Notional Concept of Operations (ConOps) for Deep Space Optical Communications

H. Hemmati
Jet Propulsion Laboratory, California Institute of Technology
June, 2013
• Introduction
 • Acquisition, tracking, beam pointing
 • Link availability
 • Days in the life
Deep Space links:

- Trunkline uplink (forward) – Direct detection, or coherent detection
- Trunkline downlink (return) – Direct or Coherent Detection
 - Space-to-space
 - Space-to-Earth
- Planet surface-to-orbiter
- Planet surface-to-Earth
- Surface-to-surface
- Emergency forward (optical)
- Emergency return (optical)
<table>
<thead>
<tr>
<th>Consideration</th>
<th>Near-Earth Links</th>
<th>Deep-Space Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit beam width (typical)</td>
<td>> 10 μrad</td>
<td><10 μrad</td>
</tr>
<tr>
<td>Round-trip light-time</td>
<td>seconds</td>
<td>minutes to hours</td>
</tr>
<tr>
<td>Beacon irradiance at spacecraft</td>
<td>3-10 nW/m2</td>
<td>1-3 pW/m2 (very dim)</td>
</tr>
<tr>
<td>Point-ahead angles</td>
<td>2-5 beam widths</td>
<td>15-60 beam widths</td>
</tr>
<tr>
<td>Receiver optical signal-to-background power (daytime operations)</td>
<td>> +10 dB</td>
<td>< -10 dB (extremely faint)</td>
</tr>
<tr>
<td>Laser peak power (required for PPM)</td>
<td><20 W</td>
<td>> 500 W</td>
</tr>
</tbody>
</table>
Deep Space Optical Link Architecture

Flight Terminal On Orbiter

CMD/TLM

Deep Space Network

Downlink (telemetry, science, 1-Way Ranging)

Beacon / Uplink / 1-Way Ranging

CMD/Monitor

DOT Mission Operations

Spacecraft Operations Center

Demo Coordination Center
Flight terminal considerations
- Beacon signal level required at the spacecraft
- Platform jitter characteristics
- RF link availability (at least a low capability in foreseeable future)

Earth terminal considerations
- Site geography and number of ground stations
- Atmospheric conditions when links are through atmosphere
- Uplink laser safety (to aviation and earth-orbiting spacecraft)
- Data hose
 - At 0.267 Gb/s downlink data-rate (from Mars)
 - ~8 Tbits (~1 Tbyte) delivered in a 9-hour continuous link
 - Data storage requirements at the spacecraft dependent on number of ground stations
 - Data storage requirements at the ground site
 - Data dissemination via high-speed (fiber or other) links at the ground site

Mission considerations
- Asymmetric data link
- Allocated data transfer time
- Allocated latency in transferring data
 - May drive onboard data storage requirements
With ground-based terminal, channel capacity is highly time dependent

- **Long-term predictability**
 - Spacecraft-Earth distance
 - Line-of-sight constraints
 - Sun-angles
 - **Mitigation**: Storage at the spacecraft, or multiple ground stations

- **Medium-term predictability**
 - Atmospheric attenuation
 - Ground state: available, partial to complete outage
 - Atmospheric turbulence/scintillation
 - **Mitigation**: Buffering and data-retransmission upon request

- **Short-term predictability**
 - Fast moving clouds
 - Highly turbulent atmosphere
 - **Mitigation**: Long interleaver codes and fly-wheeling through fades. Also optical DTN (delay-tolerant and disruption-tolerant networking protocols)

With space-based terminal, dealing only with long-term predictability issues

- No atmospheric (weather and turbulence) issues
- Also, best for uplink beacon
• Introduction
• **Acquisition, tracking, beam pointing**
• Link availability
• Days in the life
<table>
<thead>
<tr>
<th>Mode</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-orbit Calibration</td>
<td>• Boresight flight terminal line-of-sight to spacecraft reference axis</td>
</tr>
<tr>
<td></td>
<td>• Characterize acq/trk detector array (e.g. pixel to pixel variation)</td>
</tr>
<tr>
<td></td>
<td>• Calibrate centering of vibration isolation platform</td>
</tr>
<tr>
<td></td>
<td>• Calibrate point-ahead mirror and its algorithm</td>
</tr>
<tr>
<td>Standby</td>
<td>• Maintain health and safety of flight optical terminal</td>
</tr>
<tr>
<td></td>
<td>• Keep track of current time and upcoming mode changes</td>
</tr>
<tr>
<td>Acquisition</td>
<td>• Acquire the beacon uplink signal and stabilize it on the detector</td>
</tr>
<tr>
<td>Uplink</td>
<td>• Track the uplink beacon signal to enough accuracy to keep pointing</td>
</tr>
<tr>
<td></td>
<td>losses to <TBD (~2dB)</td>
</tr>
<tr>
<td>Downlink</td>
<td>• Point the downlink beam to the ground station</td>
</tr>
<tr>
<td>Safe</td>
<td>• Recovering via RF or optical comm</td>
</tr>
</tbody>
</table>
PAT Operational Modes; Description

- **On-orbit calibration mode**
 - High rate telemetry
 - Sensor and actuator placement in specific configurations
 - No uplink beacon, and no ground interaction

- **Standby mode**
 - Minimal data and power state.
 - Flight terminal is not actively transmitting or receiving

- **Acquisition mode**
 - Initialized with an estimated location/attitude with the associated knowledge error (i.e. covariance)
 - PAT assembly actively tries to locate Earth.
 - PAT will generate a search pattern based on the state estimate.
 - PAT commands the actuator to do the search.
 - Mode ends with either 1) acquisition of target on detector or 2) time out on search pattern
 - Variable length of time depending on the initial conditions. Can be bounded.

- **Uplink mode**
 - Track uplink beacon source. Stabilize to required performance
 - No point ahead used.

- **Downlink mode**
 - Track uplink beacon source.
 - Apply point ahead calculation using Earth ephemeris mode.
 - Aim downlink beam, using point ahead for disturbance rejection of downlink beam.
 - Mode duration is determined by pass duration (including margin)
 - Preceded always by an acquisition mode. Assumes target is already acquired and is being tracked.
 - Acquisition and tracking for retransmission

- **Safe mode**
• Introduction
• Acquisition, tracking, beam pointing
• Link availability
• Days in the life
1. Single site with largest possible aperture
 - e.g. 3 telescopes co-located in one site
 - 3X effective aperture diameter; high channel capacity
 - ~20% availability in 24 hours
 - ~60% clear weather, available 8 hours only
 - Lowest infrastructure cost
 - Requires adequate storage at spacecraft

2. Three sites distributed in the same geographic area, but in weather diverse sites
 - ~30% availability in 24 hours (92% x 0.33)
 - Moderate cost of 3 stations

3. Three sites distributed globally, with a cluster of 3 telescopes each
 - >90% availability in 24 hours
 - High cost of 9 telescopes

4. Linearly dispersed ground stations
 - >90% availability in 24 hours, with 5 telescopes
 - Moderate-to-high cost of 5 telescope
 - Highest availability
• Assumed a set of 4 complementing ground transceiver network
 ∗ Goldstone (GS), CA,
 ∗ Tiede (T), Canary Islands,
 ∗ La Silla (LS), Chile,
 ∗ Alice Springs (AS), Australia
• 4-site gap-time is 5%
• Numerous instances of 2- or 3-site coverage
• Link performance degradation at SEP <10°

66% link availability with this arrangement

Contact-time and gap-time distribution for 4-site global network.
Availability increases for 2- and 3-site simultaneous contacts

<table>
<thead>
<tr>
<th>Station</th>
<th>Single Site (Tbits)</th>
<th>4-Site Ground Network (Tbits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS</td>
<td>260-329</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>330-441</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>193-227</td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td>554-648</td>
<td>856 - 1374</td>
</tr>
</tbody>
</table>

Single- vs. four-site data-volume after accounting for cloud-free-line-of-sight availability
Handover between ground stations

- Ground station selection based on
 - Local Availability
 - Local Weather
 - Local Visibility
 - Line-of-site
 - When footprint of the downlink beam excludes simultaneous use of two ground stations

Re-acquisition

- Momentary link loss, for whatever reason, requiring repeat of acquisition cycle

Predictive Weather

- Understanding weather conditions at the site well enough to enable the capability of switching to another ground station based on weather predicts.
Hybrid RF/Optical strategy allows:

✧ **Use RF links for:**
 - Communications and navigation requiring high availability (~97%)
 - Maximizing availability

✧ **Use Optical links for:**
 - Downlink for large volumes of data
 - Science data tolerant of time delay
 - maximizing
• Introduction
• Acquisition, tracking, beam pointing
• Link availability
• Days in the life
Cruise phase checkout and testing day(s)
- Payload checkout
- Operations, as much time as granted
- Procedure refinement
- Ground receiver optimization
- Operations experience accumulation

In-orbit phase checkout and testing day(s)
- Verify system performance
- Acquire data at different link ranges
- Acquire data at different modulation formats (PPM orders)
- Acquire data at small to large Sun-angles
- Make precision range measurements
- Accumulation of atmospherics data along with uplink and downlink data, for later correlation
- Station handover performance tests
Long term
• Predictive avoidance data requested at least 24 hours prior to link
• Coordination through spacecraft mission operations center

Medium term
• Spacecraft ephemeris data acquired
• Ground terminal readiness decision (atmospheric data …)
• Ground terminal calibration

Short term
• Track celestial target and point uplink laser beam based on trajectory calculations
• Flight terminal is commanded via spacecraft to receive uplink and transmit downlink
• Downlink data analysis (BER, link margin… analysis)
• Attempts to improve both link margin and BER
• Data correlated with atmospherics measurements
• Uplink and downlink performance correlation
• RF/optical link decision (if data availability is critical)

Special days
• Calibrations
• Commissioning of the telescope
Deep space link entails a variety of different scenarios

Key con-op drivers:
- Lasercom requirements
- Mission requirements
- Pointing, acquisition, and tracking (both uplink and downlink)
- Link availability

Operational boundary conditions (weather, availability, visibility, and line-of-site) drive handover options

Mitigation techniques were identified to optimize channel capacity

A hybrid of RF and Optical link strategy maximizes downlink data volume

A hybrid of decision plans ahead of time and during the link is expected to provide the most efficient link.
The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

© California Institute of Technology.

Government sponsorship acknowledged.

Steve townes (JPL) for review constructive comments.