energy the performance of the coded receiver begins to 
improve dramatically, both as a function of n with constant 
error-correction t = 2 as in Fig. 8, and with constant 
codeword length n = 63 for increasing t, as in Fig. 9. The 
performance of OOK and binary PPM was nearly identical 
in all cases, hence only the PPM error probabilities were 
shown in Figs. 8a) and 9a). 

In both Figs. 8a) and 9a), the solid blue curve corresponds 
to the uncoded performance of OOK and binary PPM, and 
the dashed red curves correspond to coded performance, 
where equation (25) was used to determine the bit error 
probabilities. The dashed black curve shows an interesting 
reversal in the trend as either n or t increases past an 
“optimum” point, as discussed subsequently. Note that with 
40 background photons per symbol, uncoded performance 
can only achieve 410)( �
EPb  in the range of 

sK  shown, 

400 ++ sK , hence the receiver cannot reach bit error 

probabilities of 610� or less, which is usually required for 
deep-space communications. Table 5.2 in [6] was used to 
determine n, k and t for BCH codes, in the following 
discussion.  
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Fig. 8.  a)  Uncoded and BCH block-coded performance 
of binary PPM symbols for increasing codeword-length, 
with t = 2; b) minimum error probability achieved with 
n = 127, t = 2. 

It can be seen in Fig. 8a) that as the codeword length n 
increases from 15 to 31 to 63, with the number of 
information symbols k selected to keep t = 2, performance 
continues to improve but reaches a minimum at n = 127 and 
actually reverses the trend and begins to degrade with n = 
255 in this region, as the dashed black curve indicates. This 
reversal begins to occur near the threshold in Fig. 7a, around 
a bit-error probability of 0.01, and it is attributed to the fact 
that more than two errors begin to occur in the uncoded 
sequence within 255 symbols, as the solid blue curve shows 
around the coding threshold, hence correcting only 2 errors 
within 255 symbols on the average tends to leave 
uncorrected errors in these long sequences, degrading 
performance even as the scaled value of sK  increases with 
increasing codeword length.  

This phenomenon is clearly demonstrated in Fig. 8b, where 
the bit error performance of both modulations are shown 

around the optimum point of n = 127 at an average signal 
energy of 40�sK . On this magnified scale the difference 
between the two modulation schemes can be clearly seen, 
with OOK performing slightly better than binary PPM in 
this region. 
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Fig. 9.  a)  Uncoded and BCH block-coded performance 
of binary PPM symbols for increasing error correction 
strength, with n = 63; b) minimum error probability 
achieved with  t = 5, n = 63. 

Similar behavior can be seen in Fig. 9a) for increasing t at 
fixed codeword length n = 63, but in this case the reversal 
actually starts near 0�sK , instead of near the threshold. 
This is attributed to the fact that the scaling factor k / n 
decreases with increasing t, hence the signal energy per 
scaled codeword symbol decreases with increasing t, 
reducing the available signal energy which in turn leads to 
more uncorrected errors than would occur with slightly 
smaller t but greater signal energy. However, it should be 
noted that in both cases considered, the optimum point 
occurs at bit error probabilities that are lower than the usual 
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communications requirements of 610� can be met with 
careful selection of error correcting capability t and 
codeword length n, even with hard-decision BCH block 
codes. Soft-decision decoding further improves performance 
by a nominal 2 dB in terms of required signal energy, and 
even greater coding gains can be realized with powerful 
modern codes, at the cost of greater receiver complexity. 
However, these examples with BCH codes serve to 
demonstrate the performance improvements available 
through the use of coding, enabling the polished panel 
optical receiver to achieve low bit error probabilities at high 
data-rates, as required by future deep-space optical 
communications applications. 

 

6. SUMMARY 
The optical communications performance of large aperture 
polished-panel optical receivers has been evaluated using 
experimentally obtained point-spread functions, 
demonstrating that deep-space optical communications 
requirements can be achieved at high data-rates through 
proper selection of modulation formats and the application 
of coding, even in high background environments 
encountered when pointing the polished panel receiver close 
to the sun.  It was shown that high-quality lightweight 
aluminum panels could be manufactured with surface 
accuracies sufficient to concentrate light into a small spot, 
that could be detected with large area photon-counting 
arrays enabling optical communications in the future. As 
part of this demonstration effort, an aluminum panel 
manufactured by Vertex Antennentechnic GmbH. was 
installed on the main reflector of the 34-meter antenna at 
DSS-13, and a large-sensor camera manufactured by Finger 
Lakes Instruments was installed into a weather-proof 
enclosure and mounted next to the subreflector, to record 
the point-spread function (PSF) generated by the polished 
panel.  Data was collected while tracking the planets Jupiter, 
Venus, Mars and bright stars at night, and detailed images 
of the PSF with various antenna pointing offsets were 
obtained [2].  A mathematical model of the focal-plane 
energy distribution was developed and applied to the 
experimentally measured PSF in order to predict optical 
communications performance.  It was shown that 
bandwidth-efficient OOK and binary PPM modulation 
formats can be employed to communicate from 
interplanetary distances even in high background 
environments when coding is applied, and optimum 
operating points were determined for minimizing the error 
probabilities. It was also shown that uncoded OOK 
modulation together with large area photon-counting 
detector arrays can be used to closely approach the quantum 
limit for binary signals in the absence of background, 
demonstrating that optical receivers employing light and 
low-cost polished aluminum panels are fundamentally 
equivalent to much more expansive diffraction-limited 
optical receivers in terms of optical communications 
performance, when properly designed modulations and 

detection strategies are employed.    
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